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Global thermodynamic field equations of balance for anelastic 
bodies 

C.-C. W ANG (HOUSTON) and F. BLOOM (SOUTH CAROLINA) 

THE mechanical model of aneJastic response is generalized to allow for thermodynamical influences 
and leads to restrictions on the constitutive functions and flow rate which are implied by the 
Clausius-Duhem inequality. From the concept of symmetry isomorphism the anelastic global 
structure and the associated geometric structures are generated and used to derive the global 
thermodynamic field equations of balance. 

Mechaniczny model niespr~zystej reakcji osrodka uog6lniony tak, i:e uwzgl~dnione ~ efekty 
termodynamiczne, prowadzi do ograniczen na funkcje konstytutywne i pr~ko§C plyni~a, 
wynikaj~cych z nier6wnosci CJausiusa-Duhema. Wykorzystuj'lc koncepcj~ symetrii izomorfizmu 
utworzono globaln'l struktur~ niespr~zyst'l oraz towarzysZ'lce ocfpowiednie struktury geome­
tryczne, kt6re zastosowano do wyprowadzenia globalnych termodynamicznych r6wnan 
r6wnowagi. 

MexaHJNeci<aH Mo~em, Heynpyro:H peai<I.(HH cpe~hi, o6o6~eHHaH TaJ<, trro ytrre111>1 TepMo~H­
HaMJNeci<He 3$$ei<Tbi, Be~eT 1< orpaHJNeHHHM ~JIH onpe~e.IUIIOJIUIX <PYHI<UHii H ~JIH ci<o­
pocrH Tellemm, CJie~yro~ H3 HepaBeHCTBa Krray3lcyca-,UroreMa. 11cnom.3yH I<OHQenQHIO 
CHMMeTpHH H30MOp$H3Ma o6pa30BaHbl rJI06a.JThHaH HeynpyraH CTpfi<Typa H COnyTCTByro~e 
COOTBeTCTByro~e reoMeTpJNeCI<He CTPYI<TYPbi, I<OTOpbie npHMeHeHbl ~H BbiBO~a rJio6am.­
HbiX TepMO~HHaMHlleCI<HX ypaBHeHHif paBHOBeCHH. 

Introduction 

IN a previous paper [1] the authors constructed a theory of anelastic response for a purely 
mechanical model; in the present work we generalize that model to a thermomechanical 
one. The restrictions on the constitutive functions and on the anelastic flow rate, which 
follow from a standard application of the Clausius-Duhem inequality, are derived in §1. 
Use of the concept of symmetry isomorphism, first considered by W ANG in [4), allows us 
then to set forth our global constitutive assumptions in §2; here, as in [1], the anelastic global 
structure of B is generated from the elastic global structure of B via the field of anelastic 
transformation functions and the concept of a symmetry connection on an elastic body is 
introduced. Using the global balance equations of momentum and energy for a thermo­
elastic body with uniform symmetry (e.g. [4)) we derive, in §3, the global thermodynamic 
field equations of balance which apply to materials exhibiting anelastic response. 

1. Local constitutive assumptions and symmetry groups 

Let PJ be a body manifold and p a body point in PJ. Then as in [1] p is called an an­
elastic point if it is a quasi-elastic point such that the instantaneous anelastic response 
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144 C.-C. WANG 

function Gt is given by transforming a fixed elastic response function G according to the 
rule 

(1.1) 

where vis an arbitrary local configuration of p, and where <X(t) is an isochoric automorph­
ism of PAP called the anelastic transformation. It is assumed that <X(t) = id~P in any rigid 
or rest process of p and that <X(t)-+ idtMp as t-+ oo in any process of pin general. The govern­
ing equation of the anelastic transformation <X(t) is called the flow rule. The model defined 
by (1.1) is a purely mechanical one not involving the use of thermodynamical state varia­
bles and state functions. 

