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Abstract The study is devoted to a granular analysis of data. We develop a new clustering
algorithm that organizes findings about data in the form of a collection of information granules —
hyperboxes. The clustering carried out here is an example of a granulation mechanism. We
discuss a compatibility measure guiding a construction (growth) of the clusters and explain a
rationale behind their development. The clustering promotes a data mining way of problem
solving by emphasizing the transparency of the results (hyperboxes). We discuss a number of
indexes describing hyperboxes and expressing relationships between such information granules.
it is also shown how the resulting family of the information granules is a concise descriptor of
the structure of the data - a granular signature of the data. We examine the properties of features
(variables) occurring of the problem as they manifest in the setting of the information granules.
Numerical experiments are carried out based on two-dimensional synthetic data as well as
multivariable Boston data available on the WWW,
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1. Introductory comments

Making sense of data has been a motto of data mining. Any in-depth analysis of data that leads to
comprehensive and interpretable results has to address an issue of transparency of final findings.
In one way or another, arises a need for casting the results in the language of information
granules - conceptual entities that capture the essence of the overall data set in a compact
manner. It is worth stressing that information granules are a vehicle of abstraction that supports a
conversion of clouds of numeric data into more tangible information granules

[2131[5112]{13]{16][17][18].

The area of clustering with its long history has been an important endeavor of finding structures
in data and representing the essence of such finding in terms of prototypes, dendrograms, self-
organizing maps [8]{9] and alike [1]{4]. Commonly, if not exclusively, the direct aspect of
granulation has not been tackled. The intent of this study is to address this important problem by
introducing an idea of granular clustering. Being more descriptive, a simplest scenario looks like
this: we start from collection of numeric data (points in R") and form information granules whose
distribution and size reflects the essence of the data. Forming the clusters (information granules)
may be treated as a process of growing information granules — as the clustering progresses, we
expand the clusters, enhance the descriptive facet of the granules while gradually reduce the
amount of details being available to us. The information granules we are interested in this study
are represented as hyperboxes positioned in a highly dimensional data space. The mathematical
formalism of the interval analysis provides a robust framework for the analysis of information
density of the granular structures that emerge in the process of clustering. The study reflects the
intuitive objective of matching the granularity of data items used to describe the physical systems
to the structure of these systems. In this sense the granulation process is attempting to achieve the
highest possible generalization while maintaining the specificity of data structures.

The paper is organized into 7 sections. In Section 2, we start off with an introduction to
information granules and spell out a rationale behind information granulation. As we are
concerned with information granulation carried out in terms of sets (hyperboxes), this formalism
is supported with all pertinent notation. The principle of granular clustering is covered in Section
3 that is followed by a complete algorithm (Section 4). Data analysis completed in the framework
of information granules is studied in Section 5. Finally, experimental studies are included in
Section 6.

2. Information granules and information granulation

Most experimental data available in a raw form are numeric. Granulation of information happens
through a process of data organization and data comprehension. Interestingly; humans granulate
information almost in a subconscious manner. This eventually makes the ensuing cognitive
processes so effective and far superior over processes occurring under the auspices of machine
intelligence. Two representative categories of problems in which information granulation
emerges in a profound way involve processing of one and two-dimensional signals. The first
case, we are concerned primarily with temporal signals. The latter case pertains to image
processing and image analysis. In signal processing, analysis and interpretation the granules
arise as a result of temporal sampling and aggregation. Several samples in the same time window




can be represented as an information granule. In the simplest case, such interval can be formed by
taking a minimal and maximal value of the signal occurring in this window of granulation, refer
to Figure 1. Some other ways of forming information granules may rely on statistical analysis:
one determines a mean or median as a representative of the numeric data points and then build a
confidence interval around it (obviously, the use of this mechanism requires assumptions about
the statistical properties of the population contained in the window as well as the numeric
representative under discussion). Similarly, in image processing one combines pixels exhibiting
some spatial neighborhood. Again, various features of an image can be granulated, say
brightness, texture, RGB, etc.

