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Abstract In this study, we introduce and investigate a class of neural architectures of polynomial 

neural networks (PNNs), discuss a comprehensive design methodology and carry out a series of 

numeric experiments. PNN is a flexible neural architecture whose structure (topology) is developed 

through learning. In particular, the number of layers of the PNN is not fixed in advance but is 

generated on the fly. In this sense, PNN is a self-organizing network. The essence of the design 

procedure dwells on the Group Method of Data Handling (GMDH). Each node of the PNN exhibits 

a high level of flexibility and realizes a polynomial type of mapping (linear, quadratic, and cubic) 

between input and output variables. The experimental part of the study involves two representative 

time series such as Box-Jenkins gas furnace data and a pH neutralization process. 

Key words Polynomial Neural Networks (PNN), Group Method of Data Handling (GMDH), 

design procedure, high-order polynomial, multi-variable systems, time series 



1. Introduction 

Recently, a lot of attention has been directed to advanced techniques of system modeling. The 

panoply of the existing methodologies and detailed algorithms is confronted with nonlinear systems, 

high dimensionality of the problems, a quest for high accuracy and generalization capabilities of the 

ensuing models. Nonlinear models can address some ofthese issues but they request a large amount 

of data. The global nonlinear behavior of the model may also cause undesired effects (the well -

known is a phenomenon of data approximation by high order polynomials where such 

approximation leads to unexpected ripples in the overall nonlinear relationship of the model). When 

the complexity of the system to be modeled increases, both experimental data and some prior 

domain knowledge (conveyed by the model developer) are of importance to complete an efficient 

design procedure. It is also worth stressing that the nonlinear form of the model acts as a two-edge 

sword: while we gain flexibility to cope with experimental data, we are provided with an abundance 

of nonlinear dependencies that need to be exploited in a systematic manner. One of the first 

approaches along systematic design of nonlinear relationships comes under the name of a Group 

Method of Data Handling (GMDH).GMDH [I] was developed in the late 1960s by Ivakhnenko as a 

vehicle for identifying nonlinear relations between input and output variables. The GMDH 

algorithm generates an optimal structure of the model through successive generations of partia! 

descriptions of data (PDs) being regarded as quadratic regression polynomials with two input 

variables. While providing with a systematic design procedure, GMDH has some drawbacks. First, 

it tends to generate quite complex polynomial for relatively simple systems (data). Second, owing 

to its limited generic structure (quadratic two-variable polynomial), GMDH also tends to produce 

an overly complex network (model) when it comes to highly nonlinear systems. 

In this study, in alleviating the problems with the GMDH algorithm, we introduce a new class of 

Polynomial Neural Networks (PNN). In a nutshell, these networks come with a high level of 
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flexibility as each node (processing element forming a PD) can have a different number of input 

variables as well as exploit a different order of the polynomial (say, linear, quadratic, cubic, etc.) 

In comparison to well-known neural networks whose topologies are commonly prior to all detailed 

(parametric) learning, the PNN architecture is not fixed in advance but becomes fully optimized 

(both structurally and parametrically). Especially, the number of layers of the PNN architecture can 

be modified with new layers added, ifrequired. 

In this study, we provide with a generał taxonomy of the PNNs, discuss detailed learning schemes 

and include detailed experimental studies. The materiał is organized into 6 sections. First, in 

Section 2 we discuss the GMDH algorithm that is regarded as an underlying design method of the 

PNN architecture. Section 3 is devoted to various architectures of the PNN and their development. 

A suite of experimental studies is covered in Section 4. Coricluding remarks are included in Section 

5. 

2. The GMDH algorithm 

The GMDH algorithm uses estimates of the output variable obtained from simple primeval 

regression equations that include small subsets of input variables [8]. To elaborate on the essence of 

the approach, we adhere to the following notation. Let the original data set consist of a column of 

the observed values of the output variable y and N columns of the values of the independent system 

The primeval equations form a Partia! Description (PD) which comes in the form of a quadratic 

regression polynomial 

z= A+Bu+Cv+Du 2 +Ev2 +Fuv (I) 

In the above expressionA,B,C,D,E,andFare parameters of the model, 11,v are pairs ofvariables 



standing in x whereas z is the best fit of the dependent variable y . 

The generation of each layer is completed within three basie steps: 

Step I. In this step we determine estimates of y using primeval equations. Here, u and v are taken 

out of all independent system variables x, ,xw .. , xN . In this way, the total number of polynomials 

we can construct via(!) is equal to N(N -1)/2. The resulting columns z„ of values, m =l, 2, .. . 

N(N-1)/2, contain estimates of y resulting from each polynomial that are interpreted as new 

"enhanced" variables that may exhibit a higher predictive power than the original variables being 

just the input variables of the system, x1,x2, .. . ,xN . 

