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Non-linear mechanics of constrained material continua.
II. Ideal constraints for deformations and stresses

Cz. WOZNIAK (WARSZAWA)

In the first part of this paper [1] foundations of mechanics for material continuum with internal
constraints imposed on deformations were discussed. The present note constitute a general-
ization of an approach given in [1]; the constraints are imposed not only on deformations but
also on stresses. The character of constraints in both cases is different; roughly speaking, the
constraints for deformations make the body more “rigid” and the constraints for stresses make
the body more “slender”. The constraints for stresses are applied to formulate theories of slender
bodies (such as strings and membranes), in theories of shells and rods (where we neglecte certain
stress components), in discretized approaches to continuum mechanics (where certain classes
of discretized states of stress are postulated a priori), etc. All mentioned problems are special
cases of the general approach given in the note.

W pierwszej czesei tej pracy [1] omowiono podstawy mechaniki osrodkéw ciaglych z wiezami
dla deformacji. Obecna nota jest uogé]nienicm podejécia przedstawionego w [1]; rozpatrywane
sq zarbwno wiezy dla deformacji jak i dla naprezefi. Charakter wigzéw w obu przypadkach
jest réiny; z grubsza biorge, wiezy dla deformacii ,,usztywniaja” cialo, a wiezy dla naprezed
czynia cialo bardziej ,,w;otk:m" Wigzy dla napregzen wystepuja przy formulowaniu teorii ciat
wiotkich (takich jak ciegna i membrany), w teoriach powlok i pretéw (gdzie pomijamy pewne
sktadowe naprqzen.ia), w dyskretyzowanych podejéciach do mechaniki kontinuum (gdzie sg
postulowane a priori pewne klasy dyskretyzowanych stanéw naprezenia), etc. Wymienione tu
problemy sa przypadkami szczegélnymi podejicia przedstawionego w pracy.

B nepgoii yacti ganHoii paborer [1] obcyr(IeHbI OCHOBBI MEXAaHHKH CILIONIHBIX CPEX CO CBfA-~
3amu s nedopmamii. Hacrosas samerka sBJisgercs 06o6iienuem Mogxoaa mpeAcTaB/IeHHO-
ro B [1]; paccMarpuBaloTCA TaK CBA3K AnA medopmaimil, KaK ¥ A HanpsDKeHmit. Xapaxrep
cBAsell B 0DOMX clyyasx pasyMueH; rpy0o NMpHUHUMasA cBASH AnA HedopMmaingi ,,IpHAAIOT
JKECTKOCTH "'Teqly, a BCASH AJIA HANpsDKeHMit genaior Teno Gonee ,,rmbkum™. Cessu mis
HANpHKEHMH BRICTYNAOT NpH GOPMYJMPOBKE TEOPHH I'MOKHMX TeJl (TAKMX KaK CBASH M MeM-
GpaHbl), B Teopusax ofonoueK u crepriHell (rae npeHeGperaeM HEKOTOPHIMH COCTABJLAIOMINMH
HANPSOKEHHH), B JHCKPETH3UPOBAHHEIX MOAXOJaX K MeXaHMKe KOHTHHYYM (THe mocTyampy-
10TCA 4 MPHOPH HEKOTOPBIE KJIACCHI JHCKPEeTH3HPOBaHHBIX HANPSKEHHEIX COCTOSHMIA), H T. 1.
ITepeuncnenyrlie 3mecs npobiemMbl ABNAOTCA YACTHBEIMH CTYYaAMH MOAX0HA NPEACTABICHHOTO
B pabore.

Notations

Indices «, f and k, [ run over the sequence {1, 2, 3}, and indices X, L, M, N run over the sequence {1, 2};
the summation convention holds. The inertial coordinates in the space-time are denoted by x¥, r, where
the system {xk} is assumed to be Cartesian and orthogonal. The material coordinates are denoted by
X = (X% and coincide with the coordinates x = (x*) when a body is in the reference configuration. Subscripts
preceded by a comma or by a vertical line denote partial or covariant differentiation, respectively, symbol
[a] denotes a jump of the field a across the surface,

1. Laws of dynamics

LeT B be a region occupied by a body in the reference configuration. We assume that
there is given a partition By = UB,,a =1, ...,m, B,nB, = ¢ foreacha # b, and we
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denote B, = u B,, Sg w =8B,. Let the surface Sy be oriented by a unit normal vector
ng = (ng,) and divided into two separate parts: S, S, , where S; = By (cf. Fig. 1).
To formulate the basic laws of dynamics we introduce the following primitive concepts:

FiG. 1

1. The deformation function x* = ¥*(X,t), X € Bg, t € R; we assume that y may
suffer discontinuities on S only (i.e., S; is not a material surface, but there exists a pair of
moving surfaces x*)(X, 1) and x")(X, 1), X € S, where yx(*), () are boundary values
of yonsSy).