Figure 1. A fragment of a time series and its granulation trough sampling (T denotes a sampling
interval)

Information granulation has been studied in [2][3][10][12] both in terms of the concept itself,
computational aspects of it as well as resulting structures.

2.1. Set-based framework of information granules: the language of hyperboxes

In the overal! presentation we adhere to a standard notation. A hyperbox defined in R" is denoted
by B and is fully described by its lower (1) and upper corner (u). To use explicit notation, we use
B(l, u) where Lue R" and obviously a strict inclusion relationship holds true 1 < u. If I = u the
box reduces to a single point (numeric datum) B(l, 1) = {I}. Hyperboxes are elements of a family
of relations defined in R" More specifically we state that B € AR" ) with A() being a class of
sets. The volume of B, denoted by V(B), is viewed as a measure of specificity of the information
granule. The point, B(LI) comes with the highest specificity that becomes reduced once the
volume increases. Computationally, it is advantageous to consider the expression exp(-V) which
captures the same aspect of granularity yet this measure is normalized as it attains 1 for the
numeric datum and reduces to zero once the hyperbox starts growing.




3. The principle of granular clustering

Before we proceed with the details of the clustering technique for granular data, it is instructive to
discuss the underlying principle, learn how the process proceeds and concentrate on the
interpretation of some results generated by the proposed clustering mechanism.

As emphasized in the literature [1] [4], the essence of clustering (unsupervised learning) is to
discover a structure in data. In essence, almost all existing clustering techniques operate on
numeric objects (vectors in R") and produce representatives (say, prototypes) that are again
entirely numeric. In this sense, their form does not reflect how much data points they represent
and how the distribution of these data points looks like (obviously, the nature of data is captured
by a pertinent allocation of the prototypes). In the design of the clustering method, we add an
extra dimension of granularity that helps sense the structure in the data as it becomes unveiled
during the formation of the clusters.

3.1. The design

This approach introduced here is very much different in many ways from the others. The
leitmotiv is the following
- abstraction (no matter whether dealing with numeric or granular elements) is achieved
through condensation of original data elements into granules whose location and
granularity reflects the essence of the structure of data. The more condensation, the larger
the sizes of the information granules that realize this aggregation.

At the qualitative end, the granular clustering is carried out as the following iterative process
¢ find the two closest information granules (where the idea of compatibility guiding this

search of information will be quantified later on) and on this basis build a new granule
embracing them. In this way, one condenses the data while reducing the size of the data
set

° repeat the first step until enough data condensation has been accomplished (here one has
to come up with a certain termination criterion or introduce a sound validation
mechanism)

Figure 2 illustrates how the clustering works. We start from a collection of small information
granules (these are original data) and start growing larger information granules. Noticeably,
through their growth they tend reflecting the essential characteristics of the original data. The size
of the granules reflects quite evidently how much they incorporated the original data and convey
an extra message about their dispersion (distribution).
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Figure 2. Several snapshots of cluster growing over the clustering process; observe that small

information granules forming at the initial stage (first iteration) that are grouped in some well-

confined regions and give rise to three apparent large information granules at the later stage of
clustering

Considering a way in which the data points are merged together this approach resembles
techniques of aggregative hierarchical clustering. There is a striking difference though: in
hierarchical clustering we deal with numeric objects and the clusters are sets of the same objects.
No conceptually new entities are formed. Here, we “grow” the clusters: from iteration to iteration
they tend to form larger hyperboxes. Moreover the nature of these hyperboxes help monitor the
clustering process more thoroughly and raise awareness about terminating the clustering.
Essentially, once we have found that the evolved boxes become distant in the state space, the
process of clustering (forming combined boxes) is terminated.

