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Abstract The study is devoted to a granular analysis of data. We develop a new clustering 
algorithm that organizes findings about data in the form of a collection of information granules -
hyperboxes. The clustering carried out here is an example of a granulation mechanism. We 
discuss a compatibility measure guiding a construction (growth) of the clusters and explain a 
rationale behind their development. The clustering promotes a data mining way of problem 
solving by emphasizing the transparency of the results (hyperboxes). We discuss a number of 
indexes describing hyperboxes and expressing relationships between such information granules. 
li is also shown how the resulting family of the information granules is a concise descriptor of 
the structure of the data - a granular signature of the data. We examine the properties of features 
(variables) occurring of the problem as they manifest in the setting of the information granules. 
Numerical experiments are carried out based on two-dimensional synthetic data as well as 
multivariable Boston data available on the WWW. 

Keywords information abstraction, information granules and granulation, principle of balanced 
information granularity, interval analysis, confidence limits analysis, complex systems, data 
mining, granular time series, feature analysis, hyperboxes 



1. Introductory comments 

Making sense of data has been a motto of data mining. Any in-depth analysis of data thai leads to 
comprehensive and interpretable results has to address an issue of transparency of finał findings. 
In one way or another, arises a need for casting the results in the language of information 
granules - conceptual entities thai capture the essence of the overall data set in a compact 
manner. It is worth stressing thai information granules are a vehicle of abstraction that supports a 
conversion of clouds of numeric data inio more tangible information granules 
[2][3][5] 12][13][16][ 17][ 18]. 

The area of clustering with its long history has been an important endeavor of finding structures 
in data and representing the essence of such finding in terms of prototypes, dendrograms, self­
organizing maps [8][9] and alike [1][4]. Commonly, if not exclusively, the direct aspect of 
granulation has not been tackled. The intent of this study is to address this important problem by 
introducing an idea of granular clustering. Being more descriptive, a simplest scenario looks like 
this: we start from collection of numeric data (points in R") and form information granules whose 
distribution and size reflects the essence of the data. Forming the clusters (information granules) 
may be treated as a process of growing information granules - as the clustering progresses, we 
expand the clusters, enhance the descriptive facet of the granules while gradually reduce the 
amount of details being available to us. The information granules we are interested in this study 
are represented as hyperboxes positioned in a highly dimensional data space. The mathematical 
formalism of the interval analysis provides a robust framework for the analysis of information 
density of the granular structures thai emerge in the process of clustering. The study reflects the 
intuitive objective of matching the granularity of data items used to describe the physical systems 
to the structure of these systems. In this sense the granulation process is attempting to achieve the 
highest possible generalization while maintaining the specificity of data structures. 

The paper is organized into 7 sections. In Section 2, we start off with an introduction to 
information granules and spell out a rationale behind information granulation. As we are 
concemed with information granulation carried out in terms of sets (hyperboxes), this forrnalism 
is supported with all pertinent notation. The principle of granular clustering is covered in Section 
3 that is followed by a complete algorithm (Section 4). Data analysis completed in the framework 
of information granules is studied in Section 5. Finally, experimental studies are included in 
Section 6. 

2. Information granules and information granulation 

Most experimental data available in a raw form are numeric. Granulation of inforrnation happens 
through a process of data organization and data comprehension. Interestingly; humans granulate 
inforrnation almost in a subconscious manner. This eventually makes the ensuing cognitive 
processes so effective and far superior over processes occurring under the auspices of machine 
intelligence. Two representative categories of problems in which information granulation 
emerges in a profound way involve processing of one and two-dimensional signals. The first 
case, we are concemed primarily with tempora! signals. The latter case pertains to image 
processing and image analysis. In signal processing, analysis and interpretation the granules 
arise as a result of tempora) sampling and aggregation. Severa! samples in the same time window 



can be represented as an information granule. In the simplest case, such interval can be formed by 
taking a minimal and maxima! value of the signal occurring in this window of granulation, refer 
to Figure I. Some other ways of forming information granules may rely on statistical analysis: 
one deterrnines a mean or median as a representative of the numeric data points and then build a 
confidence interval around it ( obviously, the use of this mechanism requires assumptions abo ut 
the statistical properties of the population contained in the window as well as the numeric 
representative under discussion). Similarly, in image processing one combines pixels exhibiting 
some spatial neighborhood. Again, various features of an image can be granulated, say 
brightness, texture, RGB, etc. 
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Figure I. A fragment of a time series and its granulation trough sampling (T, denotes a sampling 
interval) 

Information granulation has been studied in [2][3][10][12] both in terms of the concept itself, 
computational aspects of it as well as resulting structures. 

2.1. Set-based framework of information granules: the language of hyperboxes 

In the overall presentation we adhere to a standard notation. A hyperbox defined in R" is denoted 
by Band is fully described by its lower (I) and upper corner (u). To use explicit notation, we use 
8(1, u) where l,uE R" and obviously a strict inclusion relationship holds true I ~ u. If I = u the 
box reduces to a single point (numeric datum) 8(1, I)= {I}. Hyperboxes are elements of a family 
of relations defined in R" More specifically we state thai B E f\R" ) with f\.) being a class of 
sets. The volume of B, denoted by V(B), is viewed as a measure of specificity of the information 
granule. The point, 8(1,l) comes with the highest specificity thai becomes reduced once the 
volume increases. Computationally, it is advantageous to consider the expression exp(-V) which 
captures the same aspect of granularity yet this measure is normalized as it attains I for the 
numeric datum and reduces to zero once the hyperbox starts growing. 