Step 2. The aim of this step is to identify the best of these new variables and eliminate those that are 

the weakest ones. There are several specific selection criteria to do this selection. All of them are 

based on some performance index (mean square, absolute or relative error) that express how the 

values z„ follow the experimental output y . Quite often the selection criterion includes an 

auxiliary correction component that 'punishes' a network for its excessive complexity. In some 

versions of the selection method, we retain the columns ( z., ) for which the performance index 

criterion is tower than a certain predefined threshold value. In some other versions of the selection 

procedure, a prescribed number of the best z„ is retained. Summarizing, this step returns a list of 

the input variables. In some versions of the method, columns of x,,x2, ... , xN are replaced by the 

retained columns of zi,z2 , .. ,,zp where k is the total number of the retained columns. In other 

versions, the best k retained columns are added to columns x„x2, .. . ,xN to form a new set of the 

input variables. Then the total number N of input variables changes to reflect the addition of z., 

values or the replacement of old columns x N with z„ new total number of input variables. 

lf Step 2 is completed within the generation of the current layer(or the current iteration) of the 

design procedure, the iteration of the next layer ( or the next iteration) begins immediately by 
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repeating Step I as described above, otherwise we proceed with Step 3. 

Step 3 consists of testing whether the set of equations of the model can be further improved. The 

lowest value of the selection criterion obtained during this iteration is compared with the smallest 

value obtained at the previous one. If an improvement is achieved, one goes back and repeats steps 

I and 2, otherwise the iterations terminate and a realization of the network has been completed. If 

we were to make the necessary algebraic substitutions, we would have arrived at a very 

complicated polynomial of the form which is also known as the lvakhnenko polynomial 

(2) 

where, a,b,,clj,dljt and so forth are the coefficients of the polynomial. 

3. The PNN algorithm and its generic structure 

In this section, we elaborate on algorithmic details of the optima) identification method related to 

two types of the PNN structures. 

3.1 PNN algorithm 

The PNN algorithm is based on the GMDH method and utilizes a class of polynomials such as 

linear, modified quadratic, cubic, etc. By choosing the most significant input variables and 

polynomial order among these various types of forms available, we can obtain the best of the 

extracted partia! descriptions according to both selecting nodes of each layer and generating 

additional layers until the best performance is reached. Such methodology leads to an optima! PNN 

structure. Let us recall that the input-output data are given in the form 

(3) 



The input-output relationship of the above data by PNN algorithm can be described in the following 

manner 

(4) 

The estimated output y reads as 

Y = f(x,,xz; ··,xN) =Co+ LC11X11 + LCmzX11Xu + LC11121iX1,XuX13 +. · · (5) 
ł1 A:lł2 łlł2ł3 

where, c1 s denote the coefficients of the model. An overall architecture of the PNN is shown in 

Figure I. 

z, 

Optlm1I model / 

Cholce of estlmated model!/Stop co• dltlon 

Choke of estlm1ted models/Stop condltlon 

z, 

.. 

Partl•I 
Descrlptlon 

lnput varlables Y 

__ __.-/ 

Fig. 1. An overall architecture of the PNN 

To determine the estimated output y , we construct a PD form for each pair of independent 
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variables in the first iteration according to the number of the input variables. Here one determines 

the parameters of PD by the least square method by using given training data. Furthermore we 

choose the optima( model forming the first layer. In the sequel, we construct new PDs using 

intermediate variables(for example z.,) being generated in the current iteration. Afterwards, we 

take another pair of new input variables, and repeat operation until the stopping criterion has been 

satisfied. Once the finał layer has been constructed, the node characterized by the best performance 

is selected as the output node. The remaining nodes in that layer are discarded. Furthermore, all the 

nodes of previous layers that do not have influence on the estimated output node are also removed 

by tracing the data flow path of each iteration. The resulting flowchart of the PNN algorithm 

outlining the essence of the algorithm is visualized in Figure 2. 
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Determine system input vMiebles 

Decision of PNN structurc 

l)BasicPNN 
- Case I 
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No 

Fig. 2. Flowchart of the PNN algorithm 

Overall, the framework of the design procedure of the Polynomial Neural Networks (PNN) comes 

as a sequence of the following steps 

[Step I] Determine system 's input variables. 

[Step 2] Using available experimental data, form a training and testing data set. 

[Step 3] Choose a structure of the PNN. 

[Step 4] Determine the number of input variables and the order of the polynomial forming a 

partia( description (PD) of data. 



[Step 5] Estimate the coefficients of the PD. 

[Step 6] Select PDs with the best predictive capabilities. 

[Step 7] Check the stopping criterion. 

[Step 8] Determine new input variables for the next layer. 

In what follows, we describe each ofthese steps in more detail. 

[Step I] Determine system s input variables. 

Here, we define the input variables asx,, i=I ,2, ... , n related to output variable y . lf required, 

the normalization of input data is also completed. 

[Step 2] Form a training and testing data. 

The input - output data set (X,,y,) = (x",x2,, ... ,xN,,y1}, i= 1,2,3, ... , n is divided inio two parts, 

that is a training and testing dataset. Denote their sizes by n,, and n„ respectively. Obviously we 

have n= n,, +n,.. The training data set is used to construct a PNN model (including an estimation 

of the coefficients of the PD of nodes situated in each layer of the PNN). Next, the testing data set 

is used to evaluate the estimated PNN model. 

[Step 3] Choose a structure of the PNN. 

The structure of PNN is selected on the basis of the number of input variables and the order of 

PD in each layer. Two kinds of PNN structures, namely a basie PNN and a modified PNN structure 

are distinguished. Each of them comes with two cases. Table I summarizes all the options available. 

More specifically, the main features of these architectures are as follows 

(a) Basic PNN structure - The number of input variables of PDs is the same in every layer. 

Case I. The polynomial order of PDs is the same in each layer of the network. 

