[387]

XXI.

ON THE IMPROVEMENT OF THE DOUBLE ACHROMATIC
OBJECT GLASS*

Feb. 9, 1844.
[Note Book 28, pp. 151-209.]

[1.] Single refractor: 7' for sphere, for any surface of revolution, for reflecting surface.
[2.] Alternative method : AZ'®, A7'® for any refracting surface of revolution,
[8.] Lens of revolution, preliminary.
[4.] 7'® for lens of revolution.
[6.] Alternative method. Foci.
[6.] Focal centres and focal length of a lens.
[7.] Combination of two lenses in vacuo: 7'®), focal centres, focal length.
[8.] Construction for emergent ray.
[9.] Relations between initial, intermediate, and final rays.
[10.] 7' for a single lens : expressions for ¢ coefficients.
[11.] 7' for a combination of two lenses.
[12.] 7'® for a combination of two thin lenses, close together. Condition (B) for oblique aplanaticity.
[18.] Condition (A) for direct aplanaticity.
[14.] Rays in one diametral plane : general method for evaluation of 7' for instrument of revolution.
[16.] 7'® for a single refracting surface of revolution. (Indiametral rays.)
[16.] 7'¢ + 7', for two refracting surfaces of revolution. (Indiametral rays.)
[17.] General method for evaluating 7' for any number of refracting surfaces. (Indiametral rays.)
[18.] 7' for any number of refracting circles. The equation in differences connecting oy, 0, 0y4;.
Evaluation of o; for thin systems.
[19.] Equation in differences when the vertices of refracting circles are distinct. Approximate solution
when the distances between the vertices are small.
[20.] Alternative treatment of preceding.
[21.] Expression for 7'® for any number of refracting surfaces. (Indiametral rays.)
[22.] 7'® and focal centres for combination of any two refracting surfaces. (Indiametral rays.)
[23.] Focal length for instrument with three refracting media.
[24.] Imagery in connection with focal centres. New form for the general equation in differences.
[25.] 7® for any number of refracting surfaces, the squares and products of the intervals being
neglected. Power and focal length. (Indiametral rays.)
[26.] More direct method of obtaining result of preceding section.
[27.] 7@ for any system of refracting surfaces of revolution placed close together. (Indiametral rays.)

* [This was the title of a paper read fo the Royal Irish Academy on June 24, 1844, but never published. The
manuscript which follows (obviously not prepared for publication) probably represents the work which led to
that paper, and for that reason we prefix to the manuscript the title of the paper. There are no numbered
sections in the manuscript; the sections as now printed correspond to pages in the note book. Slight verbal
alterations to suit this mode of reference have been made in the text without comment. The formula underlined
by Hamilton have been enclosed in rectangles. The synopsis of contents has been supplied by the Editors.]
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388 XXI. IMPROVEMENT OF OBJECT GLASS [1

[28.] General expression for coefficient of longitudinal aberration for any system of surfaces of revolu-
tion placed close together.

[29.] Conditions M =0, N =0, for direct and oblique aplanaticity for any system of surfaces of
revolution placed close together, the square of the initial obliquity being neglected. (Indiametral
rays.)

[80.] Application of preceding result to combination of two thin lenses close together in vacuo.

[3L.] Final rays in terms of M, N, O, the square and cube of initial obliquity not being neglected.
Curvature of locus of focus when M =0, N =0. (Indiametral rays.)

[32.] Herschel’s second condition of aplanaticity.

[83.] Summary of calculations for deducing (A) and (B).

[84.] Development of the equations (A) and (B).

[85.] Comparison with Herschel.

[36.] Equations (A) and (B) transformed into (A’) and (B'), in terms of anterior curvatures.

[87.] Focal lengths and aberrations of a system of refracting surfaces of revolution, close together at
the origin.

[38.] Application of the preceding to a single surface, a thin single lens, and a thin double lens.

[39.] Foci and aberrations for oblique parallel incident rays (indiametral).

[40.] Foci for oblique rays (indiametral).

[41.] Foci for oblique rays (indiametral).

[42.] Foci for oblique rays (indiametral).

[43.] Foci for oblique rays (indiametral).

[44.] Foci for oblique rays (indiametral).

[45.] Foci for oblique rays (indiametral).

[46.] Exdiametral rays by function 7. System of refracting surfaces close together.

[47.] Factorisation of 7', and evaluation of coefficients, for thin system.

[48.] Arrangement of final rays (astigmatism).

[49.] Combination of two thick lenses (indiametral rays). Evaluation of @.

[60.] Evaluation of @,.

(1] Single Refractor.

AT =2zAc + yAT +zAv,
_ 0 =0dzAc+38yAr+ 8zAv,
ER‘gz.m“s* 8z =pde+qdy, z-po—qy=F(-p. -9
S Ao =—pAv, Ar=-—qAy,

Ac A
AT=(z—pw—qy)Av=Avf(Kg, A_:)

Ex. 1. Let
2=v +r {1 —NT =P (@@ + g?)} = c —r VT =2 (& + %),

v being ordinate of vertex of hemispheric surface, ¢ ordinate of centre, v = ¢ — v =|radius of]

* [Cf. Third Supplement, (I7), (K7), p. 216. These equations are general, but the rest of the work deals
with an instrument of revolution.]
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1] XXI. IMPROVEMENT OF OBJECT GLASS 389

curvature, positive when surface is concave upwards, so that rays proceeding upwards fall upon its
convexity. The radical is supposed to be positive. Then

—c)2 2 — p—2 =——w— R
e e A i B gy

a? + 92 } e

z—px—qy=c+(z—c){1 +(z—c)” R ho—.

-2
2 el (i y
P+ 1+(z—c)“’
z — ¢ is negative if » be positive, and reciprocally,
-1
. g )
s NI+ pitg e
CfEp—=c—r Vit Pt
2
AT=cAu—r“1Av\/l+M—A_:2A—Tz,

rigorously, for a refracting hemisphere (as I have often found before,) and indeed for a reflecting
hemisphere, and for all laws of refraction or reflexion, ordinary or extraordinary.
Ex. 2. Let

s=vtir @+ 1) +1s (a4
then

P=l=r+s@ty) potqy=r@+y)+s@+y,
s—pr—qy=v—}r(@+y")—fs (@ +y")
P4g =S () + 2rs (B g4 8 (04 P,
@'+ @) =r* (@ + ¢ + &c.;
therefore, neglecting (2® + %?)%, we have
@+ yP=rt(p*+ ¢ P+yP=r2@+¢)- 2@+

2 2 2)2
ol L 2+rq”+8(p4:;q) ,

Ac®+Ar® | 5(Ad®+ Ar)?

WARmedy =k RS

approzimately, for a surface of revolution.
By making s= %72, the ellipticity vanishes, and we get

Ao+ A7 (Ac®+ M)z)
2Av 8AW )

ATl =(c— r‘ll) Av—rt (
as by developing the rigorous radical expression in the last example.

* [See footnote to p. 370.]

HMP : 50

www.rcin.org.pl



390 XXI. IMPROVEMENT OF OBJECT GLASS [1,2

Ex. 8. Let there be a single reflecting surface* ; then v, and v, will have opposite signs, and
we may suppose, considering the 7's as vanishing,}

u0=—N/1-—a'g=—1+%o'g+%o'g,
n=V1-o2=1-102-}o},
Av=2—% (0?2 +0k)— 3 (o} + o),

Y (o2 a4 o® (0‘1—0’0) o (1= 00 (e1+03) | s(a1—a0)*,
b dent ISORSC I v W5 16r 394
and for reflected ray,

oT
r=012+ 1}0*§Z+8?1.

If incident rays be parallel to axis, then
go= 0’

T=2v—%vo?—}rto?—tvot— 7‘___104_'_1‘_4_80_
1 1 1ig ATIge
z=01(z—v—4r)+3od(z—v—3rt+3r%);
and when
z=v + ¥ =ordinate of principal focus,
then
= lateral aberration = r~%4so3;

or, reciprocally, when z =0, then
z—v—$rl= long1tud1nal aberration = — }r—4so}.

For hemisphere, this last aberration = — r~1g2; for paraboloid, it vanishes. (Rigorously, for
hemisphere, longitudinal aberration =4r-1(1 — sec 1} sin™'ay).)
[2.] Another method of developing A7, as far as small quantities of the 4th. dimension

inclusive, is to make
z2=0v+ 2@ 4+ z(‘l),

v=pu+v® 4@,
Av=Ap+ Av® + Av®,
AT =ATO + AT® + AT®, ATO=9Ap,
AT® =gAc +yAr+vAv®@ 4 2@ Ay, 2% =1r(2? + 47,
AT® =y Av@ 4 2D Av® + 2@ Ap, 2@ = }s (2 + 32,
Ac+reAp=0, Ar+ryAu=0,
these last two equations giving values of #, y, which are not indeed rigorous, but of which the
want of rigour does not affect our present results;} hence,
Ac® + A'r
—rBp

Ac? + AT?

.fUAU +yA'T—- W,

2D Ay =

* [of revolution 7 vacuo).

t+ [That is, considering only rays in the diametral plane y=0. The medium lies on the positive side of the
mirror.]