To generalize the mechanical model (1.1) to a thermomechanical one, we introduce 
first the usual list of constitutive relations for a thermoelastic point: 

(1.2) (T, q, e, YJ) = (G, I, e, h)(v, 0, g), 

where T, q, e, 'YJ, 0, and g are the stress tensor, the heat flux vector, the internal energy, the 
entropy, the temperature, and the temperature gradient, respectively. Now we regard 
(G, I, e, h) to be the elastic response functions which hold for an anelastic point p in any 
rest process with constant (v, 0, g). When the process is not a rest one, we require that the 
instantaneous anelastic response functions (Gt, lt, et, ht) be related to (G, I, e, h) by 

(1.3) 

where cx(t) is governed by the flow rule associated with the process. 
By using the original argument of CoLEMAN and NOLL [2], as applied by WANG and 

BowEN [3] to quasi-elastic materials, we can determine the thermodynamic restrictions on 
the constitutive relations (1.2) and (1.3) which folio\\- from the Clausius-Duhem inequailty. 
As usual, we choose first a local reference configuration p. for p and rewrite (1.2) and (1.3) 
in the form 

(T, q, e, YJ) = (Gil, Ill, ell, hll)(F, 0, g), (1.4) 

(1.5) (G~, 1~, e~, h~)(F, 0, g)= (G"', 1"', ell, h11)(FA"'(t), 0, g), 

where F denotes the deformation gradient relative to p., i.e., F = v o p.-t, and where 
A"'(t) = p. o <X(t) o p. -t. Since p. is held fixed in the analysis for the sake of brevity, we shall 
supress it from the notation here. 

Our starting point is the reduced entropy inequality: 

(1.6) 

where e is the density, v is the velocity, and 'P is the free energy function defined by 'lJl = 
= e-YJO. From (1.4) and (1.5) we then have 

(1.7) 'P = /(F, 0, g) 

in any rest process and 

(1.8) 'lJl =f'(F,O,g) =f(FA(t),O,g) 
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GLOBAL THERMODYNAMIC FIELD EQUATIONS OF BALANCE FOR ANELASTIC BODIES 145 

at any instant t in a general process. By ( 1.8) the gradients off' and fare related by 

at' _ at j at' at at' at 
(1.9) aF} - BF~ Ak(t), -NJ = alf' agi = agi ' 

where the arguments off' and/ are as shown in (1.8). By use of the chain rule we see that 
the total time derivative ip is given by 

(1.10) · at (Fa Ac pa A"c) of() at . 
"P = apa c b+ c b + 7f(j +a ga 

b ga 

at' pa ap pa 'c -ld at' IJ at' . 
= aFg b + aFg cAdAb + 80 + aga- ga, 

where (1.9) has been used. Substituting (1.10) into (1.6), we obtain the following results: 
(i) f' and fare independent of g so that 

(1.11) "P = f'(F, 0) = /(FA(t), 0). 

(ii) h' and h are independent of g and are related to f' and f by 

(1.12) 'YJ = h'(F, 0) = h(FA(t), 0) = - a['~, O) = _ a[(F~~), 0). 

(iii) G' and G are independent of g and are related to f' and f by 

r,a = G'a(F 0) = ca(FA(t) O) = pa ~f'(F ,_!!)_ = pa Ac(t) a[(FA(t), 0) b b , b , f! c apb e c d oFb 
c d 

(iv) I' and I satisfy the inequality 

(1.14) 

(v) A(t) satisfies the inequality 

(1.15) 

We note here that the result in (iv) is somewhat stronger than the restriction on the 
heat flux of a quasi-elastic point in general, ef. [3, (3.14)]. To prove (iv) we consider (1.6) 
in any rest process with constant (F, 0, g) and we obtain the following inequality for the 
elastic response function I(F, 0, g): 

(1.16) fi (F , 0 , g) gi ~ 0 . 

Then (iv) follows from (1.6) and (1.5). 

The preceding results, i.e. (i)-(iv), show that the elastic response functions G, I, e, h, 
and f of an anelastic point satisfy exactly the same thermodynamic restrictions as those 
of a thermoelastic point. Next, the anelastic response functions G', I', e', h', and /' are 
obtained from the elastic response functions G, I, e, h, andfby (1.3) or (1.5) through the 
anelastic transformations cx(t) or A(t), respectively. Finally, the flow rate A(t) must sat­
isfy the inequality (1.15). The constitutive relations (1.4) and (1.5) together with the flow 
rule and the thermodynamic restrictions (1.11 )-(1.15) are now admitted as the local con­
stitutive assumptions of an anelastic point. 
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146 C.-C. WANG 

Since the elastic response functions G, I, e, h, and/ obey the same restrictions as those 
of a thermoelastic point, we define the elastic symmetry groups g and g* in the same 
way as in [4, Sect. IT]: 

{
(G, l)(v o ~' 0, g) = (G, l)(v, 0, g) 

(1.17) ~ e g ~ ~ e 9' 9'(~11): V(v, O), 

and 

{
(e, h,f)(v o ~' 0) = (e, h,f)(v, 0) 

(1.18) ~ e g* ~ ~ e 9' 9'(~11): V(v, O). 