Case 2. The polynomial order of PDs in the 2nd layer or higher has a different or modified type in 

comparison with the one of PDs in the 1st layer. 
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(b) Modified PNN structure - The number of input variables of PDs varies from layer to layer. 

Case 1. The polynomial order of PDs is same in every layer. 

Case 2. The polynomial order of PDs in the 2nd layer or higher has a different or modified type 

in comparison with the one of PDs in the I ' t layer. 

The outstanding feature of the modified PNN structure is its high flexibility. Not only the order 

but the number of independent input variables may vary between PDs located at each layer. 

Therefore the complex PDs as well as the simple PDs can be utilized effectively according to the 

various kinds of modified PNN structures by taking into consideration both compactness and 

mutual input-output relationships encountered at each layer. 

Table I. A taxonomy of various PNN structures 

(I) p=q: Basic PNN 
p P a) P=Q: Case I 

b)NQ: Case2 
(2) p,tq: Modified PNN 

q Q a) P=Q: Case I 
b) P>'Q: Case 2 

(p=2, 3, 4, q=2, 3, 4; P=l, 2, 3, Q=l , 2, 3) 

[Step 4) Determine the number of input variables and the order of the polynomial forming a 

partia/ description (PD) of data. 

We determine the regression polynomial structure of a PD related to PNN structure; for details 

refer to Table 2. In particular, we select the input variables of a node from N input variables 

x"x2, .. . ,xN . The total number of PDs located at the current layer differs according to the number 

of the selected input variables from the nodes of the preceding layer. This results in 

k = N!l(N -r)!r! nodes, where r is the number of the chosen input variables. The choice of the 
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input variables and the order of a PD itself helps select the best model with respect to the 

characteristics of the data, model design strategy, nonlinearity and predictive capability. For 

example, a PD computed on a basis of two input variables and 2nd order polynomial comes in the 

form of the quadratic regression polynornial 

m = 1,2,3, . .. ,N(N -1)/2 (6) 

In the above expression the coefficients(c0 ,ci, ••·•cs) are estimated using the training data subset. 

As the model is linear with respect to the parameters, a standard least squared method is a plausible 

optimization choice. This results in N(N -1)/2 nodes(or PDs). 

Table 2. Regression polynomial structure 

[Step 5] Estimate the coefficients of the PD. 

The vector of coefficients C, is derived by minimizing the mean squared error between y, and 

zmi 

J N 2 
E=-N f(y,-z.,,) 

tr i=O 

Using the training data subset, this gives rise to the set of linear equations 

Y=X,C, 

(7) 

(8) 

Apparently, the coefficients of the PD of the processing nodes in each layer are derived in the form 

li 



C, = (X; X, r' X;Y (9) 

where 

Y=[y. Y2 .. . Y •• t .x, =[X1, x,, ... xkl ... x •• ,r, 
X 7 kl =[I Xk/1 Xm ... xkln .. . x;. x;, .. . x;.] 

C1 =[c01 c11 c21 ••• c •. ,r 
with the following notation i : node number, k : data number, n" : number of the training data 

subset, n : number of the selected input variables, m : maximum order, n' : number of estimated 

coefficients. 

This procedure is implemented repeatedly for all nodes of the layer and also for all layers of PNN 

starting from the input layer and moving to the output layer. 

[Step 6] Select PDs with the best predictive capability. 

Each PD is estimated and evaluated using both the training and testing data sets. Then we compare 

these values and choose severa( PDs which give the best predictive performance for the output 

variable. Usually we use a predetermined number W of PDs or the prespecified cutoff value of the 

performance index the PD has to exhibit in order to be retained at the next generation of the PNN 

algorithm. 

The number of PDs (W) is guided by the selection methods 

• This method uses the threshold criterion 0„ to select the node with the best performance in 

each layer. Each PD is evaluated using the testing data set, and stored in a new array Z. And 

then we need to select and keep only PDs with better performance among new PDs in Z. A 

new PD is preserved (retained) ifthe following condition holds 

(IO) 

where E1 is a minimal identification error of the current layer, 0„ stands for a threshold 
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value while E. is a minimal identification error of the previous layer. Furthermore o is a 

positive constant whose value is specified by the model developer. 

• We determine the total number, N!l(N-r)!r! of PDs according to combinations ofnodes in 

each layer. Each PD whose parameters were estimated using the training data subset is 

evaluated by computing an identification error (MSE) using the testing data set. We choose 

severa! PDs characterized by the best performance. Here, we use the pre-defined number W 

of PDs with better predictive capability that must be preserved for optima! operation of the 

next iteration in the PNN algorithm. The outputs of the preserved PDs(called Survivors), 

serve as inputs to the next layer(iteration). 

There are two cases as to the number of the preserved PDs in each layer 

(a) Jf N!/(N -r)!r!<W then the number of the PDs retained for the next layer is equal to 

N!/(N-r)!r! 

(b) Jf N!/(N -r)!r! ~ W, then for the next layer, the number of the retained PDs is equal to 

w 

The first method has some practical drawbacks. It cannot effectively reduce a large number of 

nodes and avoid a large amount of time-consuming iterations of PNN layers. The second method is 

better with this regard as it confines the computing to the predetermined value of W. 

[Step 7] Check the stopping criterion. 