1 [It is obvious that the substitution of the approximate values in AZ7'® introduces no error of the fourth
order; but it is not so obvious in the case of A7'®. If, however, we substitute more exact values for #, ¥ from
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2, 3] XXI. IMPROVEMENT OF OBJECT GLASS 391

and finally -
Adt+A

2rap

(Ac?+Ar?) Av®  §(Ac?+ Ar)?
rApE T 4

AT® =yAp® —

AT® =pAv® +

Also, for ordinary refraction or reflexion,

B
v=u 1- B g

i~ o7t (o + 72
. U(a) - ‘U(‘)=————3 3

T S
Thus, more explicitly, for any ordinary refractor or reflector of revolution,

v o"+'r’_7:‘_1Ao’+A'r’_

@) = i A48 7o
AT 2A 3 3 /i
4 2)2
o _UA@+T 1 Act+ At P+t srt(Ac?+ AT
Al SA u® 4 Ap? o " ® 4 Apd

But we may also write, more concisely,*

AT® =yAv® — 2@ Ap;
{ AT® =9 Av® 4 2D Av® + 20 Ap;

or, more symmetrically,
{ AT® =20 Ap® — 20 Ay

AT® = ;0 Ay® 4 20 Ay® 4 20 AyO ;
in which 2, 2@, 2@ are the three first terms of the development of the ordinate z of the surface,
and v©, v®, @ are the three first terms of the development of the component v of normal
slowness of the wave; while z® in AT® is to receive its first approzimate value, obtained by

substituting for , y, their own first approximate values, deduced from the two equations comprised

in the formula
Acdz + Ardy + Av© 82 =0.

[8.] Lens of Revolution.

Foci, Images, Focal Centres.
Now, let there be a lens. For it,

70 = 20 (v2) — ) — 2{2) (U — )
+ Zgzo) (v(22) L% v(l2)) e 2(22) (v(20)_ USO));

Ac= —pAv, Ar=—qAv, we find that the additional terms introduced cancel out, and we arrive at the expression
for AT® which follows. For a general justification of the method, see Appendix, Note 24, p. 507. Cf. also [15.]
of the present paper.]

"# [These equations are the same as th ose at the top of the page.]

50-2
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392 XXI. IMPROVEMENT OF OBJECT GLASS [3

in which z{) is a function* of o1 — a9, 71 — 7o; and 2{?) is a function of o3 — a3, T2 —71; also 01, 71
are to be eliminated by the condition+ that

81 T(z) = O,
or more fully that

0=(2{0 —2) v + (v(” — v{0) 8,2 + (v — v{V) 8,2V,
&; referring only to the variations of oy, ;. More concisely, if ¢ be thickness of lens,

= t8U{2) + A[to 813{2) + A/Ll 81|Zé2).

Now
820 =pdzr+qdy, 2:PW=pz+qy, . 8P =adp+ydy,
PGS NS .| et g ;
P A’ 9= wprhaied Apdz® =—(26Ac +ydArT);
i A/‘Osﬂ{z) =— (21801 + y1871);
A/lol 812’;2) =4 (.’L‘g 80’1 -+ yg 87’1);
also
v = — ";%2'*' m , Su®=— o180y + '7'1871;
P M1
hence .
[.bl—lt (0’1861 + 718’7'1) = (wg o ﬂ;’l) 80’1 + (yg i y]) 87‘1;
that is

0=y (e — @) —tor, O=py(Yy2—2y1)—1tr1.

Another mode of considering the question is to observe that we have rigorously, if @1, 11, 21,
@, Ya, Za, 01, T1, U1 b€ rigorous, the equation

0= (.’I?g _ a:l) 80’1 -+ (yg — .7/1) 81’1 + (Zg - Zl) 8U1;
therefore also rigorously
o Uit il BRIRR. ) ¢ AR 1
n-5n v n-zn uw
that is, rigorously,§
Bog— 0y Ys—Yi &85
) AT e A TR T

if then we change the last fraction to ,% , or simply to ﬁ, if u be the index of the lens, supposed
1

wn vacuo, and substitute for @y, y;, s, y» their 1lst. approximate values, || we shall obtain corre-
sponding approximate values for o3, 71, as linear functions of &y, 7o, o2, T2, which will be
sufficient to give 7'® and even 7@ to the required degree of accuracy.

* [2(2)=«‘71";‘7912+(71 —7o)? 20— (09— ‘7'1)2'*’(7'2-"'1)2']
i 27y (v (10) -y (()0))2 ’ 2 27y (v (20) i v(lo))z
+ [Cf. Third Supplement, 11, p. 217.]
1 [The media being homogeneous, §Ap=0.]
§ [These equations are evident, since oy, 71, v; are proportional to the direction cosines of the ray.]
|| [From the equations Ac+7rzAp=0, Ar+7ry Ap=0, of [2.].]
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4] XXI. IMPROVEMENT OF OBJECT GLASS

[4] Thus for a lens of revolution n vacuo, uo=ps = 1, py = p, we have
T® =9u® — 030 — tv{® + (u— 1) (2P — 2{V);
tor=p(@a—a), tri=p(Ya—%n);
r(p=1)@=0o—01, r(p—1)y=70—11;
{ ra(u—1)ay=03—01, ra(p—1)ya=ma—1y;
P =r (@} +y)), AP =in(+y));

3

o ==t o == g (et o == b+

\
Eliminating, we find
—pH(p-1) '7'1”'2t0'1.= re (00— 1) — 71 (02 — a1), &c,,
2% R0'1="‘10'a—’l'50'0, R'Tl=7'1'7'g—”'g'ro,
if we make
R= r—"7rs+ (1 o ,M_l) Tl”'gt.

Hence

7 R(go—01) =(R +13) o9 — 03 = g9 — g3+ (1 — p ™) mat o,
;1 R(0a— 01) = (B—=ry) 17t 09 + 09 = 09— o2+ (1 — ) it og;

* (u=1)Rey=0o—0oa+(1—p ) rtoe; (p—1)Ry=7o—7a+ (1 —p)rat7o;

(u=1)Raz=0y— oz +(1—pY)rtoy; (u—1)Rya=7o—Ta+ (1= ) rit7a.

As a verification, these give
1 (wg -— .’L‘l) = tR_l(Tlo‘a -—7'20'0) =toj.

We have now the system of expressions

o= R—l(’rld'g—’rga'o); ; T = R (’I‘]_'Tz—ra’ro);
¥ _oo—og+ (1 —p ) rtao, _mo—Ta+ (L —=p ) ratmy
Ak (n—1)RE v el (pn=1)R ;

_¢0—02+(1—;f1) rtoy __'ro—'rg+(1-—,u,—1)r1t1'2_

w-1E . 9 (w—1R ’

and therefore
2u (i — 1) R (T® — vyu® + v0®) = (u— 1) ¢ {(r10a— 1230 + (r17a — a70)?}
+ pre ((Go—aa+ (1 — ) ritas)® + (to— o+ (1 — ) rytmy)?}
—pr1{(go— og + (1 = p*) ratoo)® + (ro— Ta+ (1 — w™) matmo)?}

393

=—p(r1—r) {(ea— a0 + (Ta — 7o)} + p (1 — w12 rymat? 1y (03 + 73) — 72 (05 + 72)}

+(u—1)tx (&e);
and this will be .
: =R {(0a— oo + (ra— e — (L= g £y (o34 D) — 1 (a3 + 7)),
: (reos—Ta00) + (r1a — ramo)* — 2ry7y {(g0— a2)*+ (10— T9)?},
which is the (&c.), shall be found to be

=(r1— 1) (r1 (03 + 12) — 13 (02 + 72)) — 172 (03 — 00)* + (T2 — 70)%);
and, in fact, each
! =11(o3 + 1) + 73 (a2 +72) — 2r17e (62 + 72 — 0903 — ToTa + 0% + 7).
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394 XXI. IMPROVEMENT OF OBJECT GLASS [4, 5

Hence, finally, for any lens of revolution in vacuo, changing oy, 7o, o3, T3 to &, Bo, &, Bz, We have

T = — o 0§ + 8-+ fou e+ ) — ool £ B

g t{ry (e} + B2) —ra (e + B}
2uR
R=ri—re+ (1 —p)rrt; t=vy—v.

b

[6.] Another mode of eliminating oy, 7; is to form first the explicit expression (o, T being
written instead of oy, 71),

70 = Joy(c} + B) — a0} + B) + 5 (0% + 7

& (0 —a)® + (1 —Bs)? il (0 — @)+ (7= Bo)?

S(u—1)7s S(u-1r
_R(c?+12) —2r; (@30 + Ba7) + 213 (g + BoT)
2 ([L Lol 1)"'17'2 }
-1\ g2 4+ @2 rol\ a2 4 B2
+('v1— "y ) 0 :8;)___(,02_ 2 )_2___2;
P | o, gy ¢ Bl
but '
Ro =ry05 — raay,
Vi 2 (105 — o)
. RO’—2(7‘1¢Z2—"'2(Z0)0'=—'—R'-,
and

2 2 2 4 32
~2(u=1)ryre B (100 - Lo B o (“22 &)

= (r10g — 1200)? + (1183 — 13 B0)* + R {ra (¢ + B2) —r1 (e + B}

which is already under a tolerably convenient form. But substituting for R its value
r1—7re+ (1 o~ }L_l) r17at,

we are conducted to the reduction

(r10g — r9@0)? + (11— 13) (raaf — 7103) = 1179 (@f — 2000 + 3) = 1173 (02 — 2)? ;
so that the second member of the recent expression becomes

173 {(ta — @)* + (Ba — Bo)?} + (1 — ™) ryrat {1y (a2 + B —r (o + Bl ;
consequently .
27 = vy (af + B7) — 2 (a3 + )
(@2 — )’ +(Ba— Bo)*  t{ra(ag+B7) —ri(a3+B}

w-1)R uR :
which may also be written thus:

5 = 2 2 2 2
= _M)aowo_ _nt\ G+ B (— ) + (B2~ Bo)
4 (vl pR) 2 (”2 ,uR) 2 SRR
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5, 6] XXI. IMPROVEMENT OF OBJECT GLASS 395

Such vs the function T® for a lens of revolution in vacuo ; tndex w; curvatures ry,rs, positive when
convex to incident light ; ordinates of vertices vy, vy, thickness t=vy — v1; R=1r1—ra+(L—p 1) ryret;
@y, Bo, direction cosines for incident ray, and oy, B for emergent; approximate equations of
incident ray *

ST@ VA
Sy’ Yo— Boso=— SE’

Zp — Qp2p= —

and approximate equations of emergent ray
3T® LYAS
3 — Ca23 =+ e ya—,3223=+§/§~
Parallel incident rays converge to (or diverge from) the focus
®y Bo 7t 1 :
G ) Sl P 5 L e MY R 7
and the emergent rays are parallel, if incident diverge from (or converge to)

SL U o Gl S s e NI i |
Cw-DR Te-DE TR W-DR

[6.] vi— %’ and vy — %;, in the expression for 7’®, are the ordinates of two points on the

axis, which are sometimes called the focal centres of the lens. They are the points vn which the
axtis 1s intersected by the directions of the incident and emergent rays, respectively, when those two
directions are parallel to each other;t and it is not difficult to deduce their ordinates by

geometrical considerations. And (ﬁtllTR may not improperly be called the focal length, or

(p—1) R the power, of the lens. This focal length x the sine of the semi-diameter of & planet,
will give the radius of its image formed by the lens.} This image will remain unaltered in
magnitude when the lens is reversed.