2. The mass distribution gx(X) > 0, X € B,, in the reference configuration.

3. The body forces b*(X, t), X € By, t € R.

4. The surface tractions p§(X, t), X € Sy, t € R, related to the reference configuration
and defined nearly everywhere on S,.

5. The stress vector t{f,,, (X,1),X e By, t €R, related to the reference configuration;
we assume that [fa] = 0 on S; (it means that there exist two systems of contact forces
defined on S; x R: the system #@, Which acts upon the body across the surface %’ and the
system —fq, which acts upon the body across the surface x‘*’).

All functions mentioned above must satisfy the suitable conditions of regularity in the
domains of their definitions: the functions gg, b are assumed to be continuous in each
B,,a =1, ..., m, the material derivatives of y may suffer discontinuities only on Sg N Bg,
stresses f(,,) have continuous material derivatives in each B, and the principle of impene-
trability of the material is postulated (i.e., the function x* = *(X, ) is assumed to have
an inverse X* = X*%(x, t) for each time instant ¢ € R and for each X € By —S7).

As basic axioms of dynamics we shall take:

1. The laws of conservation of momentum and moment of momentum

d .
mf orXdvg = ft(ng)dﬂ'x'f' J'Qabdﬂm
. " ol 3

d .
= stXxxdﬂx = ff(mxxdaﬁ f@nbx X dg,
J P

aP

which have to hold for any regular region P = B,.
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2. Newton’s third law of mechanics

- {f(..,) on S, N 0By,

1.2) eyl o0 S, B,

on the surface S, (we denote [a] = a™)—a™) on Sy— 3By, cf. Fig. 1).
By virtue of (1.1) we obtain fge = Tang, Tg = (T&*) being the first Piola-Kirchhoff
stress tensor, and the known field equations
(1.3) Tgiu_u+ggbk = Qﬂ.x.k, Tgk[c‘Xﬁ & = O in .Buo
From (1.2) we derive then bou dary and jump conditions
(14)  T®nga=pg* on 8, N 0Bg; [Te*Inga = p* on S, n By

After introducing the convective stress tensor defined by 7% = J=1X* , T, J = detVy,
we shall obtain the following alternative form of Egs. (1.3), (1.4), taking into account that
[T¥*ngs = 0 on S;:

T%s+0b" = o3*X*y, T =0 in B,,

(1.5) _ _ _
Tng = p*, [@ny = p* on 8,,[T¥Im=0 on S,

where p = J™ g5, b* = b*X*, and p*do = pg*dog, do being the element of the surface
%(Sy, t). Equations (1.5) can be written down in the Cartesian coordinate system {x*}
in the physical space:

T +ob* = o7, T™ =0 in B,,
™"m=p" [T™Mn=p onS,, [T¥In,=0 onS§,

T = (T™) being the Cauchy stress tensor, p* = ¥* , p*
Denoting f = b—§, we can prove the following variational theorems:

(1.6)

J‘PR,‘ Ogxdog+ f@xfkaxxdﬂx = f TR** 0%y, d0R— f TR*[Oxalngado,
Bg Bg

Sx Sy

(L.7)
IXkéPth“R+ f?nxkafkd% = ka.aéTxhdﬂn“ f[Xk]aTx“"mdans
SX Bg Bp 5

which have to be satisfied for any smooth vector field 8y in Bg—S; and for any system of
fields dpg, Of, 0T, satisfying the relations

ST +0r6f* =0 in B,
(1.8) (STR“HR“— apnk =i on Sx N aBn,

[6T:*)nge—ps* =0 on S, n B.

The Egs. (1.7), (1.8) can also be expressed in terms that appear in Egs. (1.5), (1.6).

Relations (1.1)-(1.8) are valid for any material continuum (simple and non-polar),
being independent of material properties of the body, its interaction with external fields
and constraints imposed on the deformation function or on the stress tensor.

2 Arch. Mech. Stos. nr 2/76
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2. Relations defining the body

To formulate the axioms which define the continuous body under consideration as well
as its interactions with external fields we must introduce the following primitive concepts,
apart from the primitive concepts which were introduced in Sect. 1:

1. The body loads b = (5.“()(, 1)), Xe By, teR.

2. The external surface loads] pr = (p*(X, 7)), X € Sy N 0Bg, t € R, acting at the
body across its boundary.

3. The field of local deformations F = (F"a(x, t)), Xe€ By, fe R, where detF > 0.

The fields b, Pg, F have to satisfy conditions of regularity like the fields b, pg, VY,
respectively.

We postulate that for each body under consideration the external loads are related
to the deformation function by means of the formulas:

@.1) bX, ) =BX, 1, %0, PrX,0)==X,1,%,
where B, m are known differential or integral operators. In the special case, the right-

hand sides of (2.1) are knowh functions of X (“dead” loads).
We shall assume that the material of the body is simple and write the stress relation

in the form
@2) Ta(X, 1) = B (X,F), XeBo,
§=0

where b is the known response functional for the first Piola-Kirchhoff stress tensor,
F® (s) = F(X, t—s) being the history of the local deformation field. The Eq. (2.2) has to
satisfy the principle of material frame indifference.