Two termination methods are exploited here 

The stopping condition shown in ( 11) indicates that an optima! PNN model has been 

accomplished at the previous layer, and the modeling can be terminated. This condition reads as 

(11) 

13 



where EJ is a minimal identification error of the current layer whereas E. denotes a minimal 

identification error that occurred at the previous layer 

Method 2 

The PNN algorithm terrninates when the number of iterations predetermined by the designer is 

reached. 

It is prudent to take into consideration a stopping condition for better performance and the 

number of iterations predetermined by the designer. This criterion helps achieve a balance between 

model accuracy and its complexity. 

[Step 8) Determine new input variables for the next layer. 

lf EJ (the minimum value in the current layer) has not been satisfied (so the stopping criterion is not 

satisfied), the model has to be expanded. The outputs of the preserved PDs serve as new inputs to 

the next layer. This is captured by the expression 

(12) 

The PNN algorithm is carried out by repeating steps 4-8 of the algorithm. 

Table 3. Various form ofregression polynomials 

No. of inputs Order of polynomial Node equations considered(PDs) 

Linear ·co +c1X1 

I input Ouadratic ·co+C1X1+Ci-t1 l 

Cubic ·c0+c1x1+ciJ:1"'+cJ,X1 
2 inputs Linear ·co+c ,x 1 +cµ2 

I I) ·co+c1x1+c'.l-l'2+c;.t1 '+c4,l2 .:+cs,t1X2 
Quadratic I 2) ·co+c1x1+ci,r2+cJX1 Xz 

·co+C1X t +ci,.t:2+CJ,X I 2+C+t2 l 
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I) Co+c1x,+ci,X2+CJX1 2+c.x22+c_sX1X2+C6,X1 1+c.,.:t21+cgX1 2x2+C9,X1X 

Cubic 2 
2 

2) ·co+c1x,+CJX2+CJX1 X2+C4X/ Xz+Cs X1X2 

·co+C1X1+C:ct2+C}X12+c.,x-2 2+ CsX1X2+Ct,X1 1+c1x/ 

Linear ·c0+c1x1+ciX2+cJ,X°J 

Quadratic 
I\ ·co+c1x1+c:2,X.,+cJ,X1+c,.x,2+csX22+c6,X12+c1x1x2+c.x1x1+c')X...x1 

3 inputs 
2) ·c0+c1x 1+c,x2+c,x,+ c,.x,x,+c,x,x,+c.x,x, 

I) ·c0+c1x 1+c,x2+c,x3+c,.x1 +c,x,x,+c.x,x,+ 
Cubic c,x, 2+c,x, 2+c,.x3 2+c,.x, '+c, ,x,3+c 1,x33+c, ,x1x,x, 

2) ·c0+c,x,+c,x2+c,x,+ c,.x1x2+c,x x,+c.x,x,+c,x,x,x, 
4 inouts Linear ·co+C1X1+Ci:,t2+C:,.t1+ C4,X"4 

.. .... . ..... 
Multiinputs ·co+c,x,+c,x,+c,x,+ c,.x4 ••• 

I): Basic type, 2): Modified type 

3. 2 The PNN structure 

We introduce two kinds of PNN structures, namely the basie and the modified PNN. While their 

structure has been captured in Table I, here we discuss their architectural details. 

3.2.1 Basic PNN structure 

The design of the PNN structure continues and involves a generation of some additional layers. 

These layers consist of PDs for which the number of input variables is the same in every layer. The 

detailed PD involving a certain regression polynomial is shown in Table 3. 

Two cases for the regression polynomial in each layer are considered. 

Case 1. The polynomial order of PDs is same in every layer. 

Case 2. The polynomial order of PDs in the 2nd and higher layers is different from the one 

existing in the I st layer. 

Case I As stated, in this case the order of the polynomial of PDs is the same across the entire 

network. The resulting network is visualized in Fig. 3. For example, consider that the PDs situated 

at the first layer are 2nd order (biquadratic) regression polynomials, 
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(13) 

It becomes apparent that all PDs are the same and the design of the network repeats (that is we 

use the same technique as applied to the first layer). 

x, 

Z, =f{x,,x.) 

Fig. 3. Configuration of the basie PNN structure - Case 1 

Case 2 The order of the polynomial of PDs in the 2nd layer or higher is different in comparison 

with the units located in the !st layer, see Figure 4. For example, consider that the PDs located in the 

first layer assumes the form of the I st order(bilinear) regression polynomial, 

(14) 

The best group of the PDs (from the viewpoint of the identification error) are then selected. In the 

second layer, even more complex PDs can be considered as a regression polynomial with two 
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variable~ and higher order such as the 3rd order polynomial 

(15) 

The construction of the PDs occurring in the successive layers proceeds in an analogous way. 

Partia! 
Description 

Fig. 4. Configuration of the basie PNN structure - Case 2. 

3.2.2 Modified PNN structure 

The outstanding feature of the modified PNN structure resides in its increased variability. Not only 

an order of the regression polynomial varies but the number of the input variables of each PDs can 

be changed. Therefore, the simplex PDs as well as the complex PDs can be utilized effectively by 

taking into consideration a structural form of input-output relationships between the nodes of each 

layer. The form of the regression polynomial ofeach PD is shown in Table 3. 

Two cases for the regression polynomial in each layer can be sought. 

Case 1. The polynomial order of PDs is the same in every layer. 
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Case 2. The polynomial order of PDs in the 2nd layer or higher has a different or modified type in 

comparison with the nodes in the I st layer. 

