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Scattering of elastic waves by a distribution of inclusions 

S. K. DA TT A (BOULDER) 

THIS paper deals with the propagation of a plane P-wave in the presence of a distribution of 
spheroidal shaped rigid inclusions embedded in a homogeneous isotropic elastic medium. It is 
assumed that the inclusions are identical in properties and are homogeneously and at random 
distributed with their symmetry axes parallel to one another. Expressions for the propagation 
constant <ex> for propagation along and perpendicular to the axis of symmetry are obtained 
with an accuracy to O(c), c being the concentration (small). 

Praca niniejsza dotyczy rozprzestrzeniania sic; fali plaskiej (P-fali) w jednorodnym i izotro
powym osrodku sprc;zystym, w kt6rym znajduj~ sic; sztywne inkluzje o ksztalcie kulistym. 
Zaklada sic;, ze wszystkie inkluzje posiadaj~ identyczne wlasnosci i ~ rozmieszczone r6wno
miernie i jednorodnie, a ich osie symetrii s~ wzajemnie r6wnolegle. Wyrai:enia dla stalej pro
pagacji <ex> przy propagacji fali wzdluz osi symetrii i prostopadle do niej otrzymano z doklad
nosci~ O(c ), gdzie c oznacza koncentracjc; (mal~). 

HacroH~rui pa6oTa KacaeTcH pacnpocrpmemm nnocKoH: BOJilU>I (P-aoJIHbi) B O~Hopo~oH: 
H H30TpOI1liOH ynpyroH: cpe~e, B KOTOpOH HaxO~HTCH »<eCTKHe BK1110qeHHH c<l:>epl{qeCKOH 
<PopMbi. IIpe~nonaraeTcH, qTO ace BKmoqeHHH o6na~aroT H~CHTI{qHbiMH caoH:craaMH H pac
:upe.o;eneHbi paBHOMepHO H OJJ;HOpO~HO, a HX OCH CHMMeTpHH B3HMHO napa.JIJ!eJibHbi. Bbi
pa:>KeHJIH ~JIH IlOCTOHHHOH paCilOCl'paHeHHH <ex), npH pacnpoCl'paHeHHH BOJIHbl B~OJib OCH 
CHMMel'pHH H nepnHeH~HKyJIHpHO K Heif, IlOJiyqeHbl C TO~OCTIO 0 (c), r~e C 0603HaqaeT 
KOH~eHTpalUfiO (MaJiyro). 

1. Introduction 

PROPAGATION of elastic waves in a periodic composite has been the subject of numerous 
studies in the last few years. Far less attention has been paid to the case of a random 
array of scatterers. WATERMAN and TRUELL [1] briefly discussed the effect of spherical 
elastic inclusions. Recently MAL and BosE [2, 3, 4] and DATTA [5] have considered cir
cular, spherical and elliptical inclusions. 

The present study is concerned with the scattering of a plane P-wave by a distribu
tion of rigid spheroids. The object is to obtain the averaged propagation constant (ex) 
when the wave is moving parallel or perpendicular to the axis of symmetry, assuming 
that the spheroids have their axes aligned in a particular direction. 

The analysis proceeds in two stages. First, the scattered field due to the incidence of 
a plane P-wave on a single spheroid is obtained. For arbitrary angle of incidence this 
problem cannot be solved exactly. A method of matched asymptotic expansions is used 
to obtain the displacement field both near and far from the scatterer when the wave
length is larger than its linear dimension. Then, assuming that the spheroid centres are 
uniformly and homogeneously distributed, a configurational average of the far-field dis
placement is taken. This leads to the determination of the averaged propagation constant 
(ex). (ex) has been determined with an accuracy to O(c) by neglecting multiple interactions 
and assuming that the positions of the spheroid centers are uncorrelated. 
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2. Scattering by a single rigid spheroid 

Consider a rigid oblate spheroid centered at the ortgm of Cartesian coordinates 
(x, y, z). Oblate spheroidal coordinates are defined as 

X~ (!COSW, y = (!Sinw, Z = aErJ 

e = a[(E2 + I)lt2(J-rJ2)ll2], E ~ Eo > o, -1 ~ rJ ~ I; 
(2.1) 

E = Eo defines the surface of the oblate spheroid. The incident wave is assumed to be 

(2.2) uinc := Uoeie(zcosl;+isin~)(cosCez+sinCe)') 

suppressing the time factor e-iyt on the right-hand side. Here, 

e = ruz ~ yafc1 , y = yja, z = zja, 

c1 , c2 are the compressional and shear wave-speeds in the matrix. 
The scattered displacement field u" is to be obtained such that u" satisfies the equation 

(2.3) 

and the boundary condition 

(2.4) 

U being the displacement of the surface of the spheroid. U is determined from the equa
tion of motion of the spheroid. u" also satisfies the radiation condition at infinity. 