Apart from the load and stress relations we postulate that constraints for deformation
are imposed on the motion of the body.

hX, t, %, VX, Y, V) =0; XeBy,teR; h=1,..,r,

RX,t, %, VX, ¥, V) =0; XeS,teR; o=1,..,s,

where h,, R, are known functions, § = (y°(X,#), a=1,...,n, X €Bg, teR, is an

unknown vector and V is a material gradient on the surface Sy, i.e.Vy = (*x), K = 1,2,

where X* are local parameters on S,. We assume that ¢ is not a new primitive concept,

the definition of ¢ being included in (2.3). In some cases we can eliminate ¢ from (2.3)

and obtain equations of constraints in the form of differential equations of a higher

order, cf. [1] the Egs. (2.3), can be either independent of (2.3), or generated by (2.3),(*).
We shall also postulate that there exist constraints imposed on the stress tensor. Firstly,

we assume that these constraints are imposed on the first Piola-Kirchhoff stress tensor

(X, t, Tg,VTx, $, V) =0; XeBy, teR; u=1,..,r,
R*(X,t,Tgng, V(Tgng),$, V) =0; XeS* teR; zn=1,..,s5,

S¢ < S,, where hf, R" are known functions (they can also depend on F) and = @(X, 1),
XeBg,teR,b=1,...,n,is an unknown vector which has the same meaning as the

(*) For example, if the constraints %,;; = Oare given in By, and a part S; of Sy coincide with a congru-
ence of parametric lines X, then the constraints % ;; = 0 have also to be introduced on the surface Sy < Sy.

2.3)

2.4
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vector Y in (2.3). The Eqgs. (2.4); have to be consistent with the stress relations (2.2);
it means that after substituting right-hand sides of (2.2) into (2.4),; we arrive at the equa-
tions which have to be satisfied by at last one history F at each point X € B,. Some from
the relations (2.4), can be generated by (2.4),.

3. Principles of reaction for constraints. Ideal constraints

Let us observe that the Egs. (2.4) can be interpreted as the constraints for deformations
if the stress relation is given in the form Ty = hr(V%®). The other interpretation of these
constraints can be obtained by treating (2.4) as certain restriction on the class of materials
(on the form of the response functional). Neither of these two interpretations will be assum-
ed in what follows; the constraints for stresses will be treated independently of the con-
straints for deformations and material properties of the body.

We will postulate the following statement which will be called the principle of reaction
for constraints imposed on deformation:

If on the deformation function (X, t) are imposed constraints (2.3), then there exist the
reaction forces x(X, t) in B, and the reaction forces sg(X, t) on Sy, which maintain these
constraints such that the relations

(3.1) b=b+r in B,, Ppr=Pp+sk on Sy,

hold.

From (3.1) it follows that the system of forces b, pg, introduced in Sect. 1, is given
by the sum of external loads and reaction forces. Because of pr = 0 on Sy N Bg, we also
have pg = sg on S, N Bg.

In what follows we are to deal with what are called ideal constraints [1];

The constraints imposed on the deformation function are said to be ideal if the sum of the
works of the reaction forces due to the constraints on any virtual displacement &y, is equal
to zero, i.e., if the relation

(3.2) J sitopdon+ [ onr*dpndug =0,
2x Ba
holds for any field 6y € D*(Bg— S;) such that {6y, 0} is the solution of the system
on ; on, .,
x*axk 6x“¢51k +aa aw“’a&p,a—o, XeB,, teR,
(3.3)
aR‘é *+ AR ax* x+£§-5§o + = i o’k =0, XeS,, teR,

dy* 0r* x 6‘

defined for {x,$} which satisfy (2.3)(%).

The ideal constraints imposed on deformations were analysed in [1]. In this note we will
deal mainly with the constraints imposed on stresses. The following statement will be called
the principle of reaction for constraints (2.4):

(*) Remember that the symbol dy has different meanings in the Egs. (3.3) and (1.7), . The local coordi-
nates on Sy are denoted by XX, K =1, 2.

2%
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If on the first Piola-Kirchhoff stress tensor Ty are imposed constraints (2.4), then there
exist the strain incompatibilities 1 = (I'y(X, 1)) in B, and the jump d = (d*(X, 1)) of the
deformation function across S} < 8,, due to these constraints such that the relations

(3.4) Vx =F+Iin B,, [x]=d on S*,

hold and the stress relation in the form (2.2) is valid(®).

Let us observe that in general the field F of local deformation cannot be integrable.
Analogously as in the case of constraints imposed on deformations, if nothing is known
about the constraints (2.4), then nothing is known about the stress incompatibilities I
and jump d of the deformation function. In this note we shall confine ourselves to the
concept of ideal constraints for stresses. To this end we shall formulate the following defi-
nition.