For the case of a sphere, the two focal centres ought to coincide in the centre of the sphere.
Accordingly we have, for a sphere, :

rg=—ry, t=2r7', uR=2n,
and the ordinates become v + 71, v, — ', which are equal each to the central ordinate. This
ordinate of the centre being ¢, we have then, for a sphere,

— )2 I 2
70 =% (o3+ By - of - ) - LB BT

The focal length (from centre) is Wlﬁ)_r’ and the power is 2 (1 — 1) r;. This focal
3 1

* [The subscripts 1, 2 refer to the first and second faces of the lens; 0, 3 refer to the incident and emergent
regions respectively.

+ [These are the “nodal points,” coincident in the present case with the “principal points.” See Appendix,
Note 25, p. 508.]

1 [This agrees with the general definition of focal length given by C. F. Gauss, “ Dioptrische Untersuchungen,”
Abhand. Kgl. Ges. Wiss. Gittingen, 1 (1838-1841), Math. Ci., p. 14. Cf. von Rohr, The Formation of Images in
Optical Instruments (English translation), London (1920), p. 103, or J. P. C, Southall, Geometrical Optics, p. 233.
Hamilton does not appear to have been acquainted with. the optical work of Gauss.]
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396 XXI. IMPROVEMENT OF OBJECT GLASS [6,7

length = curvature, or image is on second surface, when 2 (1 —pu~1)=1, that is, when u=2.
Accordingly, for this index, the focal length of 1st. surface* is = diameter;
W 2
o 1
The focal length of a sphere, from its 2nd. surface, is
Z-prit
2(p—-1) °
If 4 = §, this last length =471 = half the radius.
For any lens of revolution in wacuo, if we denote the ordinates of the two focal centres by
F', F", and, the focal length by F, we have the expression+t

T®=3F (e + B) = 3F" (a5 + 83) — 3 F {(02 — @0)* + (B2 — Bo)*}-

And the properties of the lens, independent of its position (and of aberrations), depend only on
F" — F' and F; in which

OASWANE - B (b L __(,Uf—l)t ) _(/l:—l)t’b.
F F"t<l_ uR )— uR (7 7‘2+7'17'zt)-—m,

¢ being interval of centres of curvatures,
=c—Cp=ryl—r;yl—t.
The focal centres close up into one, 1st. for ¢=0, infinitely thin lens; 2nd. for ¢ = 0, concentric
surfaces.
[7.] For a combination of two coaxal lenses of revolution in vacuo, we have (the order being
o, ada):

Th= 3F (@*+8N-1F ' (*+8) -t hje—adP+(8B-£)
—3F) @2+ B+ 3 Fy (F+ ) — 3P {(e—a’ )+ (B—B" )}
= }F (@*+B%)—1F" (@ +B"*)—}F (@' - P+ (B -B'W;
(Fy—F' —Fy— Fy) a+ Fyd’ + F1o =0;
(Fy—F'—F,—Fy) B+ F,B" + P18 =0;
$(F,—F'—F,— F))®+ (Fyd” + Fra')a=— 3 (F%Fia;{:kj}z')jﬂ); &e.;

fF 7l F1F2 b,
SFARA P

(F]_Fg (a" —_ a')2 + (an" -+ Fla')2 ] (Fl + Fz) (an"z + Fla'z) ;)

W) Fy(Fi+ Fy) T e By 8
%F _FI—F1+F1+F2+F{"‘F2,—F1 +F1+F2+F1H_F2I’
Fy(Fy+ Fy) Fz(Fg"‘Fln)

"
F2

F” =F2"+F2—'

Fi+ B+ F]—F, " F+FK+F —F;

* [Marginal note by Hamilton.] For a single refraction out of vacuo, at origin, of direct parallel indiametral rays,

2
P
sl i 1
for focus,
v HPW o0
R R X e L

t [This expression is valid for any optical instrument of revolution in vacuo.)
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7, 8] XXI. IMPROVEMENT OF OBJECT GLASS 397

Thus, if F)' = F,, that is if 1st. focal centre of 2nd. lens coincide with 2nd. focal centre of 1st. lens,
we have
el ok F'=F{; F”=F;;

that s, the 1st. focal centre of 1st. lens will be the 1st. of the combination ; the 2nd. focal centre of
the 2nd. lens will be the 2nd. centre of the combination ; and the sum of the powers of the two
component lenses will be the power of the combination.

For example let there be two hemispheres, vertex to vertex, as in the figure, not necessarily
of equal radii, nor of equal indices; the last emergent ray will be parallel to
the first incident, if the 1st. refracted ray pass through the common vertex of
the two hemispheres; and then the focal centres F,, Fy, of the combination,
will evidently coincide with F| and F)’, of the two hemispheres. As to the

power of the combination, let uy, ps be the two indices; p;, ps the radii; the
common vertex origin; then for parallel direct incident rays, the ordinate of the point of

g

P 1. the power of that lens is therefore
iy

convergence after passing through the 1st, lens is

F—'I-E:-—I (because vertex is 2nd. focal centre and is at origin); the convergence, immediately after
entering the 2nd. lens, is

] -1 1 /-1 ps—1
1-appieti=lal (=1, moly,
( #3) Py Map1 P2\ P1 P2
corresponding focal distance
H2P1P2

(- 1) pa + (p2 — 1),01’
subtract py, and there remains
pa{pr—(ma—1)ps} .
(k1= 1) pa+ (pa—1) p1’
this

add Py to ;PT’ , and we get focal length of combination (measured from F’)
2

o P1pz2 X
(p—1)pa+(pa—1)p1’

. power of combination
_m-—1 o 1
P1 Pz
= sum of powers of the two component hemispheric lenses, as it ought to be.
The same theorems hold good for any two plano-spheric lenses, with vertices placed in
contact.
[8.] Using the expressions of [6.] and [7.] for the function T'® of a lens of revolution
in vacuo® .
2Tm EF' (a’=+8’=)—F” (a”a'I'B”s) P F {(aif —a’)"l'(ﬁ" S B’)ﬂ},
in which F’, F"' are the ordinates of the two focal centres, and F is focal length ; the equations

* [The single accent refers to the incident system, the double accent to the emergent. The expression is valid
for any instrument of revolution in vacuo.] . _
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398 XXI. IMPROVEMENT OF OBJECT GLASS 8

of an incident and of the corresponding emergent ray are, respectively, in the present order
of approximation,

#=d(d-F)-F @ —a),
y =8 ~F)-FE 7)),

and
w” s all (ZII__ FII) i F(alf i a’)’
:1/” A, BI’ (ZII s FII) e F(BII 4y B')-
Hence
d =—Fo', y =—FB', when 7/ =F' - F;
and
; @ = el gl s GRS aien et i L e T
Also
" $ll=w'=_F(all_al), yl'=yl=-F(B'I_BI),
when

ZI e FI’ Z” i FII.

C /4

F', F", focal centres;
P'F' = F"P" =focal length.

If P'F’ be direction of incident ray, F''P"”, parallel thereto, will be the direction of the
emergent; and the last algebraic theorem shows that if G'G'’ is parallel to F'F", and if the
direction of the incident ray passes through G’, then the direction of the emergent will pass
through G", or will be G"P", if 'G’, parallel to P'F’, be the direction of the incident ray.
This theorem gives a very easy construction to determine the emergent ray G'' P, corresponding to
any given incident Q' G', when the points F', F", and the focal length F"'P" are known ; for we
have only to draw G'G", F''P", and so determine two points @', P, on the sought emergent ray.

A geometrical proof of the theorem may be had by taking P"R"=Q"F" (=G'F' =Q'P’),
so that F”'R" shall be parallel to @ F’ and to G"P". Then, because of the position of the
point ', the incident rays Q'F”’, @' G’ have their corresponding emergent rays parallel to each
other, that is, the emergent ray corresponding to G’ has the same direction as G"P"’. But it
also passes through P”, because the parallel incident rays @'G’, P'F’ give emergent rays which
meet on R"”P", and one of these rays is F’P”, Thus a certain incident position (') gives the
emergent direction (parallel to F”R'), and the incident direction (parallel to P'F’) gives
a certain emergent position (P'').