Case I -The order of PDs is the same in every layer, see Figure 5. For example, consider that the 

PDs of the first layer are the form of the 2nd order (quadratic) regression polynomial, 

(16) 

We estimate the parameters of the PDs and determine the best group of the PDs. In the second 

layer, the PDs are the 2nd order polynomials with two variables. Even though the polynomial order 

of PDs is the same as that of the first Iayer, the number of input variables can be different from that 

of the first layer as shown in eq. (17), namely 

(17) 

The construction of the successive layers proceeds in the same fashion . 

x, 

x, ... 
X3 

x. 

Partia! 
Description 

Fig. 5. Configuration of the modified PNN structure - Case 1. 
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Case 2 The order of the polynomials of PDs in the 2nd and higher layers differs in comparison 

with the PDs existing in the 1st layer, Figure 6. For example, consider that PDs of the first layer are 

linear 

(18) 

In the second layer, we may have a quadratic PD in the form 

(19) 

Fig. 6. Configuration of the modified PNN structure - Case 2 

4. Experimental studies 

In this section we illustrate the performance of the network and elaborate on its development by 

experimenting with data coming from the gas furnace process [9] and pH neutralization process 

(25]. These two are representative examples of well-documented datasets used in the realm of fuzzy 

modeling. We also contrast the performance of the model introduced here with those existing in the 

literature. 
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4.1. Gas furnace process 

The time series data resulting from the gas furnace process has been intensively studied in the 

previous literature [9-17],[ 19-22]. For easy reference, we high light the main design steps discussed 

in the previous setion. 

[Step I] Determine system s input variables 

The delayed terms of methane gas flow rate, u(t) and carbon dioxide density, y(t) are used as 

system input variables such as u(t-3), u(t-2), u(t-1), y(t-3), y(t-2), and y(t-1). y(t) is a single output 

variable. We choose the input variables of nodes in the first layer of PNN structure from these 

system input variables. We use two types of system input variables of PNN structure, Type I and 

Type Il to design an optima) model from gas furnace process data. Type I utilizes four system input 

variables such as u(t-2), u(t-1 ), y(t-2), and y(t-1) and Type Il utilizes six system input variables 

explained above. 

[Step 2] Form a training and testing data set. 

The total data set includes 296 input-output pairs for the proposed PNN modeling. The total data 

set is divided into two parts, one is used for training purposes ( 148 input-output data) and the 

remaining serves for testing purposes. 

[Step 3] Choose a structure of the PNN. 

We consider two kinds of PNN structure - the basie and modified one. The structures under 

discussion are shown in Tables 4-5. 

Table 4. Basic PNN structure 

.,,.,. Case2 
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~ 

' 

.. 

2 inputs 2 inputs 2 inputs 

3 inputs 3 inputs 3inputs 3 inputs 

4 inputs 4 inputs 4 inputs 4 inputs 

Table 5. Modified PNN structure 

3 inputs 3 inputs 2 inputs 

4 inputs 2 inputs 4 inputs 2 inputs 

2 inputs 3 inputs 2 inputs 3 inputs 

[Step 4) Determine the number of input variab/es and the order of the po/ynomial forming a 

partia/ description (PD) of data. 

We determine the number of the input variables and the order of PD from N system input 

variables obtained in Step I. Step 3 concems the decision as to the structure of the PNN. The PDs 

differ according to the number of input variables and the polynomial order of a node. The form of 

regression polynomials is summarized in Table 6. Type I, Type 2, and Type 3 stand for a linear, 

quadratic, and modified quadratic regression polynomial, respectively. 

Table 6. Various forms of regression polynomials used in the PNN structure . 

No. ofinput Order of Polynomial Node expression 
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Variables 
Tvoe I ·co+c1x1+cll"2 

2 Tvoe2 ·c0+c,x,+c,x2+c,x,'+c.,x2'+c,x1x2 

Tvpe3 ·cn+C X +c,x,+C'ł.%1 X, 

Type I ·c0+c,x +c,x,+c,x, 
3 TvPe2 ·c0+c,x,+c,x2+c,x,+c.,x, '+c,x2 '+c.x, '+c,x,x2+c,x1x1+c.,x,x1 

Type 3 ·co+c1x1+C2,X2+CJX1+ c.x X7+CsX1X3+C6,X:zX3 

Tvoe I ·co+c,x,+c,x,+c,x,+ c..x. 

Type2 ·co+c,x,+ci,X2+c;r1+c.x,.+cs.r1.i+c6,X'2 +c,x1 '+CaX4 + 
4 Cł)X1X2+C1oX1X3+C 1X 1X4+C1cł':zX3+C1JXi,X4+C1.,X)X4 

Type 3 ·co+C1X1+C:z.tz+CJX3+ c.x4+CsX1Xz+C6,%'1X1+CJX1X4+ 

CsX2X3+CC}l'iX4+C1oX}X4 

[Step 5] Estimate the coefficients of a PD 

Using the training data subset obtained in Step 2, the coefficients(c;) of a PD are estimated by the 

standard least squares method. 

[Step 6] Se/ect PDs with the best predictive capabi/ity 

Using both the training and testing data subset obtained in Step 2, each PD of the current layer 

shown in Tables 4-5 is evaluated by computing the performance index defined as the mean squared 

error 

I m 
Pl(EPI) =-1)Y, -y,)2 

m l=I 

(20) 

where y, is the actual output, y1 is the estimated one of each PD, and m stands for the total 

number of data. 