We note here that in writing down (1.17) we have assumed, for the sake of simplicity 
(as explained in [4 Sect. 11]) that the symmetry group of G is also that of~· As shown in [5], 
g* is generally a subgroup of g. However, g* = g whenp is a solid point (i.e., g is compact) 
or when p is a fluid point (i.e. g = 9' !£(~ P)); whenever p is a fluid crystal point g* 
may or may not coincide with g. As explained in [1], the elastic symmetry groups g 
and g* give rise to the anelastic symmetry groups g' and g'* via 

(1.19) 

which then satisfy the conditions 

(1.20) 

and 

{
(G', l~(v o ~' 0, g) = (G', tt)(v, 0, g) 

~egt~~e9'!£(~,): V( 0 ) 
v, 'g' 

{
(et, ht,{')(v o ;, 0) = (et, h',{')(v, 0) 

(1.21) ~ e g'* ~; e 9' 9'(~,): V{v, O). 

Relative to a local reference configuration p. of p, the groups g, g*, g', and g'* are 
represented by the groups t§, t§*, t§t, and t§'*, respectively, with 

(1.22) (t§, t§*, t§t, t§'*) = p. 0 (JJ, g*,g' g'*) 0 p.-1' 

where 

{
(G, 1). (FK, 0, g) = (G, I)(F, 0, g) 

(1.23) K Et§~ K E 9' !£(3): V(F 0 ) 
' 'g' 

{
(e, h,/)(FK, 0) = (e, h,/)(F, 0) 

(1.24) K et§*~ K e !£9'(3): V(F' O), 

and similar statements apply for t§t and t§'*.ln terms of the response function/the group t§ 
can be characterized by Truesdell's condition [5]: 

(1.25) K E 'D*- K E .9'.P(3): {~<:,~~~ = f(F. O)+f(K, O)-.f(l, O) 

and a similar condition holds fort§'* in terms off'. For a fluid crystal point the exact rela­
tionship between t§ and t§* is rather complex: for certain special cases of t§, f§* must 
coincide with t§, cf. [6], but for certain other cases of t§, t§* must be different from t§, 
cf. [7]. The problem is solved in general in [8]. 
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2. Global constitutive assumptions and symmetry connections 

In the preceding section we have considered the constitutive relations and symmetry 
groups of an arbitrary anelastic point p e P-4. We now assume that all body points of a 
are anelastic and that, moreover, fA satisfies the following global constitutive assumptions: 

(a) The elastic response functions of the body points are distributed on a in the same 
way as those of a thermoelastic body with uniform symmetry as defined in reference 
[4, Sect. Ill]. In other words, in all rest processes the global structure of fA is exactly the 
same as that formulated in [4]. 

(b) In a general process of fA the elastic global structure evolves smoothly into the 
anelastic global structure through the anelastic transformation cx as explained in [1]. 

We shall now summarize some of the basic concepts introduced in [1] and [4]; first, 
we explain the elastic global structure of 1-1. This structure requires that for any two 
points p and q in 1-1 there exists an isomorphism A(p, q): PAp--+ 1-lq, where PAP and PAq are, 
respectively, the tangent spaces to fA at p and q such that the symmetry groups gP and gq 
are related by 

(2.1) 

Any such isomorphism A(p, q) is then called a symmetry isomorphism. In terms of the 
relative symmetry groups the condition expressed by (2.1) means that there exist local 
reference configurations fLp and p.4 , which are related via A(p, q) = p.4 o u;1 such that t:§l&q 

coincides with t:§ ~~q· Thus the relative symmetry groups of the body points of a are all 
of the same type in the sense that the conjugate classes of the relative symmetry groups 
of fA coincide with one another. 