For a single lens,

I’ 3 t7' 7 t‘ 1
F=111—;‘72%; F =1)2—,71}l3; F=m, .R=7'1—1"2+(1—;L_1)7'1’I‘2t;
and for a combination of two,
ig 1 Fy ’ TR T e "y . " __ o ”
F—F1+F2+FIII_F217 F _F1+E(F2_Fl)’ F —-F2 —E(Fz—-Fl ),
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For a telescope,
F=oo, F1+F2=FZ'—F1”, F,a"+F1a'=0, FZB“'I'FIB':O)

Bt Fy
magnifying power = — 7
2

[9.] For the combination of two lenses, by [7.],
a_all E:_ B_B” BI.
PR E PCRTT
@, B belonging to the intermediate ray (between the lenses); ', 8’ to initial, and &”, 8" to final
ray; while Fy, Fy, F are the component and resultant focal lengths.
It is easy to explain these equations, geometrically, by the aid of the construction in [8.].

e :’ c / ¢::ﬁ/ C:j?' ) &

r‘m
]: 7/ };‘_J P ]:&.

Let an incident ray G| @, parallel to the axis, take the direction G}’ P, after passing through
the 1st. lens, and the direction G P after passing through the combination. Let |, F’ be the
focal centres of the 1st. lens, and F’, F"’ of the combination. Then, by the theorem of [8.], applied
to the 1st. lens,

Fy 6y = F,6%;
and by the same theorem applied to the 2nd. lens,
F/I, GII Hiy F'G"
i ’
but because the 1st. incident ray is parallel to the axis,
: F'G'=F|G;;
therefore i g
TVl INalUUR
' F'G"=F|GY;
that is,
F a” = F 12,
when & =0. In like manner, if the final ray be parallel to the axis, the intermediate and initial
rays will meet the ordinates to the axis, erected at the anterior focal centres of the 2nd. lens and
the combination respectively, at heights above (or below) the axis equal to each other, because
equal to the height of the final ray above (or below) that axis; therefore
‘ Fo' = Fya,
when &' = 0. If then we admit, as known, thet a linear relation, without a constant term, exists
between @, ¢, @/, we see that it can be only that written at the beginning of this section; and
similarly for the relation between 3, 8, 8”.

[10.] Aberrations of Lens.

For a single lens, by 12.], [4], if ¢, B be the final and ¢, 8’ the initial direction cosines;
Y a : £ (R4 R\
u, index; vy, v, ordinates of vertices; 7y, 7y, curvatures; s, s;, coefficients of ( 9 L > in develop-

51-2
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400 XXI. IMPROVEMENT OF OBJECT GLASS [10

ment of z for the two surfaces; ¢, thickness, =, —v; R =1 —ry+ (1 — p~)r173t; we shall have

7@ — % @2+ B2) - ’98—2 (4 B2+ % Ca ::"7‘2)2
rilo—a' P+ (r— B2 (a?+ 12 A b ryl(c—el + (r-B)? a'2+-rz_ g 5
G (u—1) ( n _(a2+62))+T (p—1) ( i g +B))
LT (=@ =BPP ot (o =P+ (= BPF
: 4 (w—1)° + (u—1y g
in which *

c=R1(rie—rya’), T=R1(nB—rp).
Hence
Rril(o—d')=r;1{rna—(rn+ R) o'} =a—a — (1 — p ) rypted’;
Rrjl(c—a) =r;1{(rn —R)a—ne'} =a—d — (1 —p ) nite;

and 7@, as an explicit function of e, B, ¢, 8’, becomes

TO = Loy (@2 + B2 — 1va (@2 + B2 + 1t B4 (110 — 13 )2+ (118 — 1o B2
» riw~1 R4 { (a—a" —(1—pu)r ta')z} { (ra—red 2 — uR? (e + B'Z)}
4(p=12 +(B-B —A =pH)rtB ) |+ (1B —r:B')>
ropt R—4{ (a e S (1 e #—1) Tlta)z} { (rya— rza’)z i l-‘R2 (az +:82)}

=17 +(B=B ~ A=) ntB) +(nB~rpyY
& s R { (a-—a'-(l——;z,—l)rgta')z}z__ s R { (a—a' —(1—p™) rlita)z}2
Y(p—1P (+(B-F =(A—pNrtfP) 4u—1P (+(B-B -A—p Bl

(Accordingly this expression agrees, some slight differences of notation excepted, with page 1 of
my investigations begun Jan. 13th. 1832, which is stated to agree with page 32 of 7th. series of
investigations respecting lenses of revolution, written in 1831.+)

If we make for abbreviation

e___a2+ﬁ2’ €,=m’+,83’, €'=al2+ﬁl2;
we have
(ra—r P+ (1B —ryB =12 —2rir0¢e,+ 1 ;

(@—d' =1 =p Y rpte’ R+ &c.=e —2 (1 + rot — p 1 7at) €, 4 (1 + rot — plrpt)e’;
(@—a' —(1=p)rita)? +8&c. =€ —2(1=rit+ptrt)e+ (1 —rit+ptrit)e;
if then we make :

1+ rgt—plrast=py, 1—rit+purit=py,

* [These relations were given in [4.]; they also follow at once from the form of 7'® given at the beginning of
[5.], by making use of the fact that this expression has a stationary value with respect to o and .]
t+ [We have not been able to find either of these among the Hamilton MSS.]
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we shall have the following more concise expression:

T«):%le'a ’;; 2+8,,,-3R—4(r2e—2r1r2e +r2€)

.—1R A ’
21& Taleipis, Fpl )R ine ¥ (r— s ¢
~1
+%(G 2p1€,+pie) (5 € — 2rirae, + (1} — pl%) €]
+ _aR™ 9 €6 +ple)— al L (¢ — 2p1e, + pi €)%
4(p—-1) A(u-1y :

(Function 7'@, for ANY SINGLE LENS of revolution in vacuo:
w, index; vy, vg, ordinates of vertices; ¢, thickness; 7y, 73, curvatures;

1 a? + y*\? =
81, 82, coefficients of( 3 ) ; R=ry—ra+ (1 — p™) mirat; pa, ps,

¢ €, €, abridgments, as above.)
If we write, for abridgment,
T® = Qe+ Q/ €€, + Q' ee’ + QII 612 + Q/’ € €+Q" €%

and substitute for R~ its value (u— 1) F, F being focal length, we have, by above, for any single
lens of revolution tn vacuo:

Q = — fon+ btu=S (o — 1Y Fird — 1= (= 1P Ford 4 1= plrg B (u— 17 F213 — g}
+1(u—1) (51— plon) F
Q= dont fas(um DS P4 3t (a1 P — 4 g2 P (G — 1R — )
—(u—1) (3= pls) I
Q =—4tpd (u— 1P F4dry+ = (= 1)2 42 (ra + pary)
—jutpara B2 (=17 FPry(r1+ prre) — p} — (p— 1) (pasy — pi s) F*;
Q' =—4tp? (u =1 Frryry—§p7 (u = 12 Firi(ry + p17s)
+ it pery F2 {(u— 12 F2ry(ra+ pary) — p} + (k. — 1) (prsa— pjs1) F*;
Q= 1tp?(p- 1) Fordry — tp7 i F? {(u— 12 F2 (ry + p373) — 1}
PR (a1 B (24 g0 — i} + 4 (s — 1) (3 — plsn) 'S
Q, = It (u—1pFtriry — p (u— 1P riry F* (par1— p17a) + ( — 1) (p381 — pisa) I,
Hence,
2(2Q —Q,) F2=ri—ra+p (= 12F% ry (p}r§ + 1) — 71 (p37] + 73) + 21172 (pars — pa7a)).
When ¢ =0, this last expression reduces itself to (1 — ™) (r, — r3); and

. F
2Q —Qn:ﬂ
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402 XXI. IMPROVEMENT OF OBJECT GLASS [11

[11.] Changing first u, ¢, R, to u,, 1, Ry; then changing

’
M1, tl: Rl’ V1, V2, T'1, T2, 81, S2, Pl; P2, €, 5,; €,
to ;
5 5 M2 t2a R21 Vg, Vg, T'3, T4, S3, Sa, P3; Pa, 6"; G", €,
in which
Ry=r3=rs+ (1 = p;t) ranaty,

ts =v3—1s,

ps =1 =gty + p;1rsty,

pa =1 4 vty — pslrats,

e =a" 4 A8

e, =ad’ +BB";
and adding the two results: we find for any combination of two coaxal lenses of revolution
in vacuo,

T4 = %’Ulelz + % (’Ug = ’Ug) e — %1)46”2
+3tp 3 R4 (rle — 2ryrae, + 136 )?
+ Ytapg® Ryt (r3e” — 2rymae, + rie)®

rie — 2rirye, + r3€ (a2
4y (= 1y RE OPIT

— 1) €—2(p172 — p2r1) € + (12 — p3r1) €'}

13"’ — 2rgryae, + 1€
Qs (p2 — 1)2R;

-2

{(p3ra—1s) €' — 2 (psra — pars) €, + (14 — pirs) €}

Hee st 4’( 1)2 {”'16 ( -t 2P2€, +P§e') —7‘26(6' E 2p1€, +p%€)}
—2 1
m {rae (€' — 2pae, + pie) — ra€’ (e — 2pge, + p3e”’)}
At N il ;
m(e 2P2€ +P2€) 4( )3(6 2P1€ +P1€)
= ¥ < RZ_ ry
4—(622%1?@ —2P4€,;+P26)2_m4—2_—1)3(e—2p36".|.p§€ 2;

(Function 7'® for ANY DOUBLE LENS of revolution n vacuo.)

which may be reduced to an explicit function of ¢, ¢/, ¢, in which
¢ =ad' +88",
by employing the relations
a=F(F—1 " +F— )’ B=F(F]._IB”+F2_IIB,):

which give

g = FrAt (Fye + Fy€'),

€, = FFl_lﬁg_l(Fge'”-l‘FlG,)