By the same token, this concept should be contrasted with the idea of min-max clustering
discussed by Simpson [14] [15] as this technique seems to bear some resemblance with the
method studied here. The similarity is superficial though. First, the Simpson’s method deals with
point-size data while we consider data that is represented by either points or hyperboxes in
pattern space. Second, the fuzzy membership functions of the information granules (clusters) as
proposed by Simpson promote formation of clusters that are having largely varying sizes in
various dimensions which is exactly the opposite to what we are trying to promote through the




“compatibility measure” (discussed in Section 4). To emphasise the latter point we present in
Figure 3 a representative of a class of membership functions proposed by Simpson and refer the
reader to Figure 9 for comparison with the ‘functions that have been utilised in our clustering
algorithm.
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Figure 3. Simpson’s membership function (as presented in [15]) for the
hyperbox defined by the min point V=[0.2 0.2] and max point W=[0.4 0.4].
Sensitivity parameter y is equal to 4.

3.2, Interpretation and validation of granular clustering

Clustering comes with a significant number of cluster validity indexes whose role is to identify
the most “plausible” number of clusters. They help navigate the clustering process by stating
what number of clusters should be. Commonly, their behavior does not lead to clear conclusions.
What could be even worse, they may generate conflicting suggestions as to the termination
condition (that is the number of clusters).

In granular clustering we take another position. As the clusters capture the core of the data (and
obviously, this is regarded as an important benefit of the method), our conjecture is that such core
should help establish a sound platform of assessment of the structure (granular clusters).

When progressing with an expansion of the information granules, a certain criterion worth
investigating deals with measuring a volume of the smallest granule (Vmi,) that is constructed at
this particular step (more specifically, we determine e " ; the details will be covered in Section
4.1). The main point is that if such minimal volume grows quickly to cluster two granules, then it
can be deduced that the compatibility of the component granules is low and the clustering process
can be completed.

Again, it is worth emphasizing that the granularity of data adds an extra important dimension to
any processing. Not only a location of the information granule is essential but also its size plays a
crucial role in the process of clustering and afterwards during the validation of the clusters.




4. The computational aspects of granular computing

There are two essential functional e¢lements of granular clustering that need to be constructed
prior to moving to the detailed computing. These concern a way in which a distance between two
information granules is determined and how we compute an inclusion relation between them.
While the definitions generalize fo a multidimensional case, we focus here on a two-dimensional
case. Note also that these two concepts work for heterogeneous data that is granules and numeric
entities.

4.1. Defining compatibility between information granules

In this section, we discuss details in which a compatibility and inclusion between two
information granules are computed. The issue is more complicated than in a numeric case as
these notions are granular and therefore the definitions of compatibility and inclusion should
reflect this aspect as well.

Consider two information granules (hyperboxes) A and B. More explicitly, we follow a full
notation A(l,, u,) and B(ly, up) to point at their location in the space. The expression of
compatibility, compat(A, B) involves two components that is a distance between A and B,
d(A,B), and a size of a newly formed information granule that comes when merging A and B.
The distance d(A,B) between A and B is defined on a basis of the distance between its extreme
vertices, that is

d(A, B) = (-l Jus-ugy2
0]
that is an average of the two distances. Obviously ||| is a distance defined between the two
numeric vectors. To make the framework general enough, we treat ||.if as an L, distance , p>1. By
chaging the value of “p” we sweep across a spectrum of well known distances that depend upon a
particular value of “p”. For instance, p = 1 yields a Hamming distance, L. The value p =2
produces a well — known Euclidean distance, L. For p =ce we refer to a Tchebyschev distance,
L..
Once A and B have been combined giving rise to a new information granule C, its granularity can
be captured by a volume, V(C) computed in a standard way

V(O)= ll[lengthj ©)
i=l
@

where

length, (C) = max(u, (i), u, (i)) — min(l, (i),1, (i))
3

i=1, 2, ..., n. For details, refer to Figure 4.
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Figure 4. Information granule C as a result of combining A and B