The constraints imposed on the first Piola-Kirchhoff stress tensor Tg are termed ideal
if the relation

(3.5) f L1 ST ¥ dvg + f dy 8T ngy dog = 0,
s¢
holds for any field 0Ty € D*(Bx—S,) such that {8Tg, 0} is the solution of the system
on* ., 0K x

ﬁéﬂ;* +6T k& 5TR" B ——_6!0 +6w°aa‘pb , XGBO, fER,
(3.6)

oR* 3R - o

T S0t a az,, ke a_,, 61,0" 6@:".;: a.,u"_x=0; 1t = Te*ng.; XeS¥, teR,

defined for {Tg, ¥} satrsfymg 2.4).

From (3.5) it follows that if there are no constraints for Tz, then I=0and d =0, i.e.,
the local deformation field coincides with the deformation gradient Vy and the field ¥ is
continuous across S* (denoting S = S,—S*, we can also put S¥ = ¢, S, = S?).

The dynamical axioms (1.1), (1.2), load relations (2.1), stress relation (2.2), equations
of constraints for deformation (2.3), (3.1), (3.2), equations of constrains for stresses
(2.4), (3.4), (3.5) characterize continuum mechanics with constraints imposed on deform-
ations and on the first Piola-Kirchhoff stress tensor.

4, Alternative forms of ideal constraints for stresses

The constraints for stresses can also be given as the restrictions imposed on the con-
vective stress tensor T = (7%%) or on the Cauchy stress tensor T = (7*). In the former
case we have

WX, t, T, VT, $,VP) =0; XeR; p=1I,

4.1 _ o
R*X,t,6,VE, Y, V) =0; XeSF, teR; =n=1,..,5,

(®) The concept of non-material surface across which the deformation function is discontinuous but
the stress vector is assumed to be continuous has a physical sense only for special kinds of discontinuities
[%] and constraints (2.4);. Such a surface secures the existence of deformation function % when (2.4)
holds (cf. Sect. 9).
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and in the latter we shall write down
X,t, T,grad T, $,grad P) =0; XeBy, teR; u=1,..,7,

(4.2) L
R*(X,1t,f, gradt, Y, grad $) =0; XeS*teR;, p=1,..,5,

where t = (T*n,), t = (T*'n)), VT can be treated as covariant derivative, VT = (T%|,),
grad T is a spatial derivative, grad T = (T%,,,), and grad T is a spatial derivative on the
surfaces X‘*(S;, 1), XSt t), where ), 3¢ are boundary values of the deforma-
tion function. _

The stress relations for the stress tensors T and T are given by

(4.3) T(X, 1) = i';«ﬂ(x,cm(s)), TH(X, 1) = B (X, FO(5)),

where C = (C,5) = F'F, and where H*, h* are known response functionals. Because
the right-hand sides of Egs. (2.2), (4.3) are related to b* = F*, F{y 9%, h* = F*, hP* det F,
and the left-hand sides of (2.2), (4.3) are related by T = »* , ' 5 T, Tp**= y* , 777, we
conclude that the constraints (2.4), (4.1) and (4.2) are not equivalent. Thus we have to
assume that a suitable form of the stress relation corresponds to each form of constraints
for stresses [this assumption is included to each principle of reaction for constraints imposed
on stresses, cf. (3.4) and (4.4)]. Moreover, the Eqgs. (4.3),,, must be consistent with the
Egs. (4.1), (4.2), respectively (cf. Sect. 3).

Now we shall postulate the principles of reaction for constraints (4.1), (4.2) and formu-
late the suitable definitions of ideal constraints.

If the constraints are imposed on the convective stress tensor T = (T*) (on the Cauchy
stress tensor T = (T*)), then there exists the strain incompatibilities D = (Dyg) in B,
and the jump 4 = (d,) of the function yx. across S{ (the strain incompatibilities Ej,
in B, and the jump d = (d,) of the function y, across S¥) due to these constraints such that
the relation

4.9 V™V =C+Din By, [Vx"xl=d on S¥

(the relations; VyVyx™ = B+® and [y] = d, where B = EF”) hold and the stress relation
(4.3), (the stress relation (4.3),) is valid.
The constraints (4.1), (4.2) are termed ideal if the relations

@5) [ DyoTdv+ [d,0T%nyds =0, [ EqoTVdv+ [ d,6T"ndo =0,
B 73 Bs s¢

hold for any field 0T € 9" (Be—Sy), 0T € D' (Bg—S,) respectively such that {dT, o)}
and { 6T, 6} are solutions of the systems
(4.6) o =0, OR*=0 and 8h* =0, 6R" =0,
respectively (symbol d in (4.6) denotes the variation of the corresponding function).

Systems (4.6),,, of equations are determined for {T,{}, {T, $} which satisfy (4.1)
and (4.2), respectively.

From the definition given above follows that Dys = 0, dy = 0 (Ey = 0, d = 0) if
there are no constraints imposed on the convective stress tensor T = (7*) [on the Cauchy
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stress tensor T = (T™)]; in this cases we obtain Cys(By;) as the components of the right
(left) Cauchy-Green deformation tensor.