€ = FzFl—2F2—-2( F2¢’ A4 2F1F2€ +F12€’)

WWW.rcin.org.pl
S



11, 12] XXI. IMPROVEMENT OF OBJECT GLASS
Also,
=(m—-1)F; Ri'=(pa—1)F.
[12.] For the case of two infinitely thin lenses, close together, we may suppose
O=vn=mn=v=v=1t="I;
Ry=ry—1ry, Ry=r3—rny;
pr=pa=ps=ps=1;
F/=F'=F/=F/=F'=F"=0;
FA=F' + Fi'; Fi'=(m—1)(ri—ry), Fy'=(pa—1)(rs—ra);
and calling these last powers p; and p,, (F~' = p; + ps,) we have
(pr+p2) @ =pra” + pac,
(pr+po) (@ =) =pi (@ ),
(pr+po) (@—a") =py (¢ — ),

”n ! F
P1 +pz> 2 T 80,

e—2e,+e'=(

e —2,+e= (p—lz-_):—pz) (¢ —2¢' +€'),
and 7'® becomes divisible* by € — 2¢," + ¢’
(Feb. 13th. 1844.) And if we make, for abridgment,
a =fl fn n
Fl FB

S =R - =y Ul oy g my T
so that for the case here supposed f* + f"' =1, then
—d=f""-d), d'—-a=f (" -0a),
e—2¢+€=f"2("—2¢ +¢) € —2¢+e=f2("=2¢ +¢);

and the quotient of the division of 7'® by €’ —2¢, + ¢’ is composed of the following parts

(r3e — 2ry7ee, + rie’) (rg — 'rl)f"" - F? et
4‘)“41(,”'1-1)2(7'1—7'15)4 EACEIOMN

)

1st.

e e LETV GRS

2 =
—4'P1(7‘1—7'a)

%ok !— {(rl —19) 2% + 2f'f" (1] — 1aé’) AP f"2 (7'2 e A rﬁe’)};

{(r1— r,a’f' +ma” —rdf' P + &e.}

# [This is true for every “thin” system. See Appendix, Note 26, p. 511.]

www.rcin.org.pl
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404 XXI. IMPROVEMENT OF OBJECT GLASS [12
(r3€” — 2rgrye, +12€) (ra—13) 2 F? {(rse"" —rqa)? + &c.}
dpp (2 — 1)* (rs —7a)* T A, L AWk

.y
Ay (rs —1q)

F2 ‘a4 ! '’ 12 " .
s {("'3—7'4)f 3¢ + 2f f" (ra€” —rae) + - f —7 03¢ = 2ryreg) + ’”ie')} ;

2nd.

(o —Taf"d" + s =T f ) + &0}

£ o F 720 II ’ ! "
il 4(/;1—(% (rfv)ﬂz)z 3 e —m(f2 + 277" e +/N)5

T3€ — T4€ F2 19 1 1 1 ’ n ’”
4th. 4!{';2(_31)2(":_24)2 {7‘3 (f2 +2ff € +f 2" — r4€ };

2 114 (11
Bl Szlf(”mf 1)3125 ) 1oLy — ) (¢ 2/ 4 €)5

fis 14 o 1
6th, & S‘jz(j;z “wﬁ: ) e 1F4(Ss—s4)(e"—2e,’+e').

4T
Hence, mn —,,—2——_+_, H

the coefficient of €'’, (because
SrFA=F = (u — 1) (ry— m2) = pu,
f'F—1=F2_1=(M2"' 1) (rs—re) = ps,

: FA=F{'+Fy'=pi+ps)

is

=17 s, BT (= 1) (r = ma) + (pa = 1) 7l

1
+ (=12 (ry =) (r3—re) —ra {(m— 1) (r1—12) + (p2—1) (r3—ro)}?

+(u—1) (81— 82)+ (n2—1) (3 —8a);

the coefficient of €’ is

JM};” 7} (s =70 = 2 (= D e =1 — (= ral?

+ (=102 (rs—raf (rs—rs) + 11 {(Ml —1)(ri—r) + (g — 1) (s — 7‘4;)}2
+ (u1—1)(s1—82) + (2 — 1) (53— 82);

and the coefficient of — 2¢, is
= (—-———”’1#_ . 7y (r = 19) {(pa— 1) (rs—13) — (1 — 1) 73}
¥ (qu.u—z- Y ra (rs—1a) (g2 = 1) (r1 = 72) + (2 — 1) 73}

+ (1 — 1) (pa — 1) (ry — 12) (ra—173) (r3—14)
+ (1 — 1) (81— 82) + (pa — 1) (83— ).
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(Feb. 14th.) By above, if v; = v, = v3=1v, =0, that is, if the two lenses be infinitely thin and
close together at the origin, then

b M 2€l, +¢)(Qe" - 3Q, e'/ +Q'¢);

in which, 4F-4Q, 4F*Q", and F-*(Q, have respectively the values assigned above, as the
coefficients of ¢, ¢, and — 2¢/, in

4 (e —2¢' +€)1FATW,
The coefficient of ¢’ in 7'® is*

_(F"2+F>=__1}F;

therefore if longitudinal aberration vanish for direct parallel incident rays, we must havet

— } Fe"’ + Q€% = const. + const.’ V1 — ¢’ =const.’ X (— ¢’ — €2,

=—3}F
(Compare p. 383, Q=1P, P=—4F.) Hence
4F-1Q=—1F3
, =—2Q-%0Q,;

if then @, =0 (see same p. 383,) we have

4F14Q+F1Q,=0;
and if @ = — L F, then also
F-4Q, —4F-'Q=F"3;

an equation which, it is remarkable, is independent of sy, sy, 83, 84; and is divisible by F-*. The
quotient of this division gives,

‘ A =piDri(ri—re) + pg (s —ra) {(pr = 1) (r1—72) + (pa— 1) 13}
+(p—1) (r1 = 13) (ra = 15) + ra (1 — 1) (r1 = 19) + (ua — 1) (13 — 19)}

= {(ua—1) (11— 1)+ (ua = 1) (15 = 1)}
that is,
ty ' pa (p1 + ps)

oo e AL

pitpary+ py para+ pr (ra—15) + (Pr+pa) 7a +
or finally,
(Bt D) pr(ri4ra) + (3t + 1) pa(rs + 1) = (u = pg V) 2+ (51 + 2) (p1+ po)
(Equation (B) of Jan. 2nd. 1844.)

* [Cf. the expression at the beginning of [8.]; #"”=0, since the focal centres of the thin combination coincide
at the origin.] 3
+ [In order that the emergent rays (corresponding to an incident system parallel to the axis) should all pass
rigorously through a single point on the axis, it is necessary and sufficient that when we put «'=pg'=0, we should
have T=k+ky", where k, ¥ are constants.]
- 1 [This reference is to the letter to Prof. Phillips.]

HMP 52
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406 XXI. IMPROVEMENT OF OBJECT GLASS [13

—477(8)
[13.] (Feb. 15th. 1844.) Since the coefficient of ¢’ in e,—,4iliv~2—e,T—_l_€, is 4F4Q), (for a thin double
o

lens of revolution vn wacuo,) while -1 = p, + ps, we have*

4%4(4@+—g')—4(y1—1><s1—ss>—4<m - 1) (00 ) = (L =i D) o,

2 2
mlpl} — T3P (op 4 pat (myt = 1) (rs + ro))?
1

=—(1—m1)p1{r1+r2+1_m Tt

+ 2p? {lln_ip—l P R — (i + 1‘2)+'r3+1'4} + 2 (p1 + po)? {M—r3+1‘4}+2(p1+p2)3

my  1—mg 1—mg
== (L —=my) p1 (r1 + 79)* — (1 — mg) Pa (r3 + 74> — 2 (1 + my) pk (11 +173)
= 2 (1 + ma) (P} + 2p1p2) (13 + 14)
2-mi o, 2
+
Pty
this last quantity, therefore, when added to
4 (pr—1) (81— 52) + 4 (pa— 1) (53— sa),

is to give an evanescent sum, if the longitudinal aberration is to vanish, for direct parallel
incident rays.

.|..

Z..:Zpg+2(3+2m2)p1pz(p1+102)$

1—my

If the surfaces be all spheric, then s, =33, &ec.; therefore
4 —1) (1= =2 (= 1) (3 = 13) = 2y (o3 + rara b 18) = L4 (ry 4 7o)t — )
my p3
- % B(ri+m) + (r—r)} = 2(—1_—;1)2
4 (pa—1) (83— 84) = &c. ;

therefore for a thin double spheric lens in vacuo, the condition of direct aplanaticity is

G

(mq + %) p1 (1 +72)* + (me + B)pe(rs + r)? — 2(ma + 1) pa(p1 + p2) (13 + 79)
= 2p1 {(my+ 1) py (r1 + 72) + (ma + 1) pa (753 + 7))

4—dmy—mi+2mi o 4—dmg—mj+2m] | ;
2(1—my 2 it 2 (1 — my)? P+ 2(3+2ms) prpa (1 + p2)=0; (A)

ot %pl (7'1 G ”‘2)2:

while the additional condition for OBLIQUE APLANATICITY 1 is, by end of [12.],

(-4r+(0+42+ 3)-)

(m1+ 1) p1 (11 +73) + (ma + 1) py (75 + 75) — (Mg — M) P} — (M + 2) (p1+ p2)* = 0. (B)

* [m1=pl-1, my=p;!; see next page.]

