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Abstract This study concerns with the Boolean satisfiability (SAT) problem and its
solution in the setting of a hybrid computational intelligence environment of genetic and
fuzzy computing. In this framework, fuzzy sets realize an embedding principle meaning
that original two-valued (Boolean) functions under investigation are extended to their
continuous counterparts resulting in the form of fuzzy (multivalued) functions. In the
sequel, the satisfiability problem is reformulated for the fuzzy functions and solved using
a genetic algorithm (GA). It is shown that a GA, especially its recursive version, is an
efficient tool for handling multivariable SAT problems. Thorough experiments revealed
that the recursive version of the GA can solve SAT problems with more than 1,000
variables.
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1. Introduction

The satisfiability problem (SAT) [4][6] [12] concems a determination if a given Boolean
function (f) of n variables is satisfied, meaning that there exists a combination of its
arguments for which this function attains a logical one (we say it is satisfied). In other
words, we are interested in determining logic (truth) values of the variables x|, x2,..., x,
for which f{xi, xs,..., x,) achieves one, namely, f{x, xa, ..., x») =1. While the problem
seems obvious, a solution is not trivial. Even for a modest number of variables, a brute
force enumeration fails as we are faced with a profound combinatorial explosion. For a
Boolean function of # variables, a straightforward enumeration requires an investigation
of 2" combinations of the inputs (Boolean variables). This number increases very
quickly. To quantify this, let us assume that a single evaluation of the Boolean function
takes s (=10'6s). For only #» = 50 it would take 35 years to complete an exhaustive
(brute-force) enumeration of all combinations and find a solution. The SAT problem is a
classic example of a NP-complete problem [9] meaning that there is no known algorithm
that solves it in polynomial time [12]. Put differently: a worst-case running time of a SAT
solver grows exponentially with the number of variables. SAT is a fundamental problem
in logic and computing theory. It has numerous applications to automated reasoning,
databases, computer-aided design, and computer architectures [4]{6][11], to name a few.
The use of SAT to automatic test generation of patterns to test digital systems is an
attractive application.

Owing to the immense size of the search space in the SAT problem, evolutionary
computing arises as a viable and attractive option. The objective of this study is to
formulate the SAT problem in the evolutionary setting and carry out comprehensive
experimental studies. The approach relies on the embedding principle: we generalize the
Boolean problem to its continuous fuzzy (multivalued) version, find a solution to it, and
convert (decode) it to the Boolean format. The concept of this transformation
(embedding) was introduced initially in [10]. This study follows by elaborating on the
algorithm, presenting results of comprehensive experimentation, and discussing
improvements to a generic genetic algorithm (GA) necessary in the case of high-
dimensional SAT problems.

We confine discussion to the basic binary model of GA. The material is organized into 7
sections. First, we formulate the SAT problem in the GA environment by introducing an
embedding principle that shows how a binary problem can be embedded into a
continuous environment of fuzzy (multivalued) functions generated in the setting of
fuzzy sets. Then we discuss details concemning the experimental environment (Section 3)
including genetic optimization and a way of generating Boolean functions. In Section 4,
we discuss experimental results, the efficiency of GA in solving the SAT problem and
contrast this approach with random search and brute-force complete enumeration method.
Moreover, we discuss an issue of scalability of the problem and experimentally identify
some limits as to the number of Boolean variables. Afterwards, a recursive version of the
genetic SAT solver is discussed in Section 5. It is shown how this recursive approach




helps to handle a high-dimensional problem. Conclusions are contained in Section 6.
References are included in Section 7.

2. The SAT in an Evolutionary Environment

When formulating the SAT problem in the framework of evolutionary computing, we
need to revisit the main algorithmic components of a GA and define them in a proper way
according to the specifics of the problem at hand. Starting from the fitness function, we
immediately encounter a significant conceptual and technical problem. As we are
dealing with the Boolean functions, an immediate form of the fitness function that comes
to mind would be the Boolean function itself. This definition, however, does not help at
all. The combination of the variables producing the value of the Boolean function equal
to 1 is just a solution to the problem. The zero value of the Boolean function means that
these specific inputs are not a solution. All nonsolutions are the same from the standpoint
of the fitness function. Evidently, as being indistinguishable they are not helpful for any
genetic optimization. The drawback in the definition of the fitness function is implied
inherently by the nature of the Boolean problem. The choice of the fitness function is
quite challenging, as indicated in [2]. For instance, in [9] the Boolean variables are
changed into floating-point numbers; in this way one tries to consider the solution to the
SAT problem to correspond to a set of global minimum points of the induced objective
function. None of these approaches have addressed an issue of retaining the logic
character of the original problem.