The two expressions (1)-(2) are the contributing factors to the compatibility measure,
compat(A, B) to be defined now in the form

compat(A, B) = 1 - d(A,B)e™"@

(O]
The rationale behind the above form of the compatibility measure is as follows. In clustering we
aggregate (cluster) two information granules that are the closest viz. their compatibility measure
is the highest, compat(A, B) = 1. In light of the above criterion, the candidate granules to be
clustered should not only be “close” enough (which is reflected by the distance component) but
the resulting granule should be “compact” (meaning that the size of the granule in every
dimension is approximately equal). The second requirement favors such A and B that give rise to
a maximum volume for a given d(A, B), in other words it stipulates formation of hyperboxes that
are as similar to hypercubes as possible. The particular exponential form of this expression has to
do with the normalization criterion so that all values are kept in the unit interval. In particular, the
volume of a point produces ¢® = 1 While the volume increases, its exponential function goes
down to zero. The parameter a balances the two concerns in the compatibility measure and is
chosen so as to control an extent to which the volume impacts the compatibility measure.
The compactness factor (6 } introduced in the compatibility measure is critical to the overall
processing (viz. clustering) of the information granules. By contrast, it is not essential and does
not play any role when we proceed in a standard way and do not attempt to develop granules but
retain a cluster of numeric data.
To retain the values of the compatibility measure to the unit interval, we consider the data to lie
in the unit hypercube [0,1]" < R" (in other words we normalize the data before computing the
value of (4)).
To gain a better insight of what really is accomplished when using the above compatibility
measure, let us study two points (numeric values) A and B situated in R Furthermore let A be
fixed and located at the origin of the coordinates while we allow B with some flexibility. d(A, B)
is just a standard Euclidean distance. It becomes obvious that all elements (Bs) located on a circle
of a fixed radius exhibit the same distance value. Restrict now a choice of Bs from this pool. If
we connect A and any of such Bs, the resulting volume changes its value depending upon the
location of B. Interestingly, out of all Bs, there are four of them (located on this circle) for which
the volume of the resulting attains its maximum. This happens if such box( viz. the information




granule formed by clustering A and B) is a square, refer again to Figure 5. In other words, the
compatibility measure attains a maximal value there.
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Figure 5. The calculations of the compatibility measure; note that there are four possible
candidates (Bs) on the circle that maximize this measure

If we plot the compatibility measure as a function of T (where 7 is an angular position of B), we

can easily see that the values of the compatibility measure is modulated by the angle (or
equivalently the shape of the resulting information granule C), see Figure 6.
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Figure 6. The compatibility measure expressed as a function of T (the plot here plot is restricted
to the first 90° degrees); P=¢ ™

More importantly, the above graphical considerations shed light on the geometry of the
information granules that are preferred by the introduced compatibility measure. Such preference
reflects a principle that may be coined as a principle of balanced information granularity. In a
nutshell, in building new information granules, we prefer to have entities whose granularity is
balanced along all dimensions (variables) rather than constructing granules that are highly
unbalanced. A number of selected examples of varying granularity are portrayed in Figure 7.
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Figure 9. Comparison of compatibility measures obtained with various distance measures.

Note the preference that the compatibility measure gives to hyperboxes
that are well balanced in all dimensions. This contrasts with the membership
function proposed in [15] and illustrated in Figure 3.




As the clustering proceeds (refer to Figure 2) the process of merging the progressively less
closely associated patterns finds its reflection in the gradual reduction of the compatibility
measure (4). A typical plot of the evolution of the compatibility measure over the complete

clustering cycle is shown in Figure 10,
compatibility

Indicated optimal number of clusters
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Figure 10. An example of the evolution of the compatibiliy measure
over the full cycle of the clustering process.

It is self evident that the proximity of patterns that are being merged into granules at the early
stages of the clustering process, is reflected in the relatively small gradient of the compatibility
measure curve. By contrast, a large gradient of the curve, at the final stages of the clustering,
indicates merging of incompatible clusters. The compatibility measure curve provides therefore a
convenient reference for identifying which number of clusters captures the essential
characteristics of the input data while providing the best generalization of them. The intersection
of the two gradient lines (as indicated in Figure 10) can be used as an approximation to the
optimal number of clusters. This number provides a good starting point in the subsequent
optimization of the overlap of the identified clusters as discussed below.