The dynamic axioms (1.1), (1.2), load relations (2.1), the Egs. (2.3), (3.1), (3.2) which
define the constraints for deformations and the Egs. (4.1), (4.4), (4.5) defining the con-
straints for the convective stress tensor, with the stress relation (4.3),, characterize the
continuum mechanics with constraints imposed on deformations and convective stress
tensor. Analogously, we can formulate the basic equations of continuum mechanics when
the constraints are imposed on the Cauchy stress tensor, which is determined by the stress
relation (4.3),. The principles of reaction for constraints are not physical laws and can
be treated in the same manner as, for example, the principle of material frame indiffer-
ence. We have also assumed that the jump [x] of the deformation function is due to the
constraints for stresses only on the given a priori part S§ of the surface S,; on the other
part S of this surface we can deal with discontinuities of the deformation function ¥
which are independent of constraints (S? may not be given a priori).

5. General theorems

General theorems which concern the continua with ideal constraints for deformation
were given in [1]; here we shall write down only the principle of virtual work, which can be
derived from (1.7); (3.1) and (3.2):

(5.1) f P Oyidog + f@xfkéxtdi’a = J-TRu(GXK).;@R:_ J'Tak:ka]ﬂx:dom

dBp Bg Bg ft
where f = b—y; Eq. (5.1) has to be satisfied by any virtual displacement 8y satisfying
(3.3). It is easy to prove that the constraints for deformations are ideal if the principle of
virtual work holds. By virtue of (1.7),, (3.4) and (3.5) we arrive at
(5.2) J-Xk Opx*dog|+ f@x xx0f*dog = kau OTR"** dvg!— f (%) 0Tx** ngodo

Sx Bs B sy
and the later relation has to be satisfied by any dpg, of, 0T satisfying (1.8) and (3.6).

This statement is called the principle of complementary virtual work. We can also prove

that the constraints (2.4) for the first Piola-Kirchhoff stress tensor are ideal if the principle
of complementary virtual work holds. Bearing in mind that the form of principles (5.1), (5.2)
is independent of reaction forces r, s and incompatibilities I, d (where d was introduced
only on S¥,S* n S¢ = ¢).

Using (5.2) one can write the known Castigliano formula, which will be expressed either
by the relation
(53) § wopetdon = [ FuadTe®dog— [ [y 0T npados,

0Bp Bg Stl
which holds for any dpg, 6T satisfying (3.6),, (1.8), and Div(6Tg) = 0in B,, [6Tg]ng = 0
on S, N Bg, or by the relation
(54) [ FradTetodog — [ 18T ngudog = 0,
B

s¢
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which holds for any 6Ty satisfying (3.6), and Div(dTg) = 0, 6Tgng = 0, [6Tglng = 0
[cf. (1.8)] in B, and on Sx N dBg, Sy N By, respectively.

Analogously, we can prove that for the constraints imposed on the convective stress
tensor (4.1) the principle of the complementary virtual work is given by

(5.5) [ wdrtdot [opdfido = [ CopdTdv— [ 1ol 6T nydo,
Sy Bg Bp S°

t
where y, = 77" «; the Eq. (5.5) holds for any &p*, 8f*, 6T satisfying (4.6),
(6T%) 5+ 0X*  Of* = 0 in By, ,[6T%Ing = X*,0p* on S, A B, 6T%n, = X%, 8p*
on S, N @Bg. Formulae (5.2) and (5.5) are not equivalent because the ideal constraints

for Tg are not equivalent to the ideal constraints for T. From (5.5) follows the second
form of the Castigliano formula

(5.6) [ Cop0Tdo— [ 12167 nydo = 0,
Br 4

St

satisfied by any solution 6T of Sh* = 0; (&_f"ﬂ)]ﬁ = 0in B, and l(ﬁ“ﬂlnﬁ = 0on S, N By,
8T*ny = 0 on Sy N @Bg. For the hyperelastic materials with the inverted stress relation
C* = ¢y/dT*,y = y(T) being the complementary energy, we obtain from (5.6) the known
Castigliano theorem 61" = 0 [I" is an integral over ¥ (Bg,t) from p] under assumption
Sf =¢ (or S, = S¥).

The suitable form of the principle of complementary virtual work and that of the
Castigliano formula can also be obtained if the constraints are imposed on the Cauchy
stress tensor. .

If the constraints are scleronomic (i.e. invariant under the group of time translations)
then from integral formulae given in Sects. 3-5 we can derive the corresponding formulas
for the time derivatives of the fields yx, F, Tk, etc.

6. Lagrange’s equations and boundary conditions of the first kind

Let the constraints be given in the form (2.3), (2.4). From (5.1) and (5.2), using the
known Lagrange’s multipliers approach, we shall obtain the system of field equations and
boundary or jump conditions for; unknowns ¥x,F, Tg, ¢, @, A, u® Ay, e, where 2%,
#°, Ay, po are Lagrange’s multipliers for the Egs. (2.3),,; and (2.4),,,, respectively(*).
Assuming that the suitable regularity conditions are satisfied, we shall obtain:

1. Equations of motion in By:

= 0.