+ [Earlier writers had used the word aplanatic to mean free from spherical aberration, the incident rays being
direct. In modern usage, following E. Abbe, the word implies in addition the satisfaction of the “sine condition,”
which gives absence of circular coma of all orders (cf. G. C. Steward, The Symmetrical Optical System, p. 51).
‘When Hamilton’s conditions for direct and oblique aplanaticity are both satisfied, the system (being free from
spherical aberration and coma) js aplanatic in the modern sense, to the order considered. See footnote to p. 429.]
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These equations (A) and (B), which had been deduced in former investigations, were used by
me on the 2nd. of January (1844), to determine the radii for the four surfaces of Mr. Phillips’s
double object glass.* m,, my are the reciprocals of the indices of the two component lenses;
P1, Pa, their powers;

Wopr=(ml=1) (1 —1g), pa=(myl—1)(rs—ra);
71, Ta, T3, 74 being the four successive curvatures, positive when convex to the incident rays. The
equation (A), under other forms, agrees with known results, for example, with Herschel’s; the
equation (B) is my new condition, for the improvement of the achromatic telescope. (See [33.],

[34])
[14] Rays in one Diametral Plane.

(Feb. 15th. 1844.) Let me now recapitulate, or reproduce, the most necessary part of the
foregoing calculations, for the important case where the rays are supposed to be all contained n
one common diametral plane of the instrument, which we shall take for the plane of 2.

In any one medium, index pu,
% - - wl’ _xl zll __zl
g=ua, v=wy, o*+v¥*=u? ado+ydv=0, g -

o i
(2" —a')8a + (2" — ') Su=0;

or more concisely

Azdo + Az8u=0.

For any one refraction, at surface 8z = pdz, Ao =—pAv,

Ag bz + Avdz=0.

Thus, if light pass from o, zp, t0 #ni1, 2n41, undergoing n refractions at @y, 21, .. @, Zn} and
having its components of slowness successively oo, vo; o1, v; .. 0n, vn; We shall have

(.Z'l —_— .Z'o) 80’0 + (Zl - Zo) 8Uo=0; (0’1 - 0'0) S.Z']_ + (Ul—‘ Uo) 821_’—'-'0;
(xz—wl)SUl +(Zg —Zl) 8U1=0; (0'2—0'1) 8-1'2+(U3— Ul) 812-"—"0;

(@n41— @) 80 n + (Zus1— 2n) OUp =0;
therefore if
Ty = a1 (01— 00) + 21 {v1— Wp),

Tg=£z(0’2'—0'1) +22(U2— Ul), &C.,

T=T1+T2+--+T1U

and

we shall have
o7 = &'114.180'” - {l/'oso'o k- Zn+180»n o 208110

Q
s (‘L‘nn T _"Zn+1> 80-,, i (wo e 20) 8.
Un ¢ Yo

If, then, we consider 7 as a function of oo and o, we shall have the two equations

. S RS T g
0 % L it} 80’0’ n+1 Yn n+1—80_"7
# [See p. 384.]

52-2
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408 XXI. IMPROVEMENT OF OBJECT GLASS [14, 15

of which the one may be considered as belonging to the initial, and the other to the final ray;
whether these final and initial rays, or portions of one bent path of light, be in vacuo or in any
ordinary media. And so far all is rigorous.

Now, let the surfaces be all of revolution about the axis of 2, and let the course of each ray
be little distant from that axis; then we may make, approximately,

vi=v0+ v+, 2,=20+ 2D+ 29,
T;=TO+TO+ T, T=TO4+TO 4 T0;
neglecting terms small of the 6th. dimension in 7.
DO =50 (40— ,); TP = o0 (2= of2,) + 40 (Y = uf2y) + 2 (01— 02.2);
0= 50 (49 = f9,) 440 (AP — D)+ 40 (49 = D)

in which,
2 4
O — 4.° D iad's s i
ny'= Wy, U= Y= 39
k2 % 2 s (2 8’%

and we may write

0 =v;; 2PD=%ral; O=}sa}.
Considering 7’; as an explicit function of #;, o;, o;_1, we have the rigorous equations
8F;  _3T: T
8%‘{’ &Ti 80‘,; i
namely # of the Ist. sort, and n — 1 of the 2nd.,, to eliminate the 2n — 1 auxiliary or intermediate
quantities @y,.. &y, 01, .. Cp_1.

s o

[15.] We have therefore 2n — 1 approximate equations of the forms:

R i

0=~8£, 80',;

which are all linear with respect to the quantities # and o, and determine, approximately, values
for @y,..2y, o1,..04_1, a8 linear functions of oy and ¢, ; and if these values be substituted in
TP +..+ TP, the result will evidently be 7'®; as, still more evidently, IO+, + TV =10,
But, farther, since we have, still more nearly,

2 ()
oy %— +8—§; ; 0=§§5(T?’+ T + T + THh);

therefore the errors of the approximate values, above deduced, for zy,.. Ty, T1,.. On_1, are small
of the 8rd. dimension; the error, therefore, produced in RS AT, by the substitution of
those approximate values, is small of the 6th. dimension, because it depends only on the squares
and products of those small errors; consequently the substitution of the correct values of #, ..z,
o1, 01, in TP 4.+ T, would contribute nothing to 7@, though it would to 7@; and
therefore we may write

TO=TP+.+7T9; TO=TP+..+TP; TO=TP+..+TP;

of which expressions, indeed, the 1st. may be considered as useless, but of which the two others
are very important, and in which the approzimate values of @;, .. 0,1 are to be used, as determined
by the equations at the beginning of this section.*

* [See Appendix, Note 24, p. 507.]
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15, 16] XXI. IMPROVEMENT OF OBJECT GLASS 409
By [14.],

T® = foi (it o3 — w03 + § (s — s 738 + (05— o) i

sTP

" S = i g (i — pid) i
T

8T® 3 Y i B2
i i

therefore the 2n — 1 linear equations referred to above are of the forms:

Oi— Oi1, Oi_ Ty — &,

—ri&%;= ) £
Mi— i1 M Vgl — Y

those of the 1st. form expressing, with an approximation sufficient for our purpose, the law of
refraction; and those of the 2nd. form expressing the law of rectilinearity, Under these forms
they might have been deduced by more elementary considerations; thus the 1st. form, being
equivalent to

; + 1 2; _ Mi1

FTR e T ) ’
Qi1+rieg i

is easily seen to give the law of the sines, to an accuracy of the 1st. dimension, or indeed of the 2nd.,
inclusive. But the foregoing analysis is important, as showing that after calculating T® with these
approxzimate values, we need not employ more exact expressions in order to obtain T'® to the required
degree of accuracy, but may simply substitute the same 1st. approzimate values in T'(" + .. 4+ T'®,

For a single refracting surface, eliminating «;, we find

2TP =v;(pu; o —pitad) —r7  (pi— pic) (o0 — Ut-l)z_;

or, more concisely,

2 2
—2T® —y,A "i—1+7_i_1 A"i—l_
Hi—1 A,”'i—l

[16.] For two successive refractions, the linear relation between o;_1, 0y, 0441, may be obtained

by adding the recent value of 7% to that of 7%, and equating to O the differential of the sum,
taken with respect to ¢;; which process gives

0= (Vi1 — ) ;7 o — 17 (s — pica) ™ (05 — 0i1) + 771 (Biga — i) 2 (0ig1 — ‘Ti)j

a result which may also easily be obtained by eliminating «;, #;;1, between the three equations
= 1i@i = (i — pica) (0i— 0i1),  —Tipa Biga = (piya— i) (Tip1— 03),
pitoi= Vi — vy (@41 — @)

that is, between two equations of refraction, and one equation of rectilinearity.
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410 XX]. IMPROVEMENT OF OBJECT GLASS [16, 17

For a single lens in a single medium, wiyy= pi-1, and if we make

R =r;—riga+ p7t (i — picn) Tivia (Viga — %),

then
Rio;=1i0i41 — 541 0iyq;
also
2T + 201'Q, — piy (vio}_; — vipa 03yy) — (i — pid) ™ (Y 034y — 770 07 )
= (V41 — ) ;7 — (s — pia) 2 (7t — i)} oF
+2(wi— i) it o — 7Y dia) o
ok Y Ty (i = pia) ™ [Bio? + 2 (1441 041 — Ti0741) ai
=—r7lr k(= pi) B (10001 — ri1000)?;
and
(rio3 ) =i 62 ) (s — rig1) — (10 — TigrGia)P = — 1iTiga (Ti1 — 7ia)?;

w2 (Tz@) + Tﬁ?l) = ,u,i‘_ll (’U,‘O’?_l — Vi1 0‘12:+1) o /L;_I .Ri—l (’Ui+1 e ‘1),;) (’I‘i 0‘3.‘_*_1 Ty 0'?_1)

— (i — pica) " B (01— 0ia)®. (Compare [22.].)

The equation of a ray incident on this lens may be put under the approximate form
@i =03 (Zia — ¥ + 7 i R7 i1 0i0 — v3) — (i — pic) RN (0i41 — 0401) 5

and the equation of the corresponding emergent ray is, in the same order of approximation,
Tise = Qiys (Zige — Vipr + 7 pia R 17300 — 09) — (i — pica) RN (0i41 — 1)

Hence, if these two rays be parallel to each other, the 1st. cuts the axis of the lens in the

Jocal centre
Mi1Tiv1

Zia=1; —,U';RT (Viy1 — ) 5
and the 2nd. cuts the axis in the other focal centre

Mit17i
Zita = Vig1 — — 55 (Vig1 — V).
i By

Also any incident ray has the same distance from the axis at the 1st. focal centre, as the
corresponding emergent ray at the 2nd. focal centre ; namely at a distance

= — (s — pic) 1R (0341 — Gi1).
Rays incident towards &ec. See [22.], [23.].