Then we compare these values and choose severa( PDs by a predefined number, 30, which give 

better predictive performance than remaining PDs of the current layer. Such selected PDs of the 

current layer are retained as the inputs to the successive layer. 

[Step 7] Check the stopping criterion(condition). 
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Because of a large amount of computing, we follow a practical guideline to con fine the depth of 

the PNN to a maximum of five layers. lt will be shown that this selection is well supported by 

experimental evidence gained through intensive experimentation. 

[Step 8] Determine new input variables for the next layer 

lf the stopping condition of Step 7 has not been not satisfied, the output values estimated in the 

I st layer serve at the 2nd layer as input variables. The algorithm goes through steps 4 through 8 and 

generates PDs at the next layer. 

In the sequel, we discuss the results produced by various PNNs. 

(a) The Basic PNN structure 

Case 1 - The values of the performance index vis-a-vis number of layers of the PNN with Type 3 

in Type II architecture are shown in Fig. 7. The shadowed nodes in Figure 8 identify optima! nodes 

in each layer, namely those with the best predictive performance. Considering the training and 

testing data sets, the best results for the network of Type I are obtained when using 3 inputs of Type 

I, (that are quantified as PI=0.0175, EPl=0.1486). The best results for the network of Type II 

coming with Pl=0.0124 and EPl=0.0849 have been reported when using 4 inputs and Type 3. 

Fig. 7. Performance index for training and evaluation in Type II (each layer includes neurons of 

type 3) 
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Furthermore Figs. 8 shows the details of the optima( structure of the basie PNN. 

u(l-3) 

u(l-2) 

u(l-1) 

y(l-3) I 

y(l-2) 

y(l-1) 

Fig. 8. Optima( PNN structure ofType II (4 inputs, Type 3); see description in text 

Case 2 - Fig. 9 visualizes the performance index of th PNN structure. The notation used here, 

namely "Type I • Type 2" states that the polynomial order of the PDs changes from Type I (those 

are PDs in the 1st layer) to Type 2 (when daling with PDs in the 2nd layer or higher). When the 

polynomial order of PDs changes from Type 3 to Type I, the best results for the Type I network are 

quantified by PI=0.0175 and EPl=0.1476. These values are obtained for the PNN structure with 3 

node inputs. When the order of the polynomial of the PDs changes from Type I to Type 2 (Type 

I • Type 2), this gives better results for the Type II network both for the training and testing sets. 

Especially in this case, the PNN structure with 3 node inputs is characterized by the best results 

(PJ=0.021 , EPI=0.0849, respectively). 
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u•rco.:,;-;(,..i,.,.-~-.=======:;;::====:::;;t 
•. A : (1.5,6) : : ; ~:::: ~::: ~::l Erl : ------/ I ł. 11 ~,~,-4,!I,') • : •łlnp••• (Node No.) Pl : ---r 

! u ..... ,.... ,t6'~ (4,20) 

= Ul -===~=:::.:.'!_:::::::::----... ,1'' : ~ ~::i:!j9) i --------:::.:::--.., ____________ _ 
.. . 
·;; -~ ... 

O : (1',17) O : (13,23) 
A : (1,11,1') A : (10,U,22) 
0 : (15,16,ll,:ZS) O : (13,14,1',24} 

' Layer 

Fig. 9. Performance index for training and testing in Type II network (Type I • Type 2) 

Fig. IO illustrates the detailed topology of the network. 

u(t-3) 

u(t-2) 

u(t-1) 

y(t-3) ---r.;;:---
y(t-2) "',!:~,G6n~[fi:~ 

y(t-1) 

Fig. I O. Optima( PNN structure of Type II (3 inputs and Type I • Type 2) 

(a) The modified PNN structure 

J 

Case 1 - The values of the performance index of the PNN structure with Type 2 in Type II is 

shown in Fig. 11. The resulting topology of the network is included in Figure 12 . 
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-, ~------,~----~ 
' O : 3-:>:Z wpull(Node No) I f.PI : 

' _-A.... :; ~!~:::~~~~:~ Pl: 

c:::::.~•:(, ..................... .._. ___ ~.._ 
------------­_____ ,'Il, 

--•;••-=::.:;-------------~::::::::::::_ 

O :(6.17) 
A.: (:Z,,]0) 
(> : (S,1-4,13) 

J 
Layer 

0:(1,13) O:(J,11) 
A : (21,30) A : (4,24) 
O, : (l,H,lO) O ; (4,6,9) 

Fig. 11. Performance index for training and evaluation in Type II(every layer: Type 2) 

u(t-2) 

u(t-1) 

y(t-3) 

y(t-2) ,._,-,.._---,,__, -.._.,O'!.V-::::""'-.A 

y(t-1) 

f 

Fig. 12. Optima) modified PNN structure in Type II (Type 2 and 2• 3 node inputs) 

Case 2 - As before, the performance index summarizes the behavior of the network, Figure 13 

while the resulting topology is shown in Figure 14. 
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,.Hr---~---;:::=======;;::::::::===:;i 
O : .J.>2 lnp•b(Node No,) 

Ul 6 : 4->2 lnpuł1(Node No.) 
• : 2->] l•p•b(Node No.) 