The approach taken here it is to make the problem continuous so that each element in the
search space could come with a different value of the fitness function. Moreover, to
make the binary (Boolean) problem continuous and still maintain its logic character
brings us into the world of fuzzy sets and fuzzy functions. Fuzzy sets support the
embedding principle: instead of the original problem, we cast it into the format of the
corresponding fuzzy function, solve the problem in this new framework, and bring back
(transform) the solution to the original binary environment. This principle is illustrated in

Figure 1.







norms may differ quite substantially and exhibit different levels of computational
efficiency. The "classic” examples of triangular norms and co-norms are the minimum (¢-
norm) and maximum (s-norm) functions. They are easy to compute. Nevertheless they
exhibit a lack of "interaction" that may become an evident drawback when navigating
through the search space. Another quite common option of the logic connectives are the
product (t-nomm), atb =ab and probabilistic sum (asb = a+b- ab). This particular pair of
the ¢ - and s-norm is a model of alternative connectives in Boolean logic encountered in
Boolean logic, cf. [11] (originally they were introduced by G. Boole himself in his
famous The Laws of Thought (1854) in the following form x OR y =x + y(1-x) =x + p -xy
xANDy=xy)

Fitness can be defined as equal to the value of the fuzzy function assumed for some given
values of the arguments. As opposed to Boolean functions, fuzzy functions are satisfied
to a certain degree. These satisfaction levels help discriminate between various elements
in the search space and guide the evolutionary optimization process.

Once the optimization has been completed, the solution in the continuous space (space of
fuzzy functions) has to be converted back (decoded) to the Boolean space. A simple
threshold operation is a sound option

- ifxgis lessthan 0.5 then convert x; to 0 otherwise convert x; to 1

Intuitively, the closer the truth value of x; to 0 or 1, the more confident we could be about
the thresholding rule. If x; gets closer to 0.5 (eventually being equal to 0.5), the more
hesitation arises as to its conversion to 0 or 1 and an overall credibility of such processes.
Further on, we show that this intuitive observation may be helpful in the development of
a recursive architecture of the genetic SAT optimization.

3. The experimental setting
3. 1. Evolutionary optimization

The evolutionary optimization is realized in the form of a standard GA as commonly
encountered in the literature, [1]J{3}{5] [8]. The format of the problem implies a form of
the genotype. As we are concerned with fuzzy functions and fuzzy (multivalued)
variables, each variable is coded in a binary format. Each variable is coded in 32 bits
representing a real value in the the range {0,1].

Once a population is generated, the individuals (chromosomes) are sorted according to
their fitness. A procedure is then used to select two individuals to mate. The procedure
for selecting the two individuals gives preference to higher fitness individuals. Two
random numbers, in a range larger than the number of actual individuals in the
population, are chosen and mapped into two individuals from the actual population. The
mapping is done in a way that creates a funnel effect, where individuals with higher
fitness have higher priority. A parameter governing the range of the two original numbers
affects the width of the funnel, and controls the diversity in choosing the individuals: a




very strong funnel immensely discourages low-fitness individuals from mating and
passing on to the next generation. The single-point crossover itself traverses each pair of
solutions and crosses each variable in the first solution with the corresponding variable in
the second one.

Each offspring, in turn, is subject to mutation with some probability (mutation
probability). Once the individual is chosen, it is traversed, and again, each variable
undergoes a single-entry mutation (i.e., for each 32-bit string-variable, a single bit is
flipped).

The best individual in a population is then decoded to the binary format; if it satisfies the

Boolean function, the process is complete, otherwise we proceed with the next

generation. The fitness function evaluates the fuzzy value and the Boolean value of each

individual together. The fitness value actually given to the individual is its fuzzy value,

unless its Boolean value is 1, in which case | is assigned. Since all the other individuals

have fitness values in (0,1), a solution automatically becomes the best individual. In the

following generation, a few of the best individuals in a current population appear in the

next population (elitist strategy). Throughout the series of experiments, we use some

general parameters such as

- population size

- number of generations. There is the maximum number of generations the GA will
run for but it stops once a solution is found

- number of clones for each generation. These are the elitist individuals.

- Crossover parameter

- probability of mutation

Subsequently, some experimentation was carried out to explore the affect of these
parameters on the performance of the algorithm. Other than very general trends,
however, no specific impact was observed by changing one parameter. The general
trends were exploited to determine the best parameters' values; those were used in later
experiments.