[17.] (Feb. 16th.) Defining ¢, o' to be sine and cosine of inclination of incident ray to axis
of z; and ", 4" sine and cosine of inclination of refracted ray to same axis; » corresponding
inclination of normal of refracting surface, at point of refraction; the sine of incidence will be,
rigorously,

o' cosv—r'siny,
and that of refraction will be
o’ cosv—q' sinv;

0O
-
o
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17] XXI. IMPROVEMENT OF OBJECT GLASS 411

so that the fundamental law of refraction gives, rigorously,
w (@ cosv—v' sinv)=pu'"’ (¢ cosv—q" sin v),

w' being the index of the 1st. medium, and '’ that of the 2nd. If then we make

’.L’a' o a_l, ’L"Y' - v” ’L”a” s a_ s F,”fyn s U :
we have
(6" —a’)cosv= (V' —v')siny,
or more concisely

Ao = Avtan v,

as an expression for the LAW OF REFRACTION. This gives

Acdz+ Avdz=0,

@, z being coordinates of incidence. Also, by rectilinearity of ray between any two successive
refractions,

and because
pr=ac?+1? 0=0cdc+vdy,

the LAW OF RECTILINEARITY is expressed by the equation

Axda + Azéu=0.

Hence, if we make

Ti=z;Ajo + z;Av,

x;, z; being coordinates of ¢th. point of incidence, or of refraction, and A; the characterlstlc of the
change there produced, so that, more fully,

Ajo=Aci 1=0;—0i1,

if o; be the value of o after the ith. refraction, we shall have, by the law of refraction,
8T; = ;A 80 + 2;A;0v;

and therefore, by the law of rectilinearity,

8T,' = .’L‘i+180',- + Z-,-.HSU,- - w,-_l&r,-_l -2 Svi_l,

@;_3, 2i—1 being the coordinates of any point on the ¢th. incident ray, and @i, 21, being the
coordinates of any point on the sth. refracted ray. If then we consider two successive refractions,
we have (because 0 = Az;80; + Az;0v;)

8(Ti+ Ti11) = wi4280i11+ 2i428viy1 — #iq 801 — 21 8v;_4, &c.;

and making 7'=T,+ T +..+ T,, we have, for n successive refractions, the formula

lfT = .’E,H_ISG'” + z,,+18v,. - -’L‘oSUo = Zosvo;
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412 XXI. IMPROVEMENT OF OBJECT GLASS [17, 18

in which, by definition,
T=x(c1—00) +@a(03—01) +.. + @p(0n— op1) + 21 (V1 —vo) + 22 (V2 — 1) + .. + 25 (Vn — Un1) 5

it is therefore immediately given as an explicit homogeneous function of the 2nd. dimension, of
the 2n coordinates of incidence, and the 2n + 2 quantities o, v; but the equations of the refracting
curves give each z as a function of its own #; and the equations of the form o 4+ v = y? give, for
each medium, v as a function of o ; thus 7 may be considered as a function of the n #’es, and the
n+1 o’s; but by the law of refraction, 7' is to be a maximum or minimum, or more generally to
have a stationary value with respect to each of the a’es; and by the law of rectilinearity, it is to be
stationary also with respect to oy, .. s 3; eliminating therefore these auxiliary quantities, it
will become a function of @y, o, and we shall have the two equations for initial and final rays:

x_g(.)z— _8.Z- @, a_"z -—.,I.S_Z7
0 %o 0 80‘0, n+1 Yn n+1 80'7.'

And the elimination of each z, separately, can be effected by means of the equation of the
corresponding refracting curve. For that equation gives

A,;G‘ *

Aiv) g

zi+witanvi=fi(tany,-); T,;=A,'U.fi<

and

A;
Tt Bovl (A—:)

rigorously.
[18.] For a refracting circle,
z=—1r"1lsiny, z=c—rlcosv,
¢ being ordinate of centre, and »~ radius, positive when convex to incident light ; therefore

z+xtany=c—rtsecy,
and

f(tanv) = ¢ — V1 + (tan »)%

Hence, for ANY COMBINATION OF n REFRACTING CIRCLES, having their centres on one common
axis, we have, rigorously,
A 0'>

the radical being positive. Developing the radical as far as the 4th. power of A;a, which we shall
suppose to be small, and denoting the ordinate of the ith. vertex by

vi=ci— 17,

T= 2(1)1 CZA iV — E(z)l’l‘,, A iUV

we have, nearly,

T= 2(1-)11l {viAiv , %r[lAiv“lAiaz+-}r{1Aiv_3Aia"4};

WA FOLlN Oro |
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18] XXI. IMPROVEMENT OF OBJECT GLASS 413

AL Aju3, Ajo?, Ajo?, denoting (A;v)7Y (Aiv)73 (A;a)? (Aso)t And because, in the same order
of approximation,
v=p—puto? —fu

we have, still in the same order of approximation, 7' being = 3,1 7%,

2 4
T.- = ’U,-A,-I,b— vA—’U,;A,' <%) et %’U,’Ai <%> ™ -%-7‘“'1 (Ai,u.)_l (Aid)a

=37 Qi) (Aio) A <%) 7 Qi)™ (Ai0)

the parentheses being employed to make the notation more unambiguous. (Compare [2.].) We
may conveniently distinguish these 6 terms.of 7 as follows:

Ti i Tgo) B TI$2)+ Tug.z) + TI?) i Tllg],) i T”,?)——- T?) o+ T§2) o T?);
2
TP =vlip; T'P=—gudi %5 TP == o} Qap) (&0
’ at ’ a ", - o
i 24) = —%’UiA.'E ’ 4 ’54‘) = — i’l‘i'l (A;,u.)"“ (Aia)z A; % H Vi S‘): %1‘1. 1 (Ai#) S(Ai6)4.

Also the n — 1 intermediate o’s are to be eliminated by the n — 1 conditions of stationary value,
which are of the form

b 8(Ti+ Tipy)

i 4 ’

80‘1;

0

that is, sufficiently for the calculation of 7', to the accuracy of the 4th. dimension inclusive (by
the properties of stationary values),

oT®  8T®
0=+ 20N, ORI, TO = TP TP+ T,
1 ?

T=TO 4 TO4T® ; 7O -3, TO; TO =5,T®; T®=3,T®.

Now,
Y ;0 ST’g‘Q1 V410 ) :
= - —— = —— L — T’(?) T'(?) =it ._1 . p—n p&
Sa; i’ da; B Sa; (T"P+ 170 = i7" (Vg1 — v) o3;
87" ST"®

=—1r71(Aip) Aio; —8%1 =77} (Aipap) " Ao ;

80‘; s

therefore the equation connecting o; with o;_; and oy is the following;*

0= {p; ! (vir1—v) — 771 (Asp)t = ri} (M) ™ oo+ 771 (Aip) ™ s + 775 (Biap)™ o6ia

This equation in differences is of the form
0=A4;0i 1+ Cioi+ Ai10041;

* [See also beginning of [16.].]

HMP 53
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414 XXI. IMPROVEMENT OF OBJECT GLASS [18, 19

and we have n—1 such, namely those corresponding to i=1,2,..n~1. When the surfaces are

all close together, then
Ci=—A4;—A;

and the equation in differences becomes
Ai(0i—0iq) =Ain (i1 —09)=C;
SN 7, ot SRR ONSUGY o | e, R S UM o 3 o,

ou—0o=CZ 1471,

and finally
! riAip
ri= 00t (u— o) SO
y @1Ti A
that is,

aiE(i)’l‘nAip, =02, ilip + U”E(i)friAi,u.

[19.] [When the vertices of the refracting circles are distinct, we have]
A(4iAio)=—p;loAvi=A]; (Aic=0i—0ig; Adi=di—di;) Ai=r71(Ap)™;

AyAgo — Ay Ao =AY Aihgei Aido w4 4,
A3A30'—A2A20'=A2’ . A4A40'—A1A10‘=A1, +A2’+A3’,
&e. &e.
If then we make A}’ = E<i)fA,;', we have n — 1 equations of the form

AipgAipgo =400 + 4],
or of the form
Aippo=A7Y (A1M0+ A),
i being successively =1, 2, .. n —1; we may also include with these the case 1= 0, by treating
Aq as = 0. Hence, by addition,
—0p= 2(-)71' . Ai_l (AlAld' + A:’_l),

ol % AT AN

i A1A10'1-— 2()1 A = , 0‘7;-Uo=A1A16.2(i){Ai_1+E(01 A:’l;
i
and
{ (0i=00) 2y 3riAip — (o0 — 00) = {7: Aips
. e =2(i)’1'7‘@'A1;,u.2(0f7‘iAi/l,A£ 2(1)173 il E(l)lrz l/"Ai 1’
in whnic

A;'_1=_E(i)i_l-/‘;lai('vi-;.l—vi); A =0; E()l (&C)A:’_l (i)z (&C)A
Thus, retaining the abridgments 4;, 4/, as defined above, and not neglecting any powers of
the quantities 4, we have
a'izw'{A;'l= aoz(,,);grlA;l + onEOIA o
+3,14;1. 3,5 A71Z 1A -3

or, making for abridgment

-1 - g I
@) IA E(i)’]t 3 Ai E(z){ A

-1 — 3 _l
(z)’fAz' - E(i)fAi ’

95
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so that Ao =0, A, =1, we have

i =ao+ Ni(Fu=—ap— S A AT Z IV AN) + B i AT 41 4Y

For example, {
o1=00+ M (d‘n— g~ Z(i){;.A;IE(i)i‘IA,-');

and accordingly this agrees with 4,40, above. Make for abridgment

L i o =1 AN
Bi=Z i A715 1AL

so that i
BO - Or -B1= 01 B2= Az_lAII; B3_B3= Ag_l (All + Aﬂ'):
B4 - Ba = A;l(A 1’ +A2I + As’), &C.,
Bi=AY (A + A7+ + A7)+ A (A7 + . + A7)+ + A AT
then

0'i=0'0+)\i(0'n—0'0—Bn)+Bi-

To verify that this expression does in fact satisfy the equation in differences relative to o,
we may observe that it gives
Aio=0;—0i1=Ni—Ni-1) (6a — 00— By) + B; — Biy;

in which ; .
M=Aa=AT CHrtATY Y Bi—Bia=A47'S4i74{;

Ao = (a',, — 0 —Bﬂ) (E(i)'fﬁi—l)—1+ Z(i)i—lA,:',

A.A;Ajo= A/, | as above.

