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ABSTRACT 

This paper deals with the numerical solution of wheel - rail rolling contact problems. The 
unilateral dynamic contact problem between a viscoelastic body and a rigid foundation is 
considered. The contact with Coulomb friction law occurs at a portion of the boundary of the 
body. The contact condition is described in velocities. The friction coefficient is assumed to be 
bounded and suitable small. A frictional heat generation and heat transfer across the contact 
surface as well as Archard's law of wear in contact zone are assumed. The equlibrium state of 

· this contact problem is described by the coupled hyperbolic variational inequality of the second 
order and a parabolic equation. To solve numerically this contact problem we will decouple 
it into mechanical and thermal parts. Finite difference and finite element methods are used 
to discretize the contact problem. The Augmented Lagrangian technique combined with the 
active set method are employed to solve the discretized contact problem. Numerical examples 
are provided. 
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1 INTRODUCTION 

The paper is concerned with the numerical ~elution of a dynamic contact problem for a 
viscoelastic body. The contact with Coulomb friction and wear occurs at a portion of the 
boundary of the body. The nonpenetration condition governing the contact phenomenon 
is formulated in velocities. This first order approximation seems to be physically realistic 
for the case of the small distance between the body and the obstacle as well as for the 
small time intervals. The friction coefficient is assumed to be bounded. Moreover, a 
frictional heat generation and heat transfer across the contact surface are assumed. The 



existence of the wear process can be identified as wear debris [1, 2]. This debris is 
assumed to disappear immediately at the point were it is formed. In the model the wear 
is identified as an increase in the gap between bodies. Moreover, the dissipation energy 
is being changed due to wear. We employ the Archard's law of wear, where the wear 
rate is proportional to the normal contact pressure and the sliding velocity. 

The equilibrium state of this contact problem is described by the coupled system 
consisting of the hyperbolic variational inequality of the second order governing the 
displacement field and the parabolic equation governing the heat transfer. From the 
assumption of viscoelasticity of contacting body as well as the contact condition for­
mulated in velocities follows the existence and suitable regularity of solutions to this 
inequality. This inequality belongs to the class of hemivariational inequalities. These 
inequalities are employed in modelling of rigid body dynamics problems in robotics or in 
a non - smoth mechanics including friction and impact [6, 8]. The elastic rolling contact 
problem was considered by many authors (see literature in [1 , 2]). 

This paper extends results presented in [1]. Using results concerning the existence of 
solutions to the dynamic contact problems (see [5]) we solve numerically this dynamic 
thermoviscoelastic contact problem. After brief introduction of the thermoviscoelastic 
model of the rolling contact problem in the framework of two-dimensional linear elasticity 
theory [1, 2, 5] the general coupled parabolic - hyperbolic system describing this physical 
problem is formulated. Finite difference and finite element methods are used to discretize 
the contact problem [6]. To solve numerically the discretized system we will decouple it 
into mechanical and thermal parts (see [1]). First, for a given temperature field we solve 
the mechanical part. In order to solve the mechanical part of this system we introduce a 
regularization of the friction conditions. Moreover, we replace the solving the hyperbolic 
inequality by solving an auxiliary optimization problem to calculate the displacement and 
stress fields in the whole domain. Augmented Lagrangian method combined with active 
set strategy is used to solve this auxiliary optimization problem [4]. Newton method is 
employed to calculate tangent contact stress from regularized friction conditions. In the 
second step for the calculated displacement field we solve the thermal part of the system 
using the Newton method. The applications are for wheel - rail systems. The numerical 

,results are discussed. 

2 PROBLEM FORMULATION 

Consider deformations of a viscoelastic strip lying on a rigid foundation (see Fig. 1). 
The strip has constant height h and occupies domain n E R2 with the boundary r. A 
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Figure 1: The wheel rolling over the strip. 



wheel rolls along the upper surface re of the strip. The wheel has radius r0 , rotating 
speed w and linear velocity V. The axis of the wheel is moving along a straight line at 
a constant altitude ho where ho < h + ro, i.e., the wheel is pressed in the viscoelastic 
strip. It is assumed, that the head and tail ends of the strip are clamped, i.e., we assume 
that the lenght of the strip is much bigger than the radius of the wheel. Moreover it is 
assumed, that there is no mass forces in the strip. The body is clamped along a portion 
ro of the boundary r of the domain n. The contact conditions are prescribed on a 
portion re of the boundary r. Moreover, r 0 n re= 0, r = r 0 u re. 