(6.1) (TR.I'G_Z’ ahy ) +9R_bk+;l. ahv = Qﬂfk! (A’

oh, ) _p O
ax&,a ax& N4

0y dy°

*) To makf._ the formulas more simple, we shall take here the Eqs. (2.4); in the form
R’(X! t, TR“R; q’) =0.
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2. Compatibility conditions in By:

oh, oh ch oh*
€2 tee- F*“”“arn‘('l“as"ﬁa)fo’ e (), =0

3. Kinetic boundary conditions on Sg N dBg:
oh, OR, R
T, kot ¥ id ) Nge = + ( e ) .
( * kel PeH O yqax::.x P

oh OR, OR,
- —ng ( 2 g ) :
0Y° = oy° oy k) .x

(6.3)

4, Kinetic jump conditions on Sg N Bg:

[T -y oh, ]nm i R, _ (#9 OR, ) ,
o K

0 d
6.4) Oxx, Xk Xk /,
oh, 0R dR
» o2 _|ue——2¢ ) ; R,=0on S
[ 6%] ~ e (‘“ vl ‘
5. Kinetic edge conditions on the lines L n S, where S® = S, d =1, ..., k, are

smooth surfaces on which functions R, are differentiable:

) Y’ x

n® being the unit vector normal to L and tangent to S,.
6. Boundary conditions of compatibility on Sz N éBg:

on* oh*
= O, AI‘ afpb NHgpg = 0.

7. Jump conditions of compatibility on Sz N Bg:

(6.6) P T, "R

" on ] _ R,
(6'7) [ xka at '1# aTRka.ﬂ Nrp = [in a(TRanRﬂ) Ngg,
M x
_ [;,“ %]m - ,u,,%;lb—; R* =0, [;1=0 on Se—Sk.

The Egs. (6.1)-(6.7), the Egs. (2.3), (2.4) defining the constraints [where (2.4), are
taken in the form R™(y, ¢, Tgng, %) = 0], load relations (2.1) and a stress relation (2.2)
constitute the fundamental system of equations for material continuum with constraints
imposed on the deformation function ¥ and on the first Piola-Kirchhoff stress tensor Tg.
This system has to be considered together with the Egs. (1.3), (1.4), (3.1) which determine
the reaction forces r, sz and with the Egs. (3.4) which determine the incompatibilities I
and jumps d of the determination function.

The Eqgs. (6.1), (6.2) will be called Lagrange’s field equations of the first kind, and the
Egs. (6.3)-(6.7) will be termed Lagrange’s boundary, jump or edge conditions of the first
kind, respectively. The system of relations analogous to (6.1)-(6.7) but for constraints
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imposed on the convective stress tensor or on the Cauchy stress tensor can also be obtained
using Lagrange’s multipliers approach; in theses cases the Egs. (6.1), (6.3)-(6.5) are valid
in unchanged form.

7. Lagrange’s equations and boundary conditions of the second kind

Now let us assume that the constraints (2.3) and (4.1) are given in an explicit form
X, 1) =PX, 1, ), XeBr;  R(X,1,9) =0, XedBr; ¢ =¢(X,1),
T4X, 1) = ¥¥9X,1,9,V, V), XeBy; R(X,t,$) =0, XedBg,
where @, P** are known functions _and either ¢ = (y') or ¢ = (', 9*) (*). As basic
unknowns we shall take the vectors ¢ and ¢ = (y°), b = 1, ..., n, which will be called

the generalized deformations and stresses, respectively. Using (5.1) and (7.1) we shall
obtain in By the Lagrange’s equations of motion of the second kind

(7.1)

o d ox Ox
(72) Ha ra'}'ha'l'f;r — ?;Ef'j’_,__a;p'?;
where
(1.3) g
oo, e
fo=ob —— Bp° =5 0Py,
and the kinetic boundary conditions of the second kind on dBg
(?4) Hony = Pas
where
oD, OR,
(7.5 P — 2,
) P oy oy

and where u? are boundary Lagrange’s multipliers due to the constraints R® = 0. From
(4.5), and (7.1), using the standard approach, we shall obtain in Bg the following relations

FrZel [ JPb ( a@ﬂ) ]
7.6 Dyg—— — | Dyg——— — | Dug——
K9 o 2o, ~\P2 e, ),

which are said to be Lagrange’s compatibility conditions of the second kind. We also obtain
the integral conditions of compatibility

P oy
7. ﬂ[na ‘ -(D,, i ) ]a’°+ }n Ao,
(7.7 2 f awbly ﬂawbm 4 L4 ﬂawb|y &7’ |6 b4
which has to be satisfied by any &y® satisfying (6R™/dy?) dy® = 0

=0,

(*) Examples of constraints (7.1); can be given by axisymmetric, ¢ = (y?, ?), or centrosymmetric,
Y = ("), deformations. Moreover, functions ¥=8 for some of she pairs (x, ) = (8, ®) of indices can be
identically equal to zero. Wealso denote AY = (pPls), A2 = (b|ap), where the vertical line denotes
covariant differentiation in the metric x* q x4 5.
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Field equations (7.2), (7.6), the stress relation (4.3),, and equations R, = 0 lead to the
basic system of equations for ¢, Y, C and ?, after taking into account (2.1), (7.1), (4.4),,
(7.3), (7.5).