EPI: 
Pl: 

0:1•~•> 
A:(2ł,30) 
0 : (ł,I0,23) 

O:(I0,15) 0:(14,25) 

' Layer 

A: (13,30) A : (20,18) 
(> : (17,20,1') (> : (7,9,30) 

Fig. 13. Perfonnance index for training and evaluation in Type II (1 st layer: Type I, 2nd layer or 

higher: Type 2) 

u(t-2) 

u(t-1) "-.;:or-Hl-<i, 

y(t-3) ;;:'.:;;<.~';;.);.~"XI.JW. f 

y(t-1) 

Fig. 14. Optima) modified PNN structure in Type II ( 2• 3 node inputs and Type I • Type 2) 

Table 7 contrasts the performance of the PNN network with other fuzzy models studied in the 

literature. The experimental results clearly reveal that the PNN outperforms the existing models 

both in tenns of better approximation capabilities (lower values of the performance index on the 

training data, PI,) as well as superb generalization abilities (expressed by the performance index on 

the testing data EP!,). 

Table 7. Comparison of identification error with previous fuzzy models (PI- performance index 

over the entire data set, PI,- perfonnance index on the training data, EP!, - performance index on 

the testing data) 
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Model 
Mean Souared Error 

PI PI, EPI, 

Box and Jenkins' model 91 0.710 
Tonl!'s model[IOJ 0.469 

Su2eno and Yasukawa' modelfl Il 0.355 
Su2eno and Yasukawa' modelf12l 0.190 

Xu's model[13l 0.328 
Pedrvcz's modelrJ 4 0.320 

Chen's modell19l 0.268 
Gomez-Skarmeta's model 211 0.157 
Oh and Pedrvcz's model 151 0.123 0.020 0.271 

Kim, et al. 's modelll 6 0.055 
Kim, et al.'s model[J 7 0.034 0.244 

Leski and Cw2ala 's modell201 0.047 
Lin and Cunnin ham's model[22l 0.071 0.261 

Basic Case I 0.057 0.017 0.148 

Type I 
PNN Case2 0.057 0.017 0.147 

Modified Case I 0.046 0.015 0.103 
Our PNN Case 2 0.045 0.016 O.Ili 

model Basic Case I 0.029 0.012 0.085 

Type II 
PNN Case2 0.027 0.021 0.085 

Modified Case I 0.035 0.017 0.095 
PNN Case2 0.039 0.017 0.101 

4.2 pH neutralization process 

To demonstrate the high modeling accuracy of the PNN, we apply it to a highly nonlinear process 

of pH neutralization of a weak acid and a strong base. This model can be found in a variety of 

practical areas including wastewater treatment, biotechnology processing, and chemical processing 

[23,24,26,31,32]. 

pH is the measurement of the acidity or alkalinity of a solution containing a proportion ofwater. lt 

is mathematically defined, for dilute solution, as the negative decimal logarithm of the hydrogen 

ion concentration [H+] in the solution, that is, 

pH=-logw[HJ (21) 

In the continuously stirred tank reactor (CSTR)[25][28] investigated, shown in Fig. 15, acetic acid 

(HAC) of concentration C0 flows into the tank at flow rate F. , and is neutralized by sodium 
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hydroxide(NaOH) of concentration Cb which flows into the tank at rate Fb . The equations of the 

CSTR can be described as follows (here we assume that the tank is perfectly mixed and isothermal, 

cf. [25]). 

Effiucnt 

Fig. 15. A continuous tank reactor for pH neutralization 

The process equations for the CSTR is given by 

Vdw, ( ) ~~F,C0 - F, +Fb W0 (22 a) 

(22 b) 

where the constant V is the volume of the content in the reactor, w. and wb are the 

concentrations of the acid and the base, respectively. 

The above equation describes how the concentrations of w0 and wb changes dynamically with 

time subject to the input streams F, and Fb . To obtain the pH in the effiuent, we need to find a 

relation between instantaneous concentrations w0 and wb and pH values. This relationship can be 
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described by a nonlinear algebra equation known as the titration or characteristic curve. Depending 

on the chemical species used, the titration curve varies. 

Here we consider the case that a weak influent is neutralized by a strong reagent. The words 

strong and weak are used to characterize the degree of ionic dissociation in an aqueous solution. 

Strong reagents completely dissociate into their hydrogen or hydroxyl ions whereas weak reagents 

are only partially ionized. 

Consider an acetic acid (weak acid) denoted by HAC being neutralized by a strong base 

NaOH(sodium bydroxide)in water. The reactions are 

H2O~H++Off 

HAC~W+AC 

NaOH • Na++ Off 

(23 a) 

(23 b) 

(23 c) 

According to the electroneutrality condition, the sum of the charges of all ions in the solution 

must be zero, i.e. 

[Na+]+[Hi =[Off]+ [AC] 

where the symbol [X] denotes the concentration of the ion X. 

On the other hand, the following equilibrium relationships hold for water and acetic acid: 

K. = [AC-][H+] / [HAC] 

Kw= [H+][OH-] 

(24) 

(25 a) 

(25 b) 

where K.and Kware the dissociation constants of the acetic acid and water with K.=I.76*10-5 

and Kw =10·14• 
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Defining w0 =[HAC]+[ AC-] as the total acetale and wb =[Na+] and inserting Eqs. (25 a) and (25 b) 

into Eq. (24), we have 

(26) 

Using Eq. (21), Eq. (26) becomes 

w. + 10- pH -1 o•"-•"· - w. o 
b I+ 10•"·-•" 

(27) 

where pKa = - log„ k0 • The static relationship between base flow rate and pH in the reactor is 

plotted in Fig. I 6. lt can be seen that the strong nonlinearity inherent in the pH process is 

characterized by its steady state titration curve. 