We denote by u = (u 1 ,u2), u = u(t,x), t E [0,T), T > 0, x En, a displacement of 
the strip and by 0 = 0(t, x) the absolute temperature of the strip. We shall consider 
viscoelastic bodies obeying Kelvin - Voigt law [5]: 

(1) 

i,j,k,1=1,2, u = du/dt. c?ikl and c}ikl are components of Hook's tensor satysfiying usual 
symmetry, boundedness and ellipticity conditions [6]. We use here and throughout the 
paper the summation convention over repeated indices [6]. The strain tensor ekl is defined 
by, 

ekl = (1/2)(uk,l + Ut,k), (2) 

where uk,l = ~- In an equilibrium state a displacement field u and a temperature field 
0 satisfy [1, 2, 6, 8] the system of equations: 

Ui = Clij(u),j + bi/v0, in (0, T) x n, i,j = 1, 2, (3) 

h ( ) au,;(u) . . 1 2 .. d2 u · b . . 1 2 d t th 1 . w ere Clij u J = ax; , i,J = , , Ui = 7Jl· ij, i,J = , , eno es a erma expans10n 
tensor, symmetric and bounded. The temperature flow is governed by [5] 

(4) 

where Cij, i, j = 1, 2, is a tensor of thermal conductivity stisfying usual symmetry, 
boundedness and ellipticity conditions. The following initial conditions are given 

u;(0, x) = uo, and u;(0, x) = u1, i = 1, 2, XE n, 

0(0,x) = 00 inn. 

uo, u1, 0o are given functions . The following boundary conditions are given 

u;(x) = 0, on (0, T) x ro, i = 1, 2, 

u;i(u) = F, on (0,T) x re, i,j = 1,2. 

(5) 

(6) 

(7) 

(8) 

F denotes a surface traction vector on the boundary re. The surface traction vector 
F = (FN, Fr) on the boundary fe is a priori unknown and is given by conditions of 
contact and friction. Under the assumptions, that the strip displacement is small the 
contact conditions take a form [1]: 

9r = r - ro,, 

uN+.9r+w:S::0, FN:S::0, (uN+.9r+w)FN=0, 

ur = 0 • I Fr 1:S:: µIFNI, and itr # 0 • I Fr I=-µ IFNI I~; I' 

(9) 

on (0, T) x re, (10) 

on (0, T) x re, (11) 



where UN, FN = (JN and ur, Fr = (Jy denote normal and tangential components of 
the displacement and stress on the boundary re, respectively. µ is a friction coefficient 
and r is the distance between the center of the wheel and a point x E r c lying on the 

boundary r c of the strip fl. Under suitable assumptions 9r = h - ho+ Jr5 - (u1 + x1)2. 
w = w(x, t) denotes the distance between the bodies due to wear [1] and satisfies the 
Archard law [l], 

(12) 

w = w(x, t) is an internal state variable to model the wear process taking place at the 
contact interface [1]. k is a wear constant. The wear process can be identified as wear 
debris, i.e. the removal of material particles from the contacting surfaces. The wear 
process between contacting surfaces may be caused by adhesion, abrasion, corrosion or 
surface fatigue [6]. In the considered model the wear is described as an increase in the 
gap in the normal direction between the contacting bodies. We assume, that in the 
contact area, the heat is generated due to friction and the heat flow rate is transformed 
completely into heat. Moreover, we assume the wear debris disappear immediately at the 
point where it is formed influencing the contact conditions by increasing the gap between 
the contacting bodies only. Since the wear debris will be warm due to conduction from 
heated contacted bodies as well as due to wear processes the disappearing wear debris 
will carry away also the heat energy [l]. Moreover the heat flux on the boundary of the 
strip n is equal to: 

80 
8n (t, x) = K-(09 - 0), on (0, T) x r0 , 

80 . 
8n(t,x)=K-(09 -0)+µ1FNllurl, on(0,T)xr0 . 