This boundary value problem for arbitrary C cannot be solved by the eigenfunction 
expansion method. For C = 0 the solution can be obtained formally in terms of spheroidal 
wave functions. However, even then the boundary condition (2.4) leads to a system of 
an infinite number of equations for the determination of the unknown expansion coef
ficients. For this reason a method of matched asymptotic expansions was used in [6] 
to solve the problem for C = 0 when the wavelength is larger than a (e < 1). The case 
of arbitrary C is discussed in [7, 8]. In the present paper attention will be focused on 
C = 0 and C = n/2. The results pertinent to these two cases will be quoted here without 
derivation. The interested reader is referred to the papers cited above. 

For C = 0 the amplitude of oscillation Uz of the spheroid is 

(2.5) 

Here, Fz, FY> are functions of Eo and the elastic moduli of the surrounding matrix, M, 
is the mass of the spheroid. The displacement field away from the scatterer is 

(2.6) u' >= •{ Vt/l + {Fr'P'e, + V{:, (r'l')} J + 0( •4
), 

where 
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The coefficients a0 , a2 are given by 

ao = ~ [ 4o';S (2Q~-~oQg')M~+ 1)-~oQr<EoQr- QY)J. 

a2 = ~ ~ (1-2a) (2Q~- ~oQr)J(~~+ 1), 

L1 = 2[(2u-1)~oQ~Q~'-~oQrQ~+(3-4u)Q~Q~]. 

For C = n/2 on the other hand 

(2.8) 
1 

- U = -aF /[My 2 +F<t>] 
Uo >' >' Y 

and 

f/J = 
4

iV 3 [(e' le -1)ht (rxr)Pf(cosO)sinw +ao h0 (rxr) 
na 

+ a2 h2 ( rxr) P 2 ( cosO) + a4 h2 ( rxr) Pi( cosO) cos2w] ~, 
rx 

'l' = 
4
:,., [ (e' /e-1) ~2h1 (.Br)Pl(cosO)sinw 

with 

a = _!_[B J.;~2+1Qt'-(3-4a) Eo Q1_ 2 4a-5 } 
o ~o t\r o 1 JIE~+1 1 3 CE~+1)112 

+C {~ Qo' (3 4u)Qo+ 1 }+ Eo ] 
1 0 1 - - 1 3(~~ + 1)1/2 y ~~ + 1 ' 

- i 4(1-20') ( ;-2 -) 
a2 =-e .! B1 +CtfJ ~o+1, 

s-o 3y E~ + 1 

_ i 2(1-2u) B 

a4 = To 3y E~ + 1 1 
' 

B _ 2QiEo-(E~+1)Qf 
1 - Lll ' 

Ll1 = (4u-2)(E~+ 1)QfQf -2(~5+ 1)Qf'Qi+2(3-4u)~oQfQi, 

C1 = - 2~ [B1 {2(~~+1)Qf'Q~-2(3-4u)~0 QfQ~ 
-2(2a-1)Qf Qr(~5+ 1)} +2~oQ~- (~5+ 1)Q~']. 

Here, Q:' = dQ':/d~le=eo' hn(z) is the Bessel function of the third kind, e' and e are the 
densities of the inclusion and the matrix, respectively, and o' is Poisson's ratio. 

5* 
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3. Effect of a distribution of inclusions 

If multiple scattering effects are neglected, then the scattered field at any point will 
simply be the sum of the fields given by (2.6) when referred to the centers of the inclusions. 
It must be remembered that (2.6) may be interpreted as the scattered field everywhere 
due to one inclusion which, to this order of approximation, is reduced to a point. This 
approach was taken in [5] and will be followed here as well. 

3.1. Axial incidence (C =0) 

Suppose the plane wave is propagating in the direction of the axes of the spheroids. 
Let p;(~;, 'Y/h C;) be the coordinate of the center of the i-th sph~roid. Consider a large 
volume V containing N inclusions. Assuming that the distribution of spheroid centers 
is random and statistically uniform, the probability density of a scatterer at p; in V is 

(3.1) P(p;) .= NfV = n, 

where n is the number density of the scatterers. Furthermore, if the scatterer positions 
are sufficiently removed from one another and if all physical positions of the second 
scatterer are equally probable when the first scatterer is at p;, then, 

(3.2) P(pJIP;) = n, IPJ-Pil > 2L, 

= 0, IPJ-Pil ~ 2L. 