3. The principle of granular clustering 

Before we proceed with the details of the clustering technique for granular data, it is instructive to 
discuss the underlying principle, leam how the process proceeds and concentrate on the 
interpretation of some results generated by the proposed clustering mechanism. 
As emphasized in the literature [I] [4], the essence of clustering (unsupervised learning) is to 
discover a structure in data. In essence, almost all existing clustering techniques operate on 
numeric objects (vectors in R") and produce representatives (say, prototypes) that are again 
entirely numeric. In this sense, their form does not reflect how much data points they represent 
and how the distribution ofthese data points looks like (obviously, the nature of data is captured 
by a pertinent allocation of the prototypes ). In the design of the clustering method, we add an 
extra dimension of granularity !hat helps sense the structure in the data as it becomes unveiled 
during the formation of the clusters. 

3.1. The design 

This approach introduced here is very much different in many ways from the others. The 
leitmotiv is the following 

abstraction (no matter whether dealing with numeric or granular elements) is achieved 
through condensation of original data elements inio granules whose location and 
granularity reflects the essence of the structure of data. The more condensation, the larger 
the sizes of the information granules thai realize this aggregation. 

At the qualitative end, the granular clustering is carried out as the following iterative process 
• find the two closest information granules (where the idea of compatibility guiding this 

search of information will be quantified later on) and on !his basis build a new granule 
embracing them. In !his way, one condenses the data while reducing the size of the data 
set 

• repeat the first step until enough data condensation has been accomplished (here one has 
to come up with a certain termination criterion or introduce a sound validation 
mechanism) 

Figure 2 illustrates how the clustering works. We start from a collection of small information 
granules (these are original data) and start growing larger information granules. Noticeably, 
through their growth they lend reflecting the essential characteristics of the original data. The size 
of the granules reflects quite evidently how much they incorporated the original data and convey 
an extra message about their dispersion (distribution). 

4 
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Figure 2. Several snapshots of cluster growing over the clustering process; observe that small 
information granules forming at the initial stage (first iteration) that are grouped in some well­
confined regions and give rise to three apparent large information granules at the later stage of 

clustering 

Considering a way in which the data points are merged together this approach resembles 
techniques of aggregative hierarchical clustering. There is a striking difference though: in 
hierarchical clustering we deal with nurneric objects and the clusters are sets of the same objects. 
No conceptually new entities are formed. Here, we "grow" the clusters: from iteration to iteration 
they lend to form larger hyperboxes. Moreover the nature of these hyperboxes help monitor the 
clustering process more thoroughly and raise awareness about terminating the clustering. 
Essentially, once we have found that the evolved boxes become distant in the state space, the 
process of clustering (forming combined boxes) is terminated. 

By the same token, this concept should be contrasted with the idea of min-max clustering 
discussed by Simpson [14] [15] as this technique seems to bear some resemblance with the 
method studied here. The similarity is superficial though. First, the Simpson's method deals with 
point-size data while we consider data that is represented by either points or hyperboxes in 
paltem space. Second, the fuzzy membership functions of the information granul es ( clusters) as 
proposed by Simpson promote formation of clusters that are having largely varying sizes in 
various dimensions which is exactly the opposite to what we are trying to promote through the 



"compatibility measure" (discussed in Section 4). To emphasise the Iatter point we present in 
Figure 3 a representative of a class of membership functions proposed by Simpson and refer the 
reader to Figure 9 for comparison with the •functions that have been utilised in our clustering 
algorithm. 
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Figure 3. Simpson's membership function (as presented in [15]) for the 
hyperbox defined by the min point V=[0.2 0.2] and max point W=[0.4 0.4]. 

Sensitivity parameter y is equal to 4. 

3.2. Interpretation and validation of granular clustering 

Clustering comes with a significant number of cluster validity indexes whose role is to identify 
the most "plausible" number of clusters. They help navigate the clustering process by stating 
what number of clusters should be. Commonly, their behavior does not lead to elear conclusions. 
What could be even worse, they may generale conflicting suggestions as to the termination 
condition (that is the number of clusters). 
In granular clustering we take another position. As the clusters capture the core of the data ( and 
obviously, this is regarded as an important benefit of the method), our conjecture is that such core 
should help establish a sound platform of assessment of the structure (gran u lar clusters ). 

When progressing with an expansion of the information granules, a certain criterion worth 
investigating deals with measuring a volume of the smallest granule (V min) that is constructed at 
this particular step (more specifically, we determine e -v..., ; the details will be covered in Section 
4.1 ). The main point is thai if such minimal volume grows quickly to cluster two granules, then it 
can be deduced thai the compatibility of the component granules is low and the clustering process 
can be completed. 

Again, it is worth emphasizing thai the granularity of data adds an extra important dimension to 
any processing. Not only a Iocation of the information granule is essential but also its size plays a 
crucial role in the process of clustering and afterwards during the validation of the clusters. 
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4. The computational aspects of granular computing 

There are two essential functional elements of granular clustering that need to be constructed 
prior to moving to the detailed computing. These concem a way in which a distance between two 
information granules is determined and how we compute an inclusion relation between them. 
White the definitions generalize to a multidimensional case, we focus here on a two-dimensional 
case. Note also that these two concepts work for heterogeneous data thai is granules and numeric 
entities. 

4.1. Defining compatibility between information granules 

In this section, we discuss details in which a compatibility and inclusion between two 
information granules are computed. The issue is more complicated than in a numeric case as 
these notions are granular and therefore the definitions of compatibility and inclusion should 
reflect this aspect as well. 

Consider two information granules (hyperboxes) A and B. More explicitly, we follow a full 
notation A(la, u.) and B(lb, ub) to point at their location in the space. The expression of 
compatibility, compat(A, B) involves two components thai is a distance between A and B, 
d(A,B), and a size of a newly formed information granule thai comes when merging A and B. 
The distance d(A,B) between A and B is defined on a basis of the distance between its extreme 
vertices, that is 

(I) 
that is an average of the two distances. Obviously 11-11 is a distance defined between the two 
numeńc vectors. To make the framework generał enough, we treat 11-11 as an Lp distance , p> I. By 
chaging the value of"p" we sweep across a spectrum ofwell known distances thai depend upon a 
particular value of "p". For instance, p = I yields a Hamming distance, L1. The value p = 2 
produces a well - known Euclidean distance, Li. For p = 00 we refer to a Tchebyschev distance, 
L_. 
Once A and B have been combined giving rise to a new information granule C, its granularity can 
be captured by a volume, V (C) computed in a standard way 

V(C)= [(length;(C) 
icl 

(2) 
where 

length; (C) = max(u. (i), u. (i))-min(l. (i),l. (i)) 
(3) 

i=l, 2, ... ,n.For details, refer to Figure 4. 