R e m a r k. As has already been explained in [4], symmetry isomorphisms are to be 
distinguished from the material isomorphisms which have been employed, for example, 
in [I] and [4]. An isomorphism I(p, q): PAp--+ P-44 is called a material isomorphism of p 
with q if 

(2.2) 

where Vq is a local configuration of q. When such an isomorphism I(p, q) exists, p and q 
are called materially isomorphic, and it follows immediately that (2.1) holds with A(p, q) 
replaced by l(p, q). Every material isomorphism is, therefore, a symmetry isomorphism 
but the converse is, in general, not valid. 

The smoothness of the distribution of the response functions requires the existence of 
an elastic atlas m on 1-1. Specifically, an elastic atlas m is a collection 

(2.3) 

where OU, c 1-1, fL1 ( ·) is a smooth field of local reference configurations on 0/17 , I is an 
index set and the following conditions are satisfied: 

(1) There exists a smooth distribution of relative response functions 
(Gu, lu)(F, (), g, p) on fA such that 

(2.4) 

http://rcin.org.pl



148 C.-C. WANG 

(2) The distribution (G~" I~) has a uniform relative symmetry group ~~, viz, 

(2.5) ~~ = ~ILy(p) Vp E dlty, 'YE 1. 

Not e. The conditions (1) and (2) above imply that the deformation gradient K,a = 
:::::: P,y o p.i 1 from IJ-6 to p.y is a smooth field on dlty n o/1~ with values in ~~ for all charts 
(o/1

1
, p.~) and (o/16 , p.6) in~. Furthermore, the collection {K16 ; y, <5 E I} satisfies the follow­

ing indentities: 

(2.6) 

Kyy(p) = I 

K16 (p) = K6 y(p)- 1 

K16(p)K61(p) = K1.t(P) 

Vp E dlty, 

Vp E o/11 n o/16 , 

Vp E o/11 n o//6 n dlt;.. 

Hence~ can be regarded as a bundle atlas with the Ky6 as the coordinate transformations 
and ~'If as the structure group as in the theory of fibre bundles, cf. (9]. The elastic atlas ~ 
now characterizes completely the elastic global structure in accordance with (a). 

From (b) the an elastic global structure of f!l at any time t in a general process can be 
obtained from the elastic glocal structure in the following way: There exists a smooth 
global anelastic transformation field a.(t, p) on f!J such that the anelastic atlas ~(t) is 
related to the elastic atlas ~ by 

(2.7) 

where 

(2.8) fLv(t, p) = ~J.y(p) o a.(t, p)- 1 Vp E dlty, yE 1. 

Like ~' the anelastic atlas ~(t) satisfies the following conditions: ( 1 )~. There exists a smooth 
distribution of relative response functions (G1!ll<t> , 11!ll<t>) (F, (), g, p) on f!l such that 

{
(G1u<t>• 11u<r>)(F, (), g, p) = (G~y<t·P>, I!,<t,p>)(F, (), g, p) 

(2.9) 
Vp E dlty, 'YE 1. 

(2)' The symmetry group of (G1'lf<t>' 11'lf<t>) is uniform on f!l, i.e. 

(2.10) ~~W(t) = ~~y(t,p) Vp Edlty, 'Y El. 

Indeed, from (2.8) the relative response functions (G1~<t>, 11~<1>) are the same as (G~~, I") 
and the relative symmetry group ~~!ll<t> coincides with ~~. In the theory of fibre bundles 
~(t) is equivalent to the bundle atlas~' since its coordinate transformations K~., = fL1(t, ·) o 

o p.6(t, · )- 1
, y, <5 El, coincide with those of ~. 

N o t e. As explained in [4] the relative response functions G" and G9l<t> would be 
independent of p were we working with the concept of material isomorphism rather than 
that of symmetry isomorphism, i.e., the explicit dependence of Gm<t>, G~v (t, p), etc., 
on p would not appear in (2.9). 

Now, just as in [1], we can define an affine connection on the tangent bundle of f!l 
whose induced parallel transports (relative to ~) are contained in ~91 • Since the charts 
of ~ have a uniform symmetry group, we call such an affine connecttion an elastic sym­
metry connection. In the theory of fibre bundles, these connections are called struc­
tural connections or ~-connections, where ~ denotes the structure group of the bundle 
atlas. For the elastic global structure here, the bundle altas is 2I and the structure group 
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is ~!ll· It was proved in [9] that a structural connection in general can be characterized in 
the following way: Choose a coordinate system x = (XA) on fJI. Then the charts ('~Y' fLy) 
of a bundle atlas~ can be represented by the deformation gradient F = x* o fL - 1

, where x* 
denotes the gradient of x. Now suppose that Jf is an affine connection on J(fJI), the 
tangent bundle of fJI, with connection symbols r:c (XD) relative to (XA). Then a necessary 
and sufficient condition for Jf to be a structural connection with respect to ~ is that 

( [ -1.4( aFi re E)] 2.11) Fe axD+ EDFB eg~., D=1,2,3, 

where F3 denotes the components of F and g!ll denotes the Lie Algebra of the structure 
group ~it· It was shown in [1] that a structural connection exists but is generally not unique 
as the condition expressed by (2.11) does not determine the connection symbols uniquely. 