Here, 2L is the major axis of the spheroid. The configurational average of /(rlp1 , ... , PN) 
will be denoted by 

(/(r)) = nJ /(rlp)dp 

and the partial average with one scatterer fixed at Pi by 

(/(rip;)) = nf /(rip; p;)dp, 

lp-ptl ~ 2L. 

It may be noted that to the lowest order of approximation (point scatterers) L may be 
made to go to zero. 

Now, using the notation of Ref. [1] the exciting field acting on the i-th scatterer 
will be denoted by uE(rlp,; p1 , ... , PN). Taking the average one then obtains 

(3.4) 

where T(p) is the scattering operator which, acting on the exciting field of the scatterer 
at p, gives the scattered field at r. Thus, 

us(rlpJ; Pt' ... 'PN) ~ T(pj)uE(rlpj; Pt' ... 'PN)· 

In writing (3.4) use has been made of the assumption of uncorrelated scatterer positions. 
Equation (3.4) is an integral equation to be solved for (uE(rlp)). To find this solution 

assume that the composite occupies the space z > 0 and that the solution is of the form 

(3.5) 
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Using (3.5) together with (2.6) and (2.7) Eq. (3.4) becomes 
2 

(3.6) u ei <a.>C;e = u eia'ie + ica.:_ u J )1 ei<a.> '[.91 L<3> +t'C N<3>]dp 
0 % . 0 % 4na. 0 ~ n 11 11 11 ' 

11=0 

where 

(3.7) 

L~3 > = eR 0~ h,.(a.R)P,.(cos€J)+e8 ~ h11 (a.R) 0~ P,., 

<3>- (n+1) 1 a ( f3 )BP,. 
N11 - eR-R-hn({3R)P,.+eaR oR Rh,.( R) ae · 

z 

y 

X 

FIG. 1. 

The coordinates (r, 0), (R, €J) and (e, ~) are shown in Fig. 1. The integral in (3.6) can 
be evaluated by using the translational addition theorems for spherical vector wave func
tions [9]. This is done in the Appendix. Equation (3.6) then gives 

(a.) 2 1+ce'le 
a.2 1 + c(1 + ia2 - ia0 ) 

(3.8)1 

which may also be written as 

(3.8h 
(c1)2 1 +c(l +ia2 -iao) 

1+ce'le 
Here, c = nV. 

This then gives the relationship between longitudinal wave speed in the z-direction 
in the composite and that in the matrix. 

In the limit when the spheroid tends to a sphere, equation (3.8h takes the form 

1 (
1 3(3- 50')) 

+c + 4-50' 

1+ce'le 
(3.9) 
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and when the spheroid tends to a disc it is found that 

(c1)2 1 
(3.IO) er= 1 +nM/e. 

The above derivation applies for an oblate spheroid. However, the results for a pro
late spheroid are obtained by letting a-+ ia, Eo -+ - i~0 . 

~0 0 0.6 00 -1.2i -i 

A. 0 1.59384 1.71429 1.58297 0 

Table !lists the values of A., which is defined as a3E0(E5+ 1) (ia2-ia0)/A3, for Cl= 1/3, 
A being the mean of the semi-major and minor axes of a spheroid. 

3.1. Incidence normal to the axis of symmetry (C = n/2) 

For propagation perpendicular to the axis of symmetry, equations (3.6) and (3.7) will 
be modified to, considering the half-space y > 0, 

(3.11) 

where 

(3.12) 

2 11 

u eJ<a.>'11e = u ei11111e + ice
3 

u J ~, '\ 1 [dm11 L~J+~m~~N::J] X eJ<a.>'ldp, o Y o Y 4na3 rJ. o .L.J .L.J 
11=0 m=-11 

du = - ~ (e' /e-(rx.)2 /rx.2) = ~ d -u, 

1 - (rx.) 1 
d22 = 2 a4a 24 d-22, 

L<3>- [ () h pm 1 h ( ) oP': im h m] tmD 
mn·- eR oR 11 11 +e9R 11 rx.R ()€) +eD Rsin€J 11p11 e , 

N(3)_[ n(n+l)h Ill 1 a (jJ a m im a (h) m] imD 
11111- eR-R-- llpll +e9R oR hn R)ae pll +ea Rsin@ oR R 11 pll e . 