7 



I A 7 B 

..................... , 

length,(C) 

Figure 4. lnformation granule C as a result of combining A and B 

The two expressions (I )-(2) are the contributing factors to the compatibility measure, 
compat(A, B) to be defined now in the form 

compat(A, B) = I - d(A,B)e-avcq 
(4) 

The rationale behind the above form of the compatibility measure is as follows. In clustering we 
aggregate (cluster) two information granules that are the closest viz. their compatibility measure 
is the highest, compat(A, B) = I. In light of the above criterion, the candidate granules to be 
clustered should not only be "close" enough (which is reflected by the distance component) but 
the resulting granule should be "compact" (meaning thai the size of the granule in every 
dimension is approximately equal). The second requirement favors such A and B thai give rise to 
a maximum volume for a given d(A, B), in other words it stipulates formation of hyperboxes that 
are as similar to hypercubes as possible. The particular exponential form of this expression has to 
do with the normalization criterion so that all values are kepi in the unit interval. In particular, the 
volume of a point produces e-0 = I While the volume increases, its exponential function goes 
down to zero. The parameter ex balances the two concems in the compatibility measure and is 
chosen so as to control an extent to which the volume impacts the compatibility measure. 
The compactness factor ( e-aV(C) ) introduced in the compatibility measure is critical to the overall 
processing (viz. clustering) of the information granules. By contras!, it is not essential and does 
not play any role when we proceed in a standard way and do not attempt to develop granules but 
retain a cluster of numeric data. 
To retain the values of the compatibility measure to the unit interval, we consider the data to !ie 
in the unit hypercube [O,!]" c R" (in other words we normalize the data before computing the 
value of(4)). 
To gain a better insight of what really is accomplished when using the above compatibility 
measure, lei us study two points (numeric values) A and B situated in R2• Furthermore !et A be 
fixed and located at the origin of the coordinates while we allow B with some flexibility. d(A, B) 
is just a standard Euclidean distance. It becomes obvious thai all elements (Bs) located on a circle 
of a fixed radius exhibit the same distance value. Restrict now a choice of Bs from this pool. lf 
we connect A and any of such Bs, the resulting volume changes its value depending upon the 
location of B. lnterestingly, out of all Bs, there are four of them (located on this circle) for which 
the volume of the resulting attains its maximum. This happens if such box( viz. the information 



granule formed by clustering A and B) is a square, refer again to Figure 5. In other words, the 
compatibility measure attains a maxima) value there. 

B 

\ / A 

··•-.f. l •• 
······1 •··•·• 

• optima) Bs 

Figure 5. The calculations of the compatibility measure; note that there are four possible 
candidates (Bs) on the circle that maximize this measure 

If we plot the compatibility measure as a function of t (where t is an angular position of B), we 
can easily see that the values of the compatibility measure is modulated by the angle ( or 
equivalently the shape of the resulting information granule C), see Figure 6. 
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Figure 6. The compatibility measure expressed as a function of t (the plot here plot is restricted 
to the first 90° degrees ); ~=e -ar.r/2 

More importantly, the above graphical considerations shed light on the geometry of the 
information granules that are preferred by the introduced compatibility measure. Such preference 
reflects a principle that rnay be coined as a principle of balanced information granularity. In a 
nutshell, in building new information granules, we prefer to have entities whose granularity is 
balanced along all dimensions (variables) rather than constructing granules thai are highly 
unbalanced. A number of selected examples of varying granularity are portrayed in Figure 7. 
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• C1 

Figure 7. Examples ofinformation granules characterized by various degrees ofbalance of 
information granularity; note that C1 and C2 are highly unbalanced as exhibiting different levels 
of information specificity along one of the variables (C1 and C2 with high specificity along x I 

and x2, respectively) while C1 is well-balanced. 

When changing the distance function to the Hamming (p = I) and Tchebyschev distance (p= 00 ), 

and carrying out the calculations of the compatibility measure, see Figure 5, now we have a 
number of Bs to choose from yet this selection can be made from different geometrical figures 
(thai is a diamond and a square), Figure 8. 

(a) (b) (c) 

Figure 8. Identification ofBs leading to the highest value of the compatibility measure 

Moving on to the case where both A and B are two information granules, the resulting plots 
visualizing the compatibility measure are collected in Figure 9. 
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(a) Two hyperboxes representing information granules in a unit box in R2 
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(b) Compatibility measure with L2 distance measure 
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(c) Compatibility measure with L1 distance measure 
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(d) Compatibility measure with Loo distance measure 

Figure 9. Comparison of compatibility measures obtained with various distance measures. 
Note the preference that the compatibility measure gives to hyperboxes 

that are well balanced in all dimensions. This contrasts with the membership 
function proposed in [15] and illustrated in Figure 3. 
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As the clustering proceeds (refer to Figure 2) the process of merging the progressively less 
closely associated pattems finds its reflection in the graduał reduction of the compatibility 
measure (4). A typical plot of the evolution of the compatibility measure over the complete 
clustering cycle is shown in Figure IO. 

compatibility 

;• -, ....... . 
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I 
I 
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I 

lndicated optima! number of cłu.sten 1 

\_: I 

Dccreasc of the number of ch.uten 

Figure IO. An example of the evolution of the compatibiliy measure 
over the full cycle of the clustering process. 

lt is self evident that the proximity of pattems that are being merged into granules at the early 
stages of the clustering process, is reflected in the relatively small gradient of the compatibility 
measure curve. By contras!, a large gradient of the curve, at the finał stages of the clustering, 
indicates merging of incompatible clusters. The compatibility measure curve provides therefore a 
convenient reference for identifying which number of clusters captures the essential 
characteristics of the input data while providing the best generalization of them. The intersection 
of the two gradient lines (as indicated in Figure IO) can be used as an approximation to the 
optimal number of clusters. This number provides a good starting point in the subsequent 
optimization of the overlap of the identified clusters as discussed below. 