8. Stress functions

Let the constraints for stresses be given in the form (7.1), and let R} = 0. Let us also
assume that the body is in rest and
(8.1) ‘E"’ﬂ[3+gb°‘ =

holds for any vector Y. In this case the gegerahzed stresses are termed stress functions.
Because of 67|, = 0, (b is independent of ), from (4.5), we obtain

(8.2) f 2158 0P nodo = f Cop 0P dv,
oB B

for any &9 € C'(Bg) (when R* = 0 then the surface integral in (4.5), is equal to zero).
It follows that
A

.;]w C“”aw 5’*’16}"7""“ § 210 P nodo
oB

=0’

4

i [ oper ( as’fﬂﬁ)
8.3 o | g | e
- g~ | S0 e, ~\ e,

and that the following integral condition

09 f{leater - (o5

holds for each 6. The Egs. (8.3) hold only if an identity (8.1) is valid. From (8.3) and (7.6)
we conclude that C, = #* , 71,5 is the solution of (8.3); Eq. (8.3) will be termed the compa-
tibility equation for the stress function {, and with the stress relation (4.3),, written now
in the form P8 = h*(X, C®), constitute the basic system of the field equations for Cos
and y°. The unknown equilibrium configuration of the body [being described by the
vector P, cf. (7.1)], is now determined not by the Eq. (7.2) but by the relation @* , @y 5 = Cup
and (7.1).

9. Examples of constraints imposed on stresses

Many special cases of constraints imposed on the deformation function were given
in [1, 2]; here we shall confine ourselves to constraints imposed on stresses. This problem
is not a new one. The known applications of the Castigliano formula and Castigliano
theorem in the problems of linear elasticity (cf. [3], pp. 222-225, 337-355, 396, 454) are
very special cases of continuum mechanics with constraints imposed on stresses. In this
Section we are to deal only with simple but non-linear problems.

As the first example let us discuds the constraints of the form

©.1) Te=0 in Bg
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assuming, that there are no constraints imposed on deformations. It is a body in which
there are no interactions between its particles. Local deformation F for each particle of
the continuum is determined now by (9.1) and (2.2). From 6Tx = 0 follows that (3.5)
is an identity (we assume S% = ¢ since there are no surface constraints). Because there is
no constraints imposed on deformations, we have r = 0,s; = 0 from (3.2) and then
b = b, px = p from (3.1) (system of body and surface forces coincide with the system of
external loads). Using (9.1), (1.3) and (2.1) we shall obtain

-2 B(x) =7 in By, mgg(x) =0 on 3Bg.
Let the body loads b be continuous in each B, < Bg (cf. Sect. 1); then S = U (Bg 0 8B,),
and each part B, of the body moves independently of any other part, according to (9.2),.

From (9.2), it follows that the body under consideration is unable to carry any surface
loads.

As a second simple example let us take the hyperelastic body, which in the reference
configuration constitutes a plate /T x (—h, h), where IT is a region on the plane x* =0
and —h < X? < h, cf. Fig. 2. Let the constraints (4.1), be given in the form

©.3) T =gX, ), T==0,

where *% € C!(Bg x R) are arbitrary differentiable functions [we have ¢ = (%'}, ..., $??)],
and let us assume that there are no constraints for deformations. A continuous body with

]}st x3
Br= Ax{-h,h)
e
| S | x%=x?
-
Tex!
FiG. 2.

constraints (9.3) can be interpreted as multilayered body (each layer is represented by
a material surface X* = const), in which there are no interactions between layers. Since
there are no constraints for deformations, there are no reaction forces: r =0, sg =0,
and b =b, pg = pr [cf. (3.1)). The Egs. (1.5) are given by

0.4) P+ () P+ BNk = 07 X5,
{£L} PE b X3 ) = o X3 {5} =2 X%

where the double vertical line denotes covariant differentiation in the metric ¥* x k.. [i.€.
on the surface % (/7, X3, t) for given X3, t]. From (7.6) we obtain Dg; = 0 i.e.