K. is a given constant and 09 is a given external temperature. 

2.1 Variational Formulation 

(13) 

(14) 

For the sake of numerical solution let us formulate system (1) - (14) in variational form. 
Let us denote: 

V={vEH½(o,T;H1(S1)): v=0on(0,T)xro}, 

K={vEV: iJN+dr+w:S0on(0,T)xrc}, 

Let us introduce the bilinear forms: ai(., .) : V x V-+ R, i = 0, l, given by 

(15) 

(16) 

a0(u,v) = /4 c?jkle;;(u)ek1(v)dxdt, a1(u,v) = /4 c;jkle;;(u)ek1(v)dxdt, (17) 

where Q = (0, T) x fl denotes a cylinder. The problem (1) - (14) is equivalent to the 
following system: 

/4 u(v - u)dxdt + a0(u, v - u) + a1(u, v - u) - /4 b;;0e;;(v - u)dxdt + 

{T { j(µ IFNI, (I vr I - I ur l))dsdt?: 0 Vv EK, (18) 
lo ire 

k 0,pdxdt + /4 ( c;;0 J'P ,i + b;jUi,j'P )dxdt + 

{T f K.(09 - 0),pdsdt = {T { j(µ I FN I, I ur l),pdsdt V<p E V (19) 
Jo Jr lo ire 



Problem (18) - (19), without wear, has a unique solution [6]. The regular enough function 
j (., . ) replace the term describing tangential friction and frictional heat generation. 

3 FINITE DIMENSIONAL MODEL 

The contact problem (18) - (19) has been discretized using the finite difference method 
for time derivatives and the finite element method for spatial derivatives [6]. 
Let us denote by k > 0 the discretization parameter of the time variable. Let the interval 
[0, T] be devided into r subintervals of the length k=T /r. The function u dependent on 
time variable t is approximated by a piecewise constant functions >-i+l on each subiterval 
l:,k = (ik, (i + l)k]. The time derivatives u and ii will be approximated by the following 
finite difference quotiens: 

. [u(t + k) - u(t)] .. [u(t + k) - 2u(t) + u(t - k)] 
u ~ k ' u ~ k2 ' (20) 

If { ui}i=O is the set of values of a sufficiently smooth function u at time levels t; = ik, 
ui = u(ik), then the symbol ui+19 , ,a E [0, l], denotes the convex combination of the 
values at two succesive time steps i and i + 1, i.e. , 

ui+t9 = (1- '8)ui +-aui+l, i = 0, 1,2, ... ,r - 1. (21) 

The selection ,a = 1/2 corresponds to Crank - Nicholson scheme. The finite element 
method is used to approximate the domain n and the functions defined on it. Let h > 0 
be a discretization parameter of the domain n and its boundary. By nh we denote the 
approximation of the domain n consisting of triangular elements Ti, l = 1, ... , I . The 
function ui is approximated by the piecewise linear functions ei on each triangle Ti. For 
details concerning the discretization of the domain n and its boundary r see [6]. By 
ui k and 0i k we denote the functions approximating the functions u and 0, respectively, 
depending ~n t and x, i.e., 

(22) 

Using (22) the system (18) - (19) takes the form, 

l (utf-2uh_k+u~i)c d dt+ o( i+t9 c )+ i((utf-utfl c )-
2 ~h x ah uh,k , ~h ah 2k , ~h 

Q,,k k 

(23) 

r 0tl- 0h,k d dt + r ( .. 0i+t9 . + b··((utf - utfl)·. )d dt + Jc 2k 'Ph x Jc c,3 ,i 'Ph,, 'J 2k ,,1'Ph x 
Q,,. Q,,. 

loTj . t9 r;,(09 - 0i,;k )<phdsdt = 
0 ro, 

(24) 

(T ( (uj.+f - U~-f) 
Jo Jrc, Jh(µ I FN I, I ( ' 2k ' )r l)<phdsdt \/<ph E vh,k 



For the sake of brevity the system (23) - (24) may be written in the matrix form: find 
ui+,i 0i+rJ and wi+rJ satisfying: h,k > h,k h,k 

and such that, 

i+,9 i+,'J i+,9 
Auh,k + K2(uh,k) + B0h,k = Fh,k, 

A0~;,;9 + Bu~;,;9 = Gh,k , 

wt/ = Dut,;9 + Ch,k , 

(25) 

(26) 

(27) 

ut,;9 +gt/+ wt,;9::; 0 on rch• (28) 

A, B, C , D, and Fh,k, Gh,k, Ch,k denote suitable matrices and vectors, respectively. 