4.2. Expressing inclusion of information granules 

The inclusion relation expressing an extent to which A is included in B is defined as a ratio of 
two volumes 

incl(A B) = V(A n B) 
' V(A) 

(5) 

It is elear from the above that the inclusion measure is monotonie, non-commutative and satisfies 
the following boundary conditions: Incl(A,X)=I and Incl(A, 0 )=O where X and 0 are the unit 
hyperbox and the empty set in R", respectively. The calculations are straightforward; Figure 11 
enumerates all cases for one-dimensional granules along with the pertinent values of this 
measure. 
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Figure 11. Computing the inclusion for two information granules A and B 

It is worth mentioning that the value of the inclusion measure drop down qui te substantially ( at a 
rate of a·• where a e (O, I } with the increasing dimension of the space in which the information 
granules are distributed. For example if there is an ½ overlap (a=2) in each variable in an n­
dimensional space, the inclusion level expresses as 2·•. 

Clearly, the objective of effective information abstraction through clustering of information 
granules translates into identifying for which number of clusters there is a minimum overlap 
between the clusters. To encourage merging of clusters that have significant overlap we calculate 
an average of the maximum inclusion rates of each cluster in every other cluster, ( 6). 

I C 

over/ap(c)=-I;max (incl(A„A1 )) 
C - I l•l 1-1,.~ 

J,1 

(6) 
where c is the current number of clusters and A; and Aj are i-th and j-th cluster respectively. 
It has to be pointed out however that, while the measure (5) is monotonie for any two pairs of 
clusters i.e. if AcB and CcD, then incl(A,C)~incl(B,D), the change of the number and the size 
of clusters during the clustering process results in the collective measure, (6), having various 
!ocal optima. We illustrate this effect in Figure 12. 
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Figure 12. Progression from 5 to 2 clusters involves stage (b) 
during which clusters overlap. This is reflected 

in overlap(3) > O while overlap(5) = O and overlap(2) = O 

Because of the !ocal minima of the over/ap(.) function it is important to have a good initial 
estimate of the number of clusters as a starting point for the loca) minimization of the function. 
Such an estimate is provided by our earlier analysis of the compatibility measure as discussed in 
the previous section. 

Having accomplished the clustering process the quality of data abstraction afforded by the given 
set of data clusters is measured using an independent validation data set. The generality of each 
of the identified clusters is well quantified by the sum of the inclusion rates of the validation data 
items in the respective cluster. 

M 

INCL(i) = L incl(VpA,) 
j•I 

i=l, .. c 

(7) 
where cis the number of clusters and Mis the cardinality of the validation data set. 
As well as indicating whether a given cluster is representative for a large proportion of data the 
INCL(.) measure can be used to assess how representative are the training and the validation data 
sets. If the sets are representative, then INCL(.) should correlate closely with the cardinality of 
the individual clusters. 
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5. The Granular Analysis 

The hyperboxes constructed during the design phase are helpful in a thorough analysis. They 
shed light on the nature of data as they are perceived from the standpoint of information 
granularity established during the design of the hyperboxes. Two main aspects are distinguished. 
First, we characterize the hyperboxes themselves. Second, we analyze the properties of the 
variables (features) forming the data space. We should emphasize that the granular analysis 
follows the synthesis phase and does not impact it in any way. To maintain conciseness of the 
presentation, we consider that each out of "c" hyperboxes located in the n-dimensional space is 
fully described by vectors ofits !ower and upper comers (coordinates), that is B(k) = {l(k), u(k)}, 
k=l, 2, ... , c where I(k) and u(k) are vectors of the corresponding coordinates, that is I\k) = 
[li(k) h(k) .. . ln(k)] and u\k) = [u1(k) u2(k) ... un(k)] 

5.1. Characterization of hyperboxes 

The most evident characterization of the hyperboxes can be provided in their volumes, V(B(k)). 
The computations are obvious. First, we determine a ratio (normalized length) 

u(k)-l(k) 
norm Jength (B(k)) = ' ' 

- ' range i (B(k)) 

where range;(B(k)) is a range of the i-th feature (variable). Since the data is normalised to a unit 
hypercube the range1(B(k)) = I for all i. Second, the volume is taken as a product 

V(B(k)) = Il norm_lengthi (B(k)) 
i=I 

The volume quantifies the essence of granularity of the hyperboxes. Intuitively, it states how 
"large" (detailed) the hyperboxes are and how much details each of them captures. One can take 
an average of the volumes of the hyperboxes that gives a generał summary of the hyperboxes 

V=.!. :t V(B(k)) 
C k• I 

If one sides of the hyperbox is zero then the volume measure retums a zero value. This occurs 
because of the multiplicative nature of volume. To alleviate sch problem, we may also introduce 
a measure of an additive character. A plausible descriptor of a hyperbox could reflect a 
"circumference" of the hyperbox and read as follows 

I norm_ lengthJB(k )) 
i-=I 
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5.2. Granular feature analysis 

The granulat i on of the data space ( and each feature) provides an interesting insight into the nature 
of the variables occurring in the problem. In what follows, we provide their description in terms 
of sparsity and discrimination abilities. These two descriptors are exclusively implied by the 
granular nature of the hyperboxes. 