9.5) Crr = 2* 2y  Das = Cas—2*alrs-

The stress relation (4.3), for hyperelastic materials has the form 7% = 2§00(C)/0Cys;
0 = pg(detC)°-*; hence we obtain
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_ _ds(C)  30(C)
KL _ sz
9 Yo =256 3Ca

Substituting the right-hand side of (9.5), into (9.6) we obtain C,3 = f,3(X; 7* mxi.n)
and then p*t = f*5(X; ¥* v xx.x). Substituting p*= = fX4(X; x* r . n) into the Egs. (9.4)
we arrive at the system of equations for x*(X,t). We can observe, that if X3 = const
is a discontinuity surface of body loads b, then X3 = const is a part of the surface
S;¢ (cf. Sect. 1); surface S¥ is an empty set because we have not postulated any constraints
for stresses on Sy, i.e. S; = SC. When the solution % (X, t) of the boundary value problem is
known, then we can calculate strain incompatibilities from (9.5);: Dy = fous (X; X s 2a.8)-

Now let the constraints (9.3) be interpreted as certain “a priori” assumptions, which
do not follow from the physical structure of the body. If in the suitable norm we have
[|Dysll < [|Cpll, then the solution of the problem under consideration differs only slightly
from the solution without assumptions (9.3), provided that the problem is stable; ||Dyg||
can be interpreted as an error of numerical calculations, for example. The state of stress
postulated by (9.3) can be applied to formulate theory of elastic membranes, and the
condition ||Dygl| < 6]| Cysl|, & being known positive constant small with respect to unity,
can be used to determine the allowable thickness 24 of this membrane (membrane is treated
here as the three dimensional body) in each particular motion.

As a next example let us take the hyperelastic body which in the reference configuration
constitutes a prismatic rod 7 x (0, /), where /I is a region on the plane x* = 0 (it is a
projection of an arbitrary cross-section in the reference configuration); (X*)ell, K = 1, 2;
X3 e (0,1), cf. Fig. 3. Let the body be made of the congruence of material fibres X! =

0.

X?':.\r1r

BRSH"(O, L)

FiG. 3.

= const, X? = const, which do not interact (or their interactions can be neglected). This
assumption enables to introduce the constraints for stresses in the form

©.7) T3 = §(X,1), Tr=0,

where (X, f) is an arbitrary differentiable function. The body under consideration can be
also treated as a model of a red with uniaxial state of stress (9.7). Assuming that there are

no constraints for deformations we have s = 0,r = 0and b = b, pg = px. Analogously
as in the latter example we obtain the equations of motion
Pat {AIP+H{B)p+eb Xk = 07X,

(9.8) s s
{35}p+ob* XX, = " X%,
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the strain incompatibilities

(9-9) Dy, = CXa_xk.KXk.m Ds; =0ie Cy; = f,aXt,a;

and the constitutive equations

_da(C) da(C) - Or

=R, W S Yamo

From (9.10) asd (9.9); we obtain Cx, = fxa(X; 2*,3%x.3), ¥ = f(X;xx.3 %x.3); substituting
the right-hand side of the latter relation into (9.8) we arrive at the system of equations for
a vector . After solution of the corresponding boundary value problem we can calculate
the strain incompatibilities from (9.9),. If the Eqs. (9.7) represent “a priori” hypothesis
on the uniaxial state of stress, then ||[Dg,|| < 0[|Cysl| can be used as a criterion of appli-
cability of this hypothesis in each particular problem, & being the known positive number,
small with respect to unity.

The aim of the above examples was to illustrate the idea of constraints imposed on
stresses and to point out, that by postulating such constraints we make the body more
“slender”. In [5] the concept of ideal constraints for stresses and deformations is applied
to the theory of shells and to the finite element formulation of continuum mechanics.

Finally, we shall discuss the problem of constraints (imposed on stresses) which are
determined on the surface S} only. This surface, oriented in the reference configuration
by a unit normal vector ng, is not a material surface and it enables us to define a pair of
moving surfaces: x‘*X(X, ) and (X, ?), X e SF, where x*?, %7 are boundary
values of y on S¥. At the same time we assume that there exist two systems of contact
forces defined on S¥: the system Tgng which is acting on the body across x‘*’ and the
system — Tgng which is acting on the body across ¢, cf. Sect. I.

Equations of the form (2.4),, (4.1), or (4.2), represent the constraints imposed on the
system of forces Tgng, and, at the same time, on the system of forces —Tgng. As an
example let us take a plate which in a reference configuration is give on Fig. 2. As a surface
S¥ let us take the part of coordinate plane X* = 0 inside the plate. Let us also assume that
there in no tangent interaction between the upper (0 < X* < k) and lower (—h < X < 0)
parts of the plate. This statement can be expressed in the form of constraints 7% = 0;
K =1,2; on S}. Because of 8TX3 = (, the condition (4.5), (in which D = 0) leads to
dsy = [gx*3] = 0, and we arrive at boundary value problems for upper and lower parts
of the plate with the continuity condition (xxx*3)" = (xxx*3)" on S¥(°). After sol-
ving these boundary value problems we can calculate the jump dg = [xxx* k] on S¥.
In some cases the constraints of the form (2.4), can be greated as certain “a priori“ hypo-
thesis which enables to replace the continuity conditions x*) = () on S¥, by a suitable
distributions of contact forces on S;*.

Other examples of constraints for stresses are given in [4-5].

(9.10)
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