3.2. Generation of Boolean functions

In most experiments, a Boolean function was realized as a single minterm (that is a
product of all variables, coming either in direct or complemented form). In general,
Boolean functions were realized in their minterm representation. Several strings were
generated randomly, each representing a minterm of the function. The strings were
composed of 1’s and 0’s where each O represented a complemented variable, and a 1
represented a non-complemented variable. Then the minterms were combined together
through an OR operation. The use of these Boolean functions was time consuming.
Since each individual’s fitness was dependent on all minterms in the function, a five
minterm function took roughly five times longer to evaluate than a single minterm
function, and the respective GA behaves correspondingly. At the same time, any single
minterm function forms the most challenging environment (as only one combination out
of total of 2" leads to the satisfaction of the function). Having this in mind, we decided to




experiment with single minterm Boolean functions. These Boolean functions would look
rather simplistic to a human observer yet they are the most challenging from the
optimization point of view. Obviously, assigning 1 to the noncomplemented variables
and 0 to the complemented ones would provide the desired solution. This, however, is not
evident to the program, since it went about solving it using a genetic algorithm rather
than by direct observation as a human would. Using this simple representation for the
function provided for a double advantage: the program’s run time evaluation was fast,
and verifying that the result the program provided was a matter of comparing two strings
of numbers.

4. Experimental studies

We completed a series of detailed experiments. The performance of GA is reported in
terms of the performance of the GA and detailed results (both for the fuzzy functions as
well as Boolean functions). Our interest is also to explore the use of different realizations
of the triangular norms. They behave in the same way for the binary case yet they may
have significant impact on the performance of the genetic optimization. It is also of
interest to investigate how well the GA approach scales up, that is, how well it performs
when the size of the problem (number of variables) increases.

4.1. Experimental settings and results

The starting point is a rather small, oneminterm Boolean function with n = 20 variables.
The parameters of the experiment are listed in Table 1.

Population size 200
Maximum number of generations 200
Number of clones 8

Crossover rate 0.4
Probability of mutation 0.1

Table 1. A list of parameters of the GA experiment: 20-variable Boolean function

Figure 2 and 3 summarize the performance of the GA in terms of the fitness function
(both the best individual as well as an average for the entire population). The plot is a
result of 20 experiments. In general, we found a high reproducibility of the overall
behavior of the optimization scheme. Two pairs of triangular norms are investigated: (a)
probabilistic sum (s-norm) defined as asb = a + b -ab and product (¢-norm), atb =ab, and
(b) maximum (s-norm), max(a,b) and minimum (¢-norm), min(a, b), a, b €[0,1].
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Figure 2. Fitness function in successive generations (triangular norms: probabilistic sum
and product)
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Figure 3. Fitmess function in successive generations (triangular norms: maximum and
minimum)

The comparison of the effectiveness of different r-norms and s-norms based exclusively
on Figure 2 and 3 does not reveal a complete picture. In the first set of the triangular
norms, the solution was achieved after 41 generations. In the second scenario, the SAT
was accomplished after 125 genecrations. Figure 4 provides a better insight into the
nature of the solution (GA produces a solution in the unit hypercube that has to be then
decoded into a Boolean format) and the way we arrive at the solution during the
optimization.
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Figure 4. Snapshots of the GA solution in the [0,1] truth space for some selected
generations: (a) 1* generation, (b) 25" generation (c) 48" generation (at which the SAT
problem was solved) and (d) the singie-minterm Boolean function used in the
experiment; the triangular norms selected as probabilistic sum and product. The
parameters are as described in table 1.

Figure 4 reveals an interesting pattern illustrating how a Boolean solution has been
reached. At the beginning (in the first generation), there are a number of fuzzy variables
assuming truth values around 0.5. In subsequent generations, the solution starts to
emerge gradually: while in the 20" generation, we still encounter a number of
"undecided” variables, they tend to vanish as clearly visible in Figure 4 (c) where the
solution has been reached in the 41* generation.
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Figure 5. Snapshots of the GA solution in the [0,1] truth space for some selected
generations: (a) 1™ generation, (b) 50™ generation (c) 116" generation (at which the SAT
problem was solved) and (d) the single-minterm Boolean function used in the
experiment; the triangular norms selected as minimum and maximum. The parameters
are as described in Table 1.

Figure 5, in conjunction with Figure 3, shows the progression of the GA toward finding
the solution for the minimum and maximum norms and reveals the reason for the poorer
performance by those norms. Due to the non-interactive nature of these nomms, the
fitness value is determined solely by the variable that is farthest from its optimal value.
This slows down the convergence of the other variables. In fact, where using the
probabilistic sum and product norms, the fitness value was not an indication of how close
the algorithm was to finding a solution, here the solution is found as soon as the fitness
exceeds 0.5, since that indicates that all variables have crossed their respective
thresholds.