Note that all other d m11 's and ~ 11111 's are zero. 
For the purpose of integrating, a transformation of coordinates is made so that 8 

is now measured from they-axis and Q from the z-axis. The Eq. (3.11) still has the same 
form with the modified coefficients 

-A (rx.) ( 3- 1 - ) 
~02 =a - a4-"""fa2 ' 

N22 = ~ <:> (! ii2- ~ a.) = i4 N -22· 

Other coefficients remain the same. 
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The evaluation of the integral in (3.11) is then straightforward. The final result is 

(3.13) 
(ct) 2 1 +c[1- 2

1 
(ia2 +2iao+6ia4)J 

---er= 1+ce'/e 

In the limit when ~0 -4 0 (3.13) reduces to 

(3.14) 
1 16 3 (1- 2o) (13 -160') 
+ na n (3-40') (7-80') 

1+nM/e 

Table 21ists the values of X, which is defined as a'~.(~~+ I>[- ~ (200 + ii2 + 604) Jt A 3 • 

~0 0 0.6 00 -1.2i 0 

4.24615 2.76123 1.71429 0.33664 0 

Appendix 

To evaluate the integral in (3.6) the vector wave functions L~3> and N~3> are expanded 
about the point r := p1• It is convenient then to change the origin to this point (see Fig. 1). 
The required expansions are then (see [4] and [9]) 

(A.1) 

(A.2) 

with 

(A.3) 

00 • 

L<3> - ~ ~ Ao"L<t> 
11 - ~ L.J ""' "'" ' 

11=0 ~&=-• 
CO P 

N<3> = ~ ~ [Co"M<t>+Bo"N<t>] 
11 .L.,; L.J "'" "'" "'" P." 

•=0 ~&=-• 

A:: .= ~ ( -1}"'i"+P-11 (2v+ 1)a(O, nl- p,, vi p)hp(a.e)P;"'(cos t5)e-'""', 
p 

B;: = ~ ( -l)"'i"+P-"a(n, v, p)a(O, nl-p,, vlp)hp(fJe)P;"'(cos t5)e-'""', 
p 

c;; := ~ ( -1)P.i'+P-"b(n, v, p)a(O, nl- p,, vi p,p-1)hp(/1e)P;"(cos t5)e-ltJk · 
p 

The coefficients appearing in (A.3) are given in the references cited above. Since the in
tegral is symmetric in k it will be zero except for p, = 0. Also, the spherical Bessel func
tion j,(a.r) appearing in L~!>, etc., can be expanded in powers of a.r and, keeping only 
the lowest order terms, one obtains (setting p, = 0) 

(A.4) L (3) - a. AOII ,. - 3ez 01' 
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Substituting these in the integrand, the integral is found to be 

(A.5) 
2nct [ . { -eiac~l 2(ct)/ct . ·} 
(X"lez (do-d2) (ct)/ct-1 + {(ct)/a)2-I e'<«>~' 

-id, {(a;;:~ I + ((a)/~)2-1 ek«>t< n 
Using (A.5) m (3.6) one obtains 

(A.6) I = - l-(:)2/a2 [e'/e+ <:;2 
(iao-ia2-I)] 

which leads to (3.8). 

References 

1. P.C. WATERMAN and RoN TRUELL, Multiple scattering of waves, J. Math. Phys., 2, 512-537, 1961. 
2. S. K. BosE and A. K. MAL, Axial shear waves in a medium with randomly distributed cylinders, J. Acoust. 

Soc. America, SS, 519-523, 1974. 
3. S. K. BosE and A. K. MAL, Elastic waves in a fiber-reinforced composite, J. Mech. Phys. Solids, 23, 

217-229, 1974. 
4. A. K. MAL and S. K. BosE, Dynamic elastic moduli of a suspension of imperfectly bonded spheres, Proc. 

Camb. Philos. Soc., 76, 587-800, 1974. 
5. S. K. DATTA, Propagation of SH-waves through a fiber-reinforced composite-elliptic cylindrical fibers, 

J. Appl. Mech., 42, 165-170, 1975. 
6. S. K. DATTA and J. D. SANGSTER, Response of a rigid spherical inclusion to an incident plane-compressional 

elastic wave, SIAM J. Appl. Math., 26, 350-369, 1974. 
7. S. K. DATTA, Scattering of Elastic Waves, Report CUMER-75-3, May 1975, Department of Mechanical 

Engineering, University of Colorado, Boulder, Colorado. 
8. J. D. SANGSTER, The Scattering of Plane Elastic Waves by Rigid Spheroidal Inclusions, Thesis submitted 

for the partial fulfillment of Ph.D. degree in Mechanics, University of Colorado, Boulder. 
9. 0. R. CRUZAN, Translational addition theorems for spherical vector wave functions, Q. Appl. Math. 

20, 33-40, 1962. 

DEPARTMENT OF MECHANICAL ENGINEERING 
UNIVERSITY OF COLORADO, BOULDER, COLORADO 80302.. 

http://rcin.org.pl