The global anelastic transformation ex which maps the atlas ~ of the elastic structure 
to the atlas ~(t) of the anelastic structure also maps a structural connection Jf relative 
to~ to a structural connection Jft relative to ~(t). As explained in [1] the parallel trans­
ports p( r) and p\r) of Jf and :Yft, respectively, along any path A in f1l from A(O) to A( r) 
are related by 

(2.12) pt( r) = ex(t,A( r)) o p( r) o ex(t, A(O) )- 1 • 

As for the connection symbols r:c(XD) and r:c(t, XD) relative to (XA) we have 

(2.13) rA (t XK) = IXA(t xx)(rF (XK)1X-1D(t XK)+ 81Xjj1F(t,XK)) 
BC , F ' DC B ' axe 

where ex: and ctjj 1
A are the components of ex and ex- 1 with respect to (XA). The condition 

expressed by (2.13) implies that the matrices given by (2.11) coincide with the correspond­
ing matrices associated with ytt and ~(t), viz, 

(2.14) 

= Fc"W)( a1i"!x) +FiDW)F~(Xx)). 

Since g!ll = g!ll<t>, the identity (2.14) implies, as it should, that ytt is a structural connection 
relative to ~(t). As we shall see, the conditions expressed by (2.11 )-(2.14) are important 
in the derivation of the global field equations of motion for fJI. 

3. Global balance equations 

For a thermoelastic body with uniform symmetry the global balance equations of mo-­
mentum have been derived in [4, Sect. IV]. First, we choose a reference configuration 
x = (Xx) and we characterize a motion by the deformation functions xi = xi(t, XA)~ 
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Since we shall use a fixed atlas m throughout the analysis, for brevity we shall suppress 
the subscript m in what follows. We denote the gradients of the response function G rela­
tive to m by 

(3.1) 0
, A _ aaj(F, o, xK) 0j _ oG}(F, o, xK) 

0
, _ aaj(F, o, xK) 

Jk - oF! ' 18 - o() ' }A - iJXA . 

Then as shown in [4] the global balance equation of momentum takes the form 

(3.2) (G}"A~.B+GjB)Xf+GJoKi+eb1 = exlt 

where x~ and xt denote the gradients x* and x;1 of the deformation x1 = x1(t, XK) and 
the inverse deformation XA = XA(t, xi), i.e., 

(3.3) 

and x~.8 denotes the covariant derivative of~ relative to the connection .tf, i.e., 

(3.4) 

and GJtA, GJ8 , and GJ6 are global fields given by the following local formulas: 

where F, with components F~, denotes the deformation gradient from p. to x as shown 
in (2.11). The formulas in (3.5) are only local because the domain ofF is the subbody dJJ 
over which the field p. is defined, where (If/' p.) Em. However, it has been shown in [9] 

that the values Gj/, G}8 , and Gj8 given by (3.5) are actually independent of the choice 
of the chart (If/' p.) in m, so that they form global fields on f!l. 

As explained in [10], in order that (3.3) can be applied to an anelastic body f!l, we 
must replace the atlas m by the atlas met) and the connection Jff by the connection Jff'. 
Thus the balance equations are 

(3.6) (Kj"A~ 1B+K}B)Xf+K}oKi+eb1 = exb 

where ~: B denotes the covariant derivative of ~ relative to the connection Jff', and 
- l -. - . 
~"A' Kj8 , and KJ8 are given by 

(3. 7) kj" ~ = Gj" 8 (x* mF, (), x:) a~F5, Kj8 = Gj8 (x. mF, (), XK), 

Kj8 = Gj8(x. mF, (), XK), 

where the argument x. mF has components x~ a~Fg, because the deformation gradient 
F(t, ·)from p.(t, ·) to xis related to F by 

(3.8) 

cf. [1, Eq. (6.34)]. In [I] we have also proven that the covariant derivatives relative to .1f 
and .tf' are related by 

(3.9) 
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cf. [1, Eq. (6.41)]. Substituting (3.9) into (3.6), we see that the balance equations can be 
rewritten as 

(3.10) 

where HjkA is given by the local formula 

(3.11) 

We note that (3.10) is exactly the same as (3.2) except that the variable~ in (3.2) is replaced 
throughout the equation by the variable 4a~ in (3.10). 