When looking at a certain variable of the hyperboxes, we can visualize how much of the entire 
range of the variable is occupied by the hyperboxes (i.e., how sparse the boxes are in the given 
space). Take the i-th feature and calculate the sum of length of the corresponding sides of the 
hyperboxes that is 

tot_ length; = :tiength; (B(k)) .. , 
where length;(B(k)) = u;(k) - l;(k). The sparsity defined in the form 

tot_ length; 1 sparsity; = ___ c._.,_ 

range; c 

assumes values in the unit interval. If sparsity; is less than I then this represents a situation when 
hyperboxes (more precisely its i-th coordinate) occupy a portion of the entire range of the 
feature. We may state that the variable is "underutilized". In other words, we witness a highly 
localized usage of this feature . The sparsity around 1 means a complete utilization of the variable. 
The effect of overutilization happens when sparsity achieves values higher than I (in this case we 
have some hyperboxes overlapping along this variable). 
The sparsity does not capture the entire picture. A situation illustrated in Figure 13 shows two 
cases where the distribution of the hyperbox along the given feature is very different yet we end 
up having the same value of the sparsity. This leads us to another index ( descriptor) that 
describes an overlap between the hyperboxes 

O.O O.I 0.8 I.O 

o.o O.I 0.2 I.O 

Figure 13. Two different distributions ofhyperboxes (i-th feature) producing the same value of 
the sparsity index; in both cases the sparsity is equal to 0.3 
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Overlap index 

We define the following index called coordinate overlap 

l 2 ~ f, /ength1 (I(k) r, /(/)) 
c-overap1 =---~ ~ 

c(c-1) k•• 1,k length,(I(k)vl(I)) 

i =1,2, .. . , n. In this definition, I(k) and I(I) are intervals (sides) of the hyperboxes for the i-th 
variable.The higher the value of !his index, the more overlap between the hyperboxes expressed 
along the given variable. When I(k) and I(I) are pairwise disjoint !hen the overlap is equal to zero. 
This means !hat the feature is highly discriminative as il separated the hyperboxes. The higher the 
overlap measure, the !ower the discriminatory aspects of the feature. 

Each of the measures leads to a linear ordering of the variables. We can easily state which of the 
variables is highly "utilized" and which of them comes with the most significant discriminatory 
properties. To form a comprehensive picture, one can localize each feature in the sparsity -
overlap space, Figure 14. By doing this, one can distinguish between the variables thai are 
essential to the problem. More specifically, we prefer features thai exhibit low overlap (as those 
come with strong discriminative properties) a long with low values of sparsity thai points at the 
issue of the localized usage of the variable. 

c-overlap 

I.O • • • 

(!_:) • • 
I.O sparsity 

Figure 14. Sparsity-overlap space and feature arrangement; note a collection ofhighly 
discriminative features of low sparsity 

It should be stressed thai the above descriptors (sparsity and overlap) of the features emerge as 
important quantifiers because of the existence of information granules forming the hyperboxes. 

6. Experimental studies 

The series of experiments is aimed at visualizing the most essential features of granular 
clustering. We consider both synthetic data set and the one available on the WWW (Boston 
housing data). 
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6.1. Synthetic data 

The synthetic data sets consist of 3 groups of information granules (hyperboxes), AiE [0,l]x 
[0,1], generated by a random number generator with a uniform distribution. Each group 
comprises 20 granules dispersed around pre-defined points: c1=[0.4, 0.4]; c2=[0.5, 0.6]; and 
c3=(0.8, 0.3]. The dispersion factor cr is varied between 0.08 and 0.15 to establish the sensitivity 
of the clustering process to the dispersion of the data. The clustering process is governed by the 
compatibility measure, (4), with the distance defined according to 1 2 norm and the 
"compactness" factor cx=0.5. 

An example of the evolution of the compatibility measure throughout the clustering process is 
shown in Figure 15. The intersection of the two asymptotes to the compatibility measure traced at 
the beginning and at the end of the clustering process indicates thai 3 clusters (iteration 57) mark 
a natural 'change over' point in the behavior of the system. So, the clustering process should 
terminale with 3 clusters providing that the degree of overlap of clusters is also minimized for 
this number of clusters. 

compatibi)ity 

0.00L ---,',--""20---cJ'c-0 ---,'c---c,C-~~. 

iteration 

Figure 15. Compatibility measure for a single clustering process. 

The degree of overlap of clusters was evaluated at each of the 59 iterative steps of the clustering 
process, according to ( 6), and is illustrated in Figure I 6. 
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overlap 

number of clusten 

Figure 16. An average degree of overlap of clusters. 

As expected, the results of the cluster overlap analysis clearly confirrn that the test data naturally 
falls into 3 clusters. 

The quality of data abstraction achieved through clustering is assessed by evaluating the 
inclusion rate, (7), of the independently generated data set (with the same statistical properties) in 
the constructed clusters. An example of the output of the validation process for 1 O, 3 and I 
cluster is illustrated in Figure 17. 

-~ 

Figure 17. Inclusion of the validation data in IO, 3 and I cluster respectively. 
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The change of the overall inclusion rate of the validation data throughout the clustering process is 
illustrated in Figure I 8. It is not surprising to see thai the high value of the average inclusion rate 
for 3 or fewer clusters confirms that 3 clusters capture the essential features of the data white the 
high value of the compatibility measure confirms that the clusters retain high specificity. Should 
the number of clusters be reduced to 2 or I, the inclusion rate of the validation data set would 
only be improved marginally white there would be a very significant reduclion of specificily of 
the cluster( s ). 