4.2. Expressing inclusion of information granules

The inclusion relation expressing an extent to which A is included in B is defined as a ratio of
two volumes

inci(4,8y="A7B)
V(4)

(5)
1t is clear from the above that the inclusion measure is monotonic, non-commutative and satisfies
the following boundary conditions: Incl(A,X)=1 and Incl(A,® )=0 where X and 0 are the unit
hyperbox and the empty set in R", respectively. The calculations are straightforward; Figure 11
enumerates all cases for one-dimmensional granules along with the pertinent values of this
measure.
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Figure 11. Computing the inclusion for two information granules A and B

It is worth mentioning that the value of the inclusion measure drop down quite substantially (at a
rate of a” where a € (0, 1} with the increasing dimension of the space in which the information
granules are distributed. For example if there is an % overlap (a=2) in each variable in an n-
dimensional space, the inclusion level expresses as 2.

Clearly, the objective of effective information abstraction through clustering of information
granules translates into identifying for which number of clusters there is a minimum overlap
between the clusters. To encourage merging of clusters that have significant overlap we calculate
an average of the maximum inclusion rates of each cluster in every other cluster, (6).

J R .
—— Y max (incl(4,,4,))

overlap(c) = 1 :
i=l ;:;r--ﬂ

(6)
where c is the current number of clusters and A; and Aj are i-th and j-th cluster respectively.
It has to be pointed out however that, while the measure (5) is monotonic for any two pairs of
clusters i.e. if AcB and CcD, then incl(A,C) <incl(B,D), the change of the number and the size
of clusters during the clustering process results in the collective measure, (6), having various
local optima. We illustrate this effect in Figure 12.




(@) ®) ©

local minima of the overlap
between clusters

overlap

© ® ()

no of clusters

@

Figure 12. Progression from 5 to 2 clusters involves stage (b)
during which clusters overlap. This is reflected
in overlap(3) > 0 while overlap(5) = 0 and overiap(2) =0

Because of the local minima of the overlap(.) function it is important to have a good initial
estimate of the number of clusters as a starting point for the local minimization of the function.
Such an estimate is provided by our earlier analysis of the compatibility measure as discussed in
the previous section.

Having accomplished the clustering process the quality of data abstraction afforded by the given
set of data clusters is measured using an independent validation data set. The generality of each
of the identified clusters is well quantified by the sum of the inclusion rates of the validation data
items in the respective cluster.

M
INCL() =) incl(Vj,A;)  i=l.c
=l
Q)

where ¢ is the number of clusters and M is the cardinality of the validation data set.
As well as indicating whether a given cluster is representative for a large proportion of data the
INCL(.) measure can be used to assess how representative are the training and the validation data
sets. If the sets are representative, then INCL{(.) should correlate closely with the cardinality of
the individual clusters.




5. The Granular Analysis

The hyperboxes constructed during the design phase are helpful in a thorough analysis. They
shed light on the nature of data as they are perceived from the standpoint of information
granularity established during the design of the hyperboxes. Two main aspects are distinguished.
First, we characterize the hyperboxes themselves. Second, we analyze the properties of the
variables (features) forming the data space. We should emphasize that the granular analysis
follows the synthesis phase and does not impact it in any way. To maintain conciseness of the
presentation, we consider that each out of “c” hyperboxes located in the n-dimensional space is
fully described by vectors of its lower and upper comers (coordinates), that is B(k) = {1(k), u(k)},
k=1, 2, ..., ¢ where lk) and u(k) are vectors of the corresponding coordinates, that is lT(k) =
(L&) (k) ... 1,()] and u"(k) = [u; (k) u(k) ... u(k)]

5.1. Characterization of hyperboxes

The most evident characterization of the hyperboxes can be provided in their volumes, V(B(k)).
The computations are obvious. First, we determine a ratio (normalized length)

u, (k) =1, (k)

norm _ length, (B(k)) = range, (B(k))

where rangei(B(k)) is a range of the i-th feature (variable). Since the data is normalised to a unit
hypercube the rangei(B(k)) =1 for all i. Second, the volume is taken as a product