4.2. Run-time analysis

The timing aspect of the SAT problem paints a very convincing picture. Here we contrast
between three options of the SAT problem solving, that is (a) brute-force enumeration,
(b) random search, and (c) the GA approach. The comparison is completed for the same
hardware environment used in the previous experimentation that is Pentium Tl 450,
128Mb RAM, 8.0 GB hard disk (standard, no high-end dedicated hardware). The
programming environment was C-++, compiled using GNU g++ under Linux.

The results of optimization are summarized as follows:

® Brute-force (exhaustive) enumeration As underlined before, the method is viable for
a very small number of Boolean variables and scales up very poorly due to the NP
nature of the problem. For 20 variables, it takes about 3 seconds to complete the
search. 25 variables require the search time in the range of 3 minutes and 30 variables
took about 75 minutes to sweep through the search space.

® Randomly generating individuals and hoping to hit the solution alleviates the need to
search through the entire search space. Each population size was given 20 chances to
randomly generate individuals, such that the number of individuals generated is equal
to the GA search space for the equivalent population size. For 20 variables, the
random search was able to find solution 10% of the time (here we mean that 10% of
experiments initiated randomly and run for this size of the problem was successful).
This percentage goes down to 5% for 25 variables. The random search was not
successful for higher numbers of variables.

® The genetic algorithm scales up quite nicely resulting in the search time of 1 sec for
30 variables, 75 secs for 100 variables, about 35 minutes for 150 variables and about
2 hours in the case of less than 200 variables. In all cases the solution was found. One
should stress, however, that the this successful scaling effect was observed until to
this number and then the method started to fail (which triggered our interest in a
recursive format of the algorithm). Figure 6 summarizes run-time as a function of the
number of variables used in the problem.
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Figure 7. Run-time versus the number of Boolean variables

In Figure 8 we visualize how the fitness function changes over optimization. In this
particular case we have selected a 100 variable function with 29 minterms, that took time
very close to the average. Contrasting this relationship with the previous findings, we
note that it is quite close in a way in which the fitness function changes throughout
generations.
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quite fast as the number of total variables in the function increased. It seemed that the
number of variables that need to be resolved warranted their own GA, and so we looked
to recursion.

The GA has now moved into a function instead of being the main body of the program,
to which the Boolean function and a list of the indices of the variables that need fixing
are passed. The GA then generates the appropriate population size and tries to satisfy the
function. If it does not succeed, the unresolved variables are passed into the next level
and the GA executes again. The end-point for the recursion is, of course, when the
function has been satisfied, or there are fewer than 10 variables to resolve, at which point
the problem is small enough for an enumerated search. A parameter "p" links the size of
the population with the size of the problem, namely population size = maximum number
of generations = p* no of variables.
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Figure 10. Graph of total run-time vs. number of variables in the function for the
recursive GA

The recursive version of the algorithm proved to be both effective and efficient. The use
of recursion allowed us to explore an even smaller search space than before and
consequentially, the GA took less time. A comparison between Figure 10 and Figure 6
yields some rather interesting observations, the most obvious of which is the fact that the
recursive GA function grows much slower than the regular one. It is also intriguing to
note that the regular GA’s run-time grows exponentially, while the recursive GA’s run-
time grows as a power of the number of variables. We have yet to find the upper limit of
the recursive GA, but we do know (via experiments) it can handle the SAT for 1200
variable Boolean functions.

Total Number | Number of Unconverged | Population | Number of Total Time
of Variables Variables (in first level) Size Generations
800 269 3200 3200 3:50:25




500 127 2000 2000 0:57:.07

300 70 1200 1200 0:15:58

100 7 400 400 0:00:37

Table 3. Performance of the recursive version of GA for different number of variables in
the SAT problem

The levels of recursion the algorithm has to go through grows as the number of variables
increase, as is to be expected. Table 3 illustrates the number of variables that have to be
fixed for various sizes of the SAT. Considering the 800 variable SAT, one would treat
the next level of the recursion as a 269 variables SAT, and solve the problem in this way.
As can be seen from the table, an 800 variable function would require 2-3 levels of
recursion to achieve the final solution. Figure 11. In general, the following observation
holds: by increasing the size of the population, we tend to reduce the number of variables
that need to be repaired at the second phase of the genetic optimization but increase the
run time for each phase.
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20




6. Conclusions

The proposed embedding principle makes the original SAT problem continuous while
fully retaining its logical nature. The original problem represented in the new search
space was then solved using a standard version of the genetic algorithm. The study
provides with yet another convincing example of a successful interaction between
technologies of evolutionary computing and fuzzy sets underlining the importance of the
main hybrid pursuit of computational intelligence [9]. GAs, especially the recursive
version proved very efficient for handling multivariable SAT problems. It exhibits better
run-time characteristics than its one-level counterpart. The thorough experiments
revealed that the recursive GA can solve SAT problems with more than 1,000 variables.
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