inclusion 

I .I' " ••••••• .. ••••••••••••••••••••-•••••••••••••••••••••,.•••••••••.,•••••••••• 

number of clusters 

Figure 18. Average inclusion rate for the validation data set 

In order to achieve a degree of independence from the statistical characteristics of the random 
number generator the evaluation of the inclusion of the validation data sets in the clusters was 
repeated 100 times for each value ofcre {0.08, 0.09, O.IO, O.li, 0.12, 0.13, 0.14, O.IS} and the 
number of clusters varying from I to I O. A total of 8000 training sets and 8000 validation sets 
were processed. 
Figure I 9 illustrates how the inclusion measure, (5), depends on the dispersion parameter cr and 
the number of clusters. It is interesting to note that cr has little influence on the value of the 
inclusion measure. This is a very desirable characteristic of the clustering process since it 
suggests thai the precise statistical properties of data sets do not need to be known for the 
clustering to be effective. 
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0.5 
o 

no. of clusters 

Figure 19. A verage inclusion measure evaluated for 8000 training and validation sets. 
inclusion 

nwnber of clusters 

Figure 20. 2-0 projection of the surface from Figure 15 resulting in 
a family of curves illustrating average inclusion rales of the validation 

data in clusters for the various values of CJ. 

li is easy Io note, from Figures 19 and 20, that the inclusion rate of 0.9 or higher is attained 
consistently with 3 or fewer clusters. 

6.2. Boston housing data 

Although for 2-dimensional data sets B e fl::R2 ) the number of clusters can be easily established 
by visual inspection, the higher dimensional data presents a significant challenge. We have 
applied therefore the algorithm to a realistic 14-dimensional data set representing factors 
affecting house prices in Boston area (USA). The data set has been originally compiled by 
Harrison and Rubinfeld [6], and is available from the Machine Learning Database al University 
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of Califomia at Irvine (http://www.ics.uci.edu/-mleam/MLSummary.html) The data set 
comprises of 506 records . 

The 14 attributes of each data record are as follows: 
l . CRIM 
2. ZN 
3. INDUS 
4.CHAS 

5. NOX 
6. RM 
7.AGE 
8. DIS 
9.RAD 
IO. TAX 
li. PTRATIO 
12. B 

13. LSTAT 
14.MEDV 

Study A 

per capita crime rate by town 
proportion ofresidential land zoned for !ols over 25,000 są . ft. 
proportion of non-retail business acres per town 
Charles River dummy variable (= I if traci bounds 
river; O otherwise) 
nitric oxides concentration (parts per IO million) 
average number of rooms per dwelling 
proportion of owner-occupied units built prior to 1940 
weighted distances to five Boston employment centres 
index of accessibility to radia) highways 
full-value property-tax rate per $ I 0,000 
pupil-teacher ratio by town 
I 000(Bk - 0.63)"2 where Bk is the proportion of blacks 
bytown 
% !ower status of the population 
Median value of owner-occupied homes in $1 000's 

We divided the original set into two sets. The training set, comprising 253 odd-numbered records 
and the validation set comprising 253 even-numbered records. It should be noted thai, as a pre­
processing step, all data has been mapped inio a 14-dimensional unit hyperbox. The compatibility 
measure provided direction for the clustering process and the evolution of this measure 
throughout the whole process is presented in Figure 21. The gradients of the compatibility 
measure at the beginning and the end of the process indicate thai 7 clusters represent a good 
abstraction of the training data. 

I i 
I ' 

0.3'---~-~--~-~--..,__ _ _, 
O !IO 100 1!10 200 250 

i1era1ion 
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Figure 21. Compatibility measure of clusters formed from the odd-numbered 
records in the Boston housing data set. 

Iteration step 245 corresponds to 7 clusters. 

In the vicinity of 7 clusters the cluster overlap indicator is minimized for 7 and 8 clusters, as 
shown in Figure 22. Of these two possible numbers of clusters we select the smaller number so as 
to achieve greater granulation of the original data. 

O.l5 

number of clusters 

Figure 22. Degree of average overlap of clusters in the last 50 out of 252 iterations 

The generality of the identified clusters was tested by evaluating average inclusion of the 
validation data set ( even-numbered records from the original data set) in the sets of clusters 
identified in the last 50 steps of the clustering process. This is illustrated in Figure 23. The value 
of over 90%, achieved for 7 clusters, indicates a good abstraction of the detailed data that is 
achieved with this number of clusters. 

~ 
O.li ••••••••• : ................................ ............................... ,.,,,.,,, 

0.1 

o., 

,., 

o.4c~~'--,~,-,~,-,~.-,~,-~,.-~,.-~.,-~.,~ ... 

Figure 23 . Average inclusion measure evaluated for I to 50 clusters. 

To gain a more detailed insight inio the makeup of the 7 clusters we evaluated an aggeregate 
inclusion measure (7), using the validation set, and compared the results with the cardinality of 
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each cluster. lt is elear, from Figure 24, that out of 7 clusters 3 have a significant support in the 
two data sets white the other 4 clusters represent data that could be described as significant 
exceptions. lt is interesting to note however that the zero inclusion rates of the validation data in 
clusters 3, 4 and 7 indicate that the small data sample makes il difficult to do a proper evaluation 
of the clusters. 

100,---cc,--r--,--~-~-~-~--. 

, .. 
120 

100 

00 

.. 

.. 

Cluster number 

Figure 24. Cardinality (first bar) and the aggregate inclusion 
rate (second bar) for each of the 7 clusters 

The full description of the identified clusters is given in Table I. 