V(Bk)) = ﬁnorm _length; (B(k))

The volume quantifies the essence of granularity of the hyperboxes. Intuitively, it states how
“large” (detailed) the hyperboxes are and how much details each of them captures. One can take
an average of the volumes of the hyperboxes that gives a general summary of the hyperboxes

<

=23 V@)

k=]

If one sides of the hyperbox is zero then the volume measure returns a zero value. This occurs
because of the multiplicative nature of volume. To alleviate sch problem, we may also introduce
a measure of an additive character. A plausible descriptor of a hyperbox could reflect a
“circumference” of the hyperbox and read as follows

3" nom _ length, (B(k))




5.2. Granular feature analysis

The granulation of the data space (and each feature) provides an interesting insight into the nature
of the variables occurring in the problem. In what follows, we provide their description in terms
of sparsity and discrimination abilities. These two descriptors are exclusively implied by the
granular nature of the hyperboxes.

Sparsity

When looking at a certain variable of the hyperboxes, we can visualize how much of the entire
range of the variable is occupied by the hyperboxes (i.e., how sparse the boxes are in the given
space). Take the i-th feature and calculate the sum of length of the corresponding sides of the
hyperboxes that is

tot _ length, =" length, (B(k))
k=1
where lengthi(B(k)) = ui(k) —li(k). The sparsity defined in the form

tot _length; 1
range, ¢

sparsity; =

assumes values in the unit interval. If sparsity; is less than 1 then this represents a situation when
hyperboxes (more precisely its i-th coordinate) occupy a portion of the entire range of the
feature. We may state that the variable is “underutilized”. In other words, we witness a highly
localized usage of this feature. The sparsity around 1 means a complete utilization of the variable.
The effect of overutilization happens when sparsity achieves values higher than 1 (in this case we
have some hyperboxes overlapping along this variable).

The sparsity does not capture the entire picture. A situation illustrated in Figure 13 shows two
cases where the distribution of the hyperbox along the given feature is very different yet we end
up having the same value of the sparsity. This leads us to another index (descriptor) that
describes an overlap between the hyperboxes

0.0 0.1 0.8 1.0
00 01 02 1.0

Figure 13. Two different distributions of hyperboxes (i-th feature) producing the same value of
the sparsity index; in both cases the sparsity is equal to 0.3








































way in which information granules is guided by two aspects that is distance between information
granules and a size (granularity) of the potential information granule formed through merging
two other granules. These two aspects are encapsulated in the form of the compatibility measure.
Moreover we discussed a number of indexes describing the hyperboxes and expressing
relationships between such information granules. It has been shown how to validate the granular
structure. The resulting family of the information granules is a concise descriptor of the structure
of the data — we may call them a granular signature of the data.

Some further extensions of the hyperbox approach may deal with more detailed instruments of
information granulation such as fuzzy sets [7][11].

It should be stressed that the proposed approach to data analysis is noninvasive meaning that we
have not attempted to formulate specific assumptions about the distribution of the data but rather
allow the data to “speak” freely. This is accomplished in two main ways

o first, the hyperboxes are easily understood by a user as each dimension (variable) comes
as a part of the construct.

e second, the approach finds relationships that are direction-free meaning that we do not
distinguish between input and output variables (which could be quite restrictive as we
may not know in advance what implies what). Obviously, this feature is quite common
to all clustering methods

Furthermore the granulation mechanism puts the variables (features) existing in the problem in a
new perspective. The two indexes such as sparsity and overlap are useful in understanding the
relevance of the variables, in particular their discriminatory abilities.

While the study was concerned with the development of information granules (hyperboxes), there

are interesting inquires into their use in granular modeling. In particular, we are concemned with

the fundamental inference problem

- given an input datum (information granule and numeric datum , in particular) X defined

in a certain subspace of dimension n’ of the original space R® < R" and a collection of
information granules B = {B(1) B(2),..., B(c)} determine the corresponding information
granule Y

The current paper provides a basis for this investigation.
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