10 

pH 

5 470 41!10 490 500 510 520 5JO 540 550 560 

F• 

Fig. 16. Titration curve for pH neutralization 

We consider the weak acid-strong base neutralization process described by Eqs. (22 a), (22 b) and 

(27). By fixing the acid flow-rate F0 (8Icc/min) at a specific value, the process is regarded as a 

single variable system with base flow-rate Fb and the pH in the effiuent being the input and output, 
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respectively. The ( F6 , YpH) data pairs were produced by using the process physical model with the 

parameter values given in Table 8. 

Table 8. Parameters and initial values for pH process 

Variables Meaninl? Initial setting 

V Volume of tank 1000 CC 

F. Flow rate of acid 81 ce/min 
Fb Flow rate of base 515 ce/min 
c. Concentration of acid in Fa 0.32 mole/I 
c, Concentration of base in fb 0.05 mole/I 
K. Acid equilibrium constant 1.76•10·' 
Kw Water equilibrium constant 1.0•10-" 

W,(O) Concentration of acid 0.0435 mole/I 
Wb(0) Concentration of base 0.0432 mole/I 

The base flow rate F6 was given by 

F6 =515+51.5sin(211t/25) for tS150 

F6 = 515+ 25.75sin(211t /25)+ 25.75sin(211t /10) for 1)150 

(28 a) 

(28 b) 

For obtaining sucha data pairs, we applied Newton-Raphson method that is given by Eqs. (29). 

H - H /(pH,) 
p l+I - p I - /'(pH,) (29) 

The system inputs of the PNN structure consist of the delayed terms of F6 (t)and YpH (t) which are 

input and output of the process, i. e. 
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y pH(t) = <p(F.(t-3),F.(t-2),F.(t-l),y pll(t-3),Y ,11(1-2),y,H(t-l)) (30) 

where, s,,11 and YpH denote the PNN model output and the actual process output, respectively. 

500 data pairs are generated from Eqs. (28 a), (28 b), and (29) where total data are used for training. 

We conducted a series of comprehensive experiments for all four main architecture of the PNNs, 

refer to Figures 17, 18, 19, and 20. The generation procedure of the PNN is carried out until the 15th 

layer in basie PNN structure and the 10th layer in the modified PNN structure, Fig. 17-20. 

fu 
;; C ,., 
f-- OA .. , 

.., 

O : 2 input, 
A: 3fnpałl 
• : 4 lnputt 

... L~~~~~:!:::ł:39a::::+==+=4 ..... t-+4' 1 1 1 3 , 5 6 '7 I 9 11 I Z ) 4 :5 

Layer 

Fig. 17. Performance index for the training data (each layer is of Type 2) 
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O : 2 inpu11 
A : 3 iuput1 
O : 4111pul1 

,L,--~--~--..:::::t1 ::::lE, =31t!:0~, .. ,_., .. ,•,1o,-, .. ,-+ 
Layer 

Fig. 18. Performance index for the training data( Type I• Type 2) 

O : 2•>4 iupub 
A : 3->4 h1pul1 
O : 4->J l11put1 

Fig. 19. Performance index for the training data (each layer is of Type 2) 

O : 2->• J11put1 
A: 3-->• Japult 
-0 : 4->J fopull 

Fig. 20. Performance index for the training data (Type I • Type 2) 
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Table 9 provides with a comparative analysis of various fuzzy models. The two models proposed 

in [27] ( that is an unsupervised self-organizing counterpropagation network algorithm (USOCPN) 

and unsupervised self-organizing counterpropagation network algorithm(SSOCPN)) are 

characterized by higher values of the MSE values. The number of rules used there is equal to 31 

(USOCPN) and 34 (SSOCPN). As becomes apparent from Table 9, in these two architectures the 

resulting performance index assumes far higher values than reported for the PNN architectures. 

Table 9. Comparison of identification errors with previous modeling methods 

Model Perfonnance Index 
Nie's USOCPN 0.230 

model[27] SSOCPN 0.012 

BasicPNN Case I 0.0015 
Case2 0.0052 

Ourmodel 
Case I 0.0039 

ModifiedPNN 
Case2 0.0124 

5. Concluding remarks 

In this study, we introduced a class of self-organizing polynomial neural networks, discussed a 

diversity of their topologies, carne up with a detailed design procedure, and used these networks to 

nonlinear system modeling. The key features ofthis approach can be enumerated as follows 

• The proposed design methodology helps reach a compromise between approximation and 

generalization capabilities of the constructed PNN model 

• The PNN comes with a diversity of !ocal characteristics (PDs) that are useful in coping 

with various nonlinear characteristics of the nonlinear systems. Based on these, one can 

proceed with polynomials of different order as well as vary the number of the input 

variables associated with the individual processing units 

• The depth of the PNN can be selected as a result of a tradeoff between accuracy and 

complexity of the overall model 

• The structure of the network is not predetermined (as in most of the existing neural 
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networks) but becomes dynamically adjusted during the development process 

The comprehensive experimental studies involving well-known datasets quantify a superb 

performance of the network in comparison to the existing fuzzy models. 
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