TABLE I. Description of the 7 clusters. (~ represents minimum coordinates of the i-th 
hyperbox and Ui represents maximum coordinates) 

Variables 1 through 7 

Ll O. 0063 o 0.7399 o O. 3 850 4 . 9730 6 . 0004 
Ul 2.6354 95 . 0000 19 . 5800 1.0000 O. 6470 8.3980 100 . 0000 
L2 O. 0686 o 8 .1399 o O. 5200 4 . 9030 69. 6999 
U2 2. 7795 o 27. 7400 o 0 . 8710 6 . 4580 100.0000 
L3 1.1265 o 19 . 5800 1. 0000 0 . 8710 5. 0120 88. 0004 
U3 3 . 3213 o 19.5800 1 . 0000 0.8710 6 . 1290 100.0000 
L4 2.0099 o 19.5800 o O. 6050 7 . 9290 96 . 2005 
U4 2 . 0099 o 19 . 5800 o O. 6050 7 . 9290 96 . 2005 
LS 3. 4744 o 18 . 1001 1. 0000 0.6310 5 . 8750 82. 8997 
us 8 . 9834 o 18 . 1001 1. 0000 O. 7700 8.7800 97. 4997 
L6 2 . 3783 o 18.1001 o O. 5320 4 . 1380 41.9002 
U6 73 . 5337 o 18 . 1001 o O. 7700 7 . 0610 100 . 0000 
L7 88 . 9762 o 18.1001 o O. 6710 6.9680 91. 8999 
U7 88 . 9762 o 18.1001 o O. 6710 6 . 9680 91. 8999 

Variables 8 through 14 

Ll 1.7984 1. 0000 192 . 9998 12 . 6000 288. 9906 1. 9199 12 . 7000 
Ul 10. 7103 8. 0000 469 . 0011 22 . 0000 396 . 9000 30. 8 101 50 . 0000 
L2 1. 34 59 2 . 0000 188 . 0008 14 . 7000 70 . 80 02 6 . 43 00 8 . 1000 
U2 3 . 9900 4 . 9999 711 . 0000 21. 2000 396 . 9000 2 9.6801 24.3000 
L3 1 .3 216 4 . 9999 402. 9980 14. 7000 321. 0184 12 .1200 13.4002 
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U3 1. 7494 4. 9999 402. 9980 14. 7000 396.9000 26.8200 17.0002 
L4 2. 0459 4.9999 402. 9980 14. 7000 369 . 2980 3.7000 50.0000 
U4 2. 0459 4 . 9999 402. 9980 14.7000 369 . 2980 3.7000 50 . 0000 
LS 1.1296 24.0000 665 . 9989 20 . 2000 347. 8787 2.9600 17.7998 
us 2. 7227 24. 0000 665 . 9989 20 . 2000 395. 4287 17. 5999 50.0000 
L6 1 . 1370 24. 0000 665. 9989 20.2000 O. 3200 3.2601 5 . 0000 
U6 3 . 7240 24. 0000 665.9989 20.2000 396 . 9000 37.9700 50.0000 
L7 1. 4165 24.0000 665 . 9989 20 . 2000 396 . 9000 17.2099 10.4000 
U7 1.4165 24.0000 665 . 9989 20 . 2000 396.9000 17. 2099 10.4000 

The results of feature analysis is summarized in terms of their sparsity and overlap values. This 
analysis provides with an interesting insight into the discriminatory properties of the variables in 
the problem. The most dominant ones are: crime rate (!), nitric oxide concentration (5), index of 
accessibility to radia) highways (9), and proportion of non-retail business acres (3). In other 
words, these are the variables thai discriminate between hyperboxes (we stress that that the 
discriminatory aspects have been raised in the setting of the information granules). 

Variable no. sparsity c-overlap 
I 0.135 0.1826 
2 0.136 0.7143 
3 0.201 0.2194 
4 0.143 0.3333 
5 0.291 0.1933 
6 0.326 0.3255 
7 0.307 0.3759 
8 0.210 0.3397 
9 0.062 0.2109 
IO 0.218 0.2381 
Il 0.241 0.2234 
12 0.344 0.4357 
13 0.458 0.4399 
14 0.426 0.3759 

Study B 

In order to ascertain whether the selection of records for the training and the validation data sets 
had influenced significantly conclusions regarding the number of clusters abstracting the original 
data set, we repeated the clustering process with the training and validation sets switched round. 
Again the compatibility measure directed the clustering process and the asymptotic evolution of 
the measure, at the initial and finał stages of the process, indicated that 6 data clusters mark a 
'change-over' point in the clustering process (Figure 25) . 
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Figure 25. Compatibility measure of clusters formed from the even-nurnbered 
records in the Boston housing data set. 

Iteration step 246 corresponds to 6 clusters . 
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Figure 26. Degree of average overlap of clusters in the last 50 iterations 

The curve showing the average degree of overlap between the clusters, illustrated in Figure 26, 
indicates that a minimum overlap is achieved with 6, 7 and 8 clusters. For the ease of comparison 
with the Study A case we select 7 clusters for the validation stage. The average inclusion rate of 
the validation data set (odd-nurnbered records from the original data set) in the 7 c)usters is 
approx. 30% worse than in the previous case, averaging at 86%. This is illustrated in Figure 27. 
The reduction of the average inclusion rate in this case suggests that the training and validation 
sets contain a small number of unique pattems that do not have counterparts in the other set. The 
result is that although the distinctiveness of these patterns warrants their inclusion in separate 
clusters, the cross-comparison of these 'minority clusters' is very limited. This is further verified 
by the inspection of Figure 28, which shows that the clusters 3, 5 and 7 are representing by I, I 
and 2 patterns respectively with no corresponding patterns in the validation set. It is also 

26 

... 



' 

• 

interesting to note that, compared to the Study A, there is a greater discrepancy between the 
cardinality of the clusters and the inclusion rate. We conclude therefore that the size of the data 
supports only firm conclusions about 2 clusters and the characterization of further clusters 
requires an order of magnitude greater data sample. 

,., 

0.30L --~ .. -~,.,-~20~..,,.~-,~.--',3'-~40-~'5C--Ć,O. 