N o t e. A variant of the balance equations which is based on the response function 
for the Piola-Kirchhoff stress tensor is given by [4, Eq. (4.28)]; by following the same pro­
cedure as used in the derivation of (3.10), we can derive a similar variant of (3.10) here. 

Next, we consider the global balance equation of energy. For a thermoelastic body with 
uniform symmetry, the result is given in [4]. We denote the gradients of the response 
function I relative to ~ by 

(3.12) 

I' A - ol1(F ,(1' g, xx) 
k - oF! ' 
Jii _ ol1(F, 0, g, xx) 
, - ag, , 

l' - ol1(F' (j' g, xx) 
8 - ao ' 

J' - ol1(F' (j' g, xx) 
A- iJXA 0 

4!i 

Then, as shown in [4, Sect. IV], the global balance equation of energy takes the form 

(3.13) (l""t A _.J: ""J')XB li ""Jii ogJ (J k X'A,B+ B i + 8gt+ g iJXI +er = e 'YJ, 

where jtkA, i1, iJ, and i~ are global fields given by the following local formulas: 

(3.14) 

JttA = 11
t

8 (x.F,O,g,XK)FA, 

i» = /~(x.F, 0, g, xx), 

iJ = Jj(x* F, 0, g, Xf), 

i~ = /~(x.F, 0, g, XK). 

To apply the balance equation (3.13) to an anelastic body with uniform symmetry we 
simply replace~ by ~(t) and :K by ;et and the result is 

(3.15) 

Where fh1~;A, m1, fh~, and m~ are given by 

(3.16) m1tA = l 1t8(x.aF,O,g,XK)a~Fj, m1 = 11(x.aF,O,g,XK), 

m~= /~(x.aF,O, g,XK). 

Using (3.9), we can rewrite (3.15) as 

(3.17) ( ""i A( A-..1:) ""')XC -t ""iJ iJg1 {j' n k IXsXiJ .c+mc i +m8gi +m, -
0 

1 +er= evfJ, 
X; 
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Where fzik A is given by 

-j A [i B( () K) A (3.18) nk = k x*cxF, ,g,X F8 • 

Equation (3.17) is the same as equation (3.13) except that the variable x~ of the latter is 
replaced by the variable x~ ex:~ throughout the equation. 

Thus far, we have expressed the left-hand side of the balance equation (3.17) in terms 
of the deformation function and the temperature field. As far as the right-hand side of 
(3.17) is concerned, we have the following result, cf. [4, Eq. (4.71)]: 

- .avi -· 
h = hfx~ axi +hoO, (3.19) 

where hf and h0 are global fields given by the local formulas 

(3.20) l~f = hf(x* F, (), XK)F:, h0 = h0(x* F, (), XK). 

We remark that hf and h0 are the gradients of the response function h relative to~. i.e., 
locally we have 

(3.21) 

In order to apply (3.19) to an anelastic body, we replace 'H by 'H(t) as before and obtain 

(3.22) 

where kf and k0 are given by 

(3.23) kf = hf(x* cxF, (), XK)F:, k0 = h0(x* cxF, (), XK). 

Thus the global balance equation of energy for an anelastic body with uniform symmetry 
has the explicit form: 

(3 24) ( -i A( B _le) -i )XC -i - ij agj () (k-A B i avi -k ()• ) • 'Y}k._IXAXB,C+mc i+mogi+mg axi+er=e jiXAXB axi+ 0 ' 

N o t e. A variant of (3.24), based upon use of the response function for the heat 
flux vector relative to the reference configuration x, can be derived from the result [4, Eq. 
(4.58)] for thermoelastic bodies in a manner entirely similar to that which is used in deriv­
ing the variant of (3.10) which is based on use of the Piola-Kirchhoff stress tensor. 
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