4 THE SOLUTION ALGORITHM 

Problem (18) - (19) is a coupled thermoviscoelastic problem since the contact traction 
will depend on the thermal distortion of the bodies and wear process. On the other hand, 
the amount of heat generated due to friction will depend on the contact traction. The 
main solution strategies for coupled problems are global solution algorithms where the 
differential systems for the different variables are solved together or operator splitting 
methods. In this paper we employ operator split algorithm. 

The conceptual algorithm for solving (18) - (19) is as follows [1]: 
Step 1 : Choose 0 = 0° and w = w0 • Choose TJ E (0, 1). Set k = 0. 
Step 2 : For given 0k and wk find uk and o}, satisfying system 

(25) and boundary conditions (4) - (8). 
Step 3 : For given uk and oJ, find wk+l as well as 0k+1 satisfying 

equations (26), (27) respectively. 
Step 4 : If II 0k+1 - 0k II::; TJ , Stop. Otherwise : set k = k + 1, go to Step 2. 

For the convergence of the operator split algorithm using Fixed Point Theorem see 
literature in [1, 6] . Let us present in details the algorithms for solving disrete mechanical 
and thermal subproblems. 

4.1 Solution of the mechanical and thermal subproblems 

In order to solve numerically problem (25) we reformulate it as an optimization problem. 
The inequality (25) is a necessary optimality condition for a functional, 

(29) 

to reach minimum on the set Kk,h · We apply the Augmented Lagrangian method with 
the active set strategy [4] to solve this optimization problem. Let us introduce the 
Augmented Lagrangian associated with the functional (29), i.e., 

L(ui+rJ a) = J(ui+rJ) + a(ui+rJ + gi+rJ + wi+,i) +:. II ui+rJ + gi+rJ + wi+,i 11 2 (30) h,k , h,k h,k h,k h,k 2 h,k h,k h,k > 

where a is a Lagrange multiplier associated with the boundary condition (10) and E > 0 
denotes a penalty coefficient. Using (30) we can write the necessary optimality condition 
in the form: 

(31) 

(32) 



The employed algorithm will solve the system of optimality conditions (31) - (32). The 
algorithm is as follows [4, 7]: 

Step 0. Set n = 1. Choose initial values of a, u0 and u1 . 

Step 1. Determine the following subsets of re: An= {x E reh: utl + 7 > 0}, and 
In= {x E reh: ut: + 7 :S'. 0}. ·. 

Step 2. If n 2:: 2 and An = An-1, then Stop. 
Step 3. For given e~+: find u~+: satisfying (31). 

' . ;j 
Step 4. Set °'n+l = °'n - wi,;k , update n = n + 1, and go to Step 2. 

For details of the above algorithm see [l, 4] . Having calculated u~+: and CTNh we can 
solve the equations (26) - (27) . The equation (26) is solved using Choleski algorithm 

5 NUMERICAL RESULTS 

Problem (18)-(19) was solved numerically using the described in the previous section 
algorithms. Polygonal domain n given by 

(33) 

was divided into 192 triangles. The contact boundary re is modeled by 13 nodes. The 
Lame constants were>. = 11.66-1010 [N /m2], 'Y = 8.2 -1010 [N /m2], the density p = 7.8· 103 

[kg/m3], the velocity V = 10 [m/s] , radius of the wheel r = 0.46 [m]. The penetration 
of the wheel was taken as{;= 0.1 · 10- 3 [m] . The heat capacity c = 460 J/kgK, thermal 
diffusitivy coefficient K- = 1, 4410-5 m2 / s, thermal expansion coefficient 'Y = 1210-6 . The 
friction coefficient µ = 0.4, the thermal resistance coefficient r = 1000 KNs/ J , the wear 
constant k = 0.510-6 M Pa-1 . c: = 0.001. u0 and u1 in (3) as well as 0 in (3) are equal 
to 0. T = 5s. Time interval was divided into 20 subintervals. The wear gap is shown on 
Fig 2. 

Normal traction FN has its peak in the middle of the contact area. Tangent traction 
Fr has different shapes in front and behind of the rolling wheel. The proposed algorithm 

· converges quickely. Its speed of convergence depends on the choice of the parameter c: 
value. For c: very small we obtain much more accurate results than for big values of c: at 
a cost of increase in computational time. 

6 CONCLUDING REMARKS 

The dynamic rolling contact problem was solved numerically using Augmented La­
grangian approach. The obtained numerical results are in accordance with physical 
reasoning [6] . Performance of the optimization method is being improved. 
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