Figure 27. lnclusion measure evaluated for I to 50 clusters . 
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Figure 28. Cardinality (first bar) and the aggregate inclusion 
rate (second bar) for each of the 7 clusters 

TABLE 2. Description of 7 clusters for the training and validation sets switched round 
(Li represents minimum and Ui represents maximum coordinates of the hyperbox) 

Variables 1 through 7 

Ll O. 0108 o 0 . 4600 o O. 3890 5.0190 2 . 9000 
Ul 2 . 92 3 6 100.0000 2 5 . 6501 o 0 . 6470 8 . 7250 100 . 0000 
L2 O. 7617 o 3 . 9701 o O. 6470 4 . 9260 62 . 8000 
U2 4 . 0972 20.0000 19.5800 o 0 . 8710 6 . 5100 100 . 0000 
L3 3 . 5349 o 19 . 5800 1 . 0000 0 . 8710 6 . 1520 82 . 5997 
UJ 3. 5349 o 19 . 5800 1. 0000 0.8710 6 . 1520 82 . 5997 
L4 O. 0615 o 6 . 2000 1 . 0000 O. 4470 5 . 3440 27 . 6003 
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U4 1. 5188 40.0000 19.5800 1. 0000 O. 6050 8 .3750 100 . 0000 
LS O. 0152 90.0000 1. 2099 1. 0000 0.4010 7 . 9230 24. 7999 
us O. 0152 90 . 0000 1. 2099 1. 0000 O. 4010 7. 9230 24 . 7999 
L6 2.8187 o 18.1001 o O. 5320 3.5610 40.3000 
U6 67. 9206 o 18 . 1001 1. 0000 0.7700 7 . 3930 100.0000 
L7 O . 1060 o 27. 7400 o 0 . 6090 5. 4140 98 . 2998 
U7 O . 1834 o 27.7400 o O. 6090 5 . 9830 98 . 7998 

Variables 8 through 14 

Ll 1. 4394 1. 0000 187.0000 12 . 6000 227 . 6119 1. 7300 11. 8999 
Ul 12.1265 8 . 0000 437.0004 22 . 0000 396 . 9000 34.4101 50 . 0000 
L2 1. 4118 4. 9999 264 . 0018 13 . 0000 172. 9116 7 . 3900 13. 8002 
U2 1 . 9865 4. 9999 402.9980 14. 7000 396. 9000 29.5301 23.3001 
L3 1. 7455 4.9999 402.9980 14 . 7000 88 . 0118 15 . 0199 15.6002 
UJ 1. 7455 4 . 9999 402 . 9980 14.7000 88 . 0118 15.0199 15.6002 
L4 2 . 1620 3 . 0001 222 . 9988 14 . 7000 388 . 4489 3.3198 19.3001 
U4 4 . 8 62 8 8. 0000 402 . 9980 18 . 6000 396.9000 23 . 9799 50 . 0000 
LS 5 . 8850 1. 0000 197 . 9988 13 . 6000 395 . 5199 3.1600 50.0000 
us 5. 8850 1 . 0000 197 . 9988 13. 6000 395 . 5199 3.1600 50 . 0000 
L6 1.1691 24.0000 665.9989 20 . 2000 2 . 5210 3 . 7301 5 . 0000 
U6 4 . 0983 24.0000 665.9989 20. 2000 396 . 9000 34 . 7700 50 . 0000 
L7 1. 7554 3 . 9999 711.0000 20 . 1000 344. 0517 18 . 0699 6 . 9998 
U7 1 . 8682 3 . 9999 711.0000 20 .1000 390 . 1106 23 . 97 01 13. 6000 

The sparsity and c-overlap of the features (variables) are very similar as in Study A meaning thai 
some global properties discovered in the data set have been retained. 

Variable no. sparsitv c-overlap 
I 0.117 0.1414 
2 0.229 0.2667 
3 0.284 0.1432 
4 0.143 0.5238 
5 0.258 0.0985 
6 0.348 0.3391 
7 0.393 0.3144 
8 0.221 0.1674 
9 0.o75 0.1769 
IO 0.155 0.1560 
11 0.228 0.0760 
12 0.303 0.3276 
13 0.443 0.3762 
14 0.412 0.3175 

7. Conclusions 

The study has articulated another look at data analysis by providing a constructive way of 
fonning infonnation granules thai capture the essence of the large collections of numeric data. In 
this sense, the original data are compressed down to a few information granules whose location in 
the data space and granularity retlect the structure in the data. The approach promotes a data 
mining way of problem solving by emphasizing the transparency of the results (hyperboxes). The 
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way in which infonnation granules is guided by two aspects thai is distance between infonnation 
granules and a size (granularity) of the potentia! infonnation granule fonned through merging 
two other granules. These two aspects are encapsulated in the form of the compatibility measure. 
Moreover we discussed a number of indexes describing the hyperboxes and expressing 
relationships between such infonnation granules. It has been shown how to validate the granular 
structure. The resulting family of the infonnation granules is a concise descriptor of the structure 
of the data - we may call them a granular signature of the data. 

Some further extensions of the hyperbox approach may deal with more detailed instruments of 
infonnation granulation such as fuzzy sets [7][11]. 

It should be stressed that the proposed approach to data analysis is noninvasive meaning thai we 
have not attempted to fonnulate specific assumptions about the distribution of the data but rather 
allow the data to "speak" freely. This is accomplished in two main ways 

• first, the hyperboxes are easily understood by a user as each dimension (variable) comes 
as a part of the construct. 

• second, the approach finds relationships thai are direction-free meaning thai we do not 
distinguish between input and output variables (which could be quite restrictive as we 
may not know in advance what implies what). Obviously, this feature is quite common 
to all clustering methods 

Furthennore the granulation mechanism puts the variables (features) existing in the problem in a 
new perspective. The two indexes such as sparsity and overlap are useful in understanding the 
relevance of the variables, in particular their discriminatory abilities. 

While the study was concemed with the development of infonnation granules (hyperboxes), there 
are interesting inquires inio their use in granular modeling. In particular, we are concemed with 
the fundamental inference problem 

given an input datum (infonnation granule and numeric datum , in particular) X defined 
in a certain subspace of dimension n' of the original space R" 0 c R" and a collection of 
infonnation granules I= {B(l) 8(2) , ... , B(c)} detennine the corresponding infonnation 
granule Y 

The current paper provides a basis for this investigation. 
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