And if, in 4/, we substitute for o; its first approximate value, namely o+ A; (o, — 00), we shall
obtain corresponding expressions for B;, B,, which will give for &; a more correct value, indeed
the one which we are to employ, if we neglect the squares and products of the intervals between
the successive refracting surfaces.

[20.] (Feb. 16, 1844.) If we make for abridgment
a; =i (i — piz1), bi= ('1;'+1 —v)p; ey,
the linear equation between oy, 0y, 0;,1, assigned near the beginning of [16.],* becomes
0= a5 (oo — 09 = a7 (01 = o)+ b |

Thus,

0=a2‘1(a3—61)fa1'1(0'1—00)+b1»

0=Iaa_l(0'3—U’)—az_l(o'g—d'l)'*'bg, &e.

Hence
0= a;l(ca—d’g)— al‘l(cl-—a'o) + b1+b3, &C-;

* [See also [18.].]
: 53-2
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416 XXI. IMPROVEMENT OF OBJECT GLASS [20

01— 0o = aya; ! (a1 — o),
ag 5 04 == azafl (01— 00) — aaby,

03— 0g = asal“l (0’1 o 0'0) — Qg (bl =+ bg), &e.

{ 0'2—0'0=(1/1_1((11+ag)(0'1—0'0)— dzb]_,

as—o-o=a1‘1(a1+a2+a3) (Ul—do)—dzbl—as(b1+bg), &C.

: {O'n—0'0= a,l‘l(a1+a2+..+a,,)(0'1—a'o)

—dzbl— (13(b1+bz)—..— an(bl+bz+--+bn—1);

let
AR o, A B . b d
P e . B0, § 00 STV O ST A ¢ W S T
PSRN 4, A = aghy + as (by + by) i (b1 1)

then

g-i—o'(,:)\,i(g'n—a‘o-l-)ynl)—)\,i'; X1,=O, K,n=]..

This equation is a rigorous result of the equation in differences relative to o; but Ay, A,
involve the intermediate ¢’s, which are the quantities sought. (In [19.] B; was written for what
is here —2;.) However they involve them only as multiplied by the successive intervals
between the vertices, or surfaces; if then we neglect the squares and products of these intervals,
we shall have

bi = (Vig1—vi) p;? {o0 + Xi (a0 — 00)},
and thence may compute Ay, A,’, and ultimately o;.

Make for abridgment
(Vi41 — ) /", =d;,

(since we do not employ the differential d;) then
bj = djd‘j= dj {0’0+Xj (0',. - 0‘0)} M

and the coefficient of d; in o; is o9 +Aj (o, — o) muilliplied by the coefficient of b; in A\, — A ;
which last coefficient is

Ni (@1t Gige+ o+ W) — (A1 + Gy + ..+ @)

This coefficient vanishes, unless j<n; and its last part vanishes, unless j<i. When multiplied
by a1+ ..+ a,, it becomes
=(a1+..+ a,-) (ai+1 +..+ay),
if j=1; but
=(a1 + e ai) (a,-+1 +..4+ an),
if jZ 4. (When j <1, we employ here the principle that
(A4+B)(B+0)—(A+B+0)B=AC,;

A=a+..+a;; B=aju+..+a; C=a1+..+a,)
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21] XXI. IMPROVEMENT OF OBJECT GLASS 417

[21.] Since 7® =37 is homogeneous of the second dimension,

ST®  5T®  3T® 8T

@) = =
2T oo S0 +on ¥ oo 50 + o, i

o 8T _sre 8T®
( it ooy il 80’2 _“—80'1-—1’>

now *
9 12 .
T(lz) i Tll(z) + T"f”, Tf) = T'ff) N ) 7(‘2),

81" ® 37" ®
R I e S Sy
n
ST ® 87" ™
80'; =17 (Ap) 0 —8&_”_= =7, (Bap) 1 Buo;
n

A10‘=—-‘0'1—0'0=>\1(0'n—0'0—Bn); A,,,a':o'n—an__l:(l—7\”_1)(0'",—0'0)+’Xn—1Bn"Bn—1;
M=ridip. Ceirdip)™; 1=Aa=rbap. Geirdip)™:
B,.—B”_1=r,,An,u,.E(,-)f‘-lAi';

) 8T"'.(2)_ Op— 0o — B,,. 8T ® on— 00— By
80’0 2({)71' rilip 2 dop w E(i)'; i p

-2 N4/

(o0 = a0) (o0 — 00 - B”)-a,,,z n-14/.

2]'(2):1,1#—10.2_1, u-lo? — s
0 “o nFy “n E(i)"l'ri Aip (OX}

and this equation is 7gorous, WHATEVER MAY BE THE NUMBER OF THE REFRACTING CURVES, AND
THE MAGNITUDES OF THE INTERVALS BETWEEN THEM. But because

Ai' = - /l.i'la',;A’Ui, B,,= Zm’;. r,-A,-/»E@{"IAi',

the expression just given for 27'® involves, explicitly, the n — 1 intermediate o’s, though only as
multiplied by the n —1 corresponding intervals Av;. If, however, we neglect these intervals, we
find, for ANY COMBINATION OF REFRACTING SURFACES CLOSE TOGETHER,

(00— 00)* .

27®@ = y(u-1o2— y-1g2)—
(F’O 0-0 F’n an) 2(1')7{1,1; Ai Fl,

so that the approximate equations of initial and final rays are respectively

Tp— 00
E(iﬁ"l‘iAi/l: ’

Op— 09
?,

N R R =)

If these two rays pass through the common vertex v, then o, =0¢; and in fact the law of
refraction shows easily that in this case o = ua is not changed at all. This last result must hold

* [See [18.].]
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418 XXI. IMPROVEMENT OF OBJECT GLASS [21, 22

good, even when higher powers of the o’s are taken into account, provided that the intervals
between the surfaces still vanish.

For a COMBINATION OF TWO REFRACTING SURFACES, not necessarily close together,we have n =2,
E(i)l"n1 Al =4y =—plo1Avy; Bp=rylop . Ay (= By);
also
71 Al M

o1=0¢+ M (03— 09— By), 7\1=m,

{’f'lAl[l- + TgAg/L (1 - /141—1 A'Ul . /rlAll“)} g1 = 0'27"1A1,u + 0'07'2A2[L;

that is, (compare [18.]),

0= (0‘2 —_ 0'1) (rgAzﬂ)‘l— (0’1 - 0'0) (TlAIIL)—l +/l.;1 O'IA’U]_;
which is in fact (since 0, 1, 2 may here be changed to ¢ — 1, 7,7 + 1, the two surfaces being arbitrary)
the old equation in differences between any three successive ¢’s, deduced as a particular case
from its own general integral. And since

TgAz,LL.(O’g—O'o) it __0'2"'1A1/&+0'07'2A2/[,——{1 ,,,l—lfrl'rzA'lel,uAg,u}
1l p + 1y Ao p b Ay p+ryAop [ETASYTE S PYAYYT) :

the additional term introduced into 27'®, by B, and A4,’, for a combination of two surfaces, is

“LAv . mAjw. A
ol My 1. 7181 2o | o
v {1 - Jat:

+u1 Ay <, AT T o1}
that is,

,ll:;l A’Ul. (G’g?"lAl,Uo + O'o’l‘gAgp,)z
(T1A1}L+7’2A2ﬂ«) {7‘1A1,U-+7'2A2/L(1—[LI—IA’U]_.’I‘IAI[J«)}.

But

(p1o2+ p200)* + prp2 (02 — 00)* = (p1 + p2) (P15 + p20y) 5

therefore, for any combination of two refracting surfaces,

|
(a— 00— p Aoy (oir A+ 0 ra Ao p)
1'1A1[L +7'2A2[L— }L;lAvl.TlAl,(L.’l‘gAg/l:

2T(2)=111[L0_10'(2)—’02}L2_10'§ -

[22.] By foot of [15.], the form of 7@ is such that, for any combination of two successive refracting
surfaces, (considered as 1st. and 2nd. in order,)

= 2T® +vyp5t og — vaps o3 = — (va— 1) py ' 0} + 17 (pa— po) (01— 00}
+75  (pe—p1) (o2 — 1)
= {(r1 Qg )+ (radep) — i Avyf 03— 2 [ (rp Agp) 1+ oo(r1dap) Yoy
+ o2 (riAap) ™t + ol (ralop);
therefore, eliminating o, by the condition of stationary value, we find
(=279 + vyp;t 02 — vaps o} {(reAap) ™ + (raAgp)™ — uy ! Avy}
={(r1Acp) ™ + (raBop)™ — ! Avgf {(raAup) o] + (raBap) o3t = {(rdap) o0+ (12 dap) ™ ol
= (r1Agp) ™ (r2Qgp) ™ (03 — 00 — pyt Avy (1 Ay ) 0 + (12 Ao p) "t 03}
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22] XXI. IMPROVEMENT OF OBJECT GLASS 419

a result which entirely agrees with that obtained at the foot of the preceding section, by a more
complicated but more general process, of which the one in the present section may serve as a
verification.

Particularising farther, let Apu = — A;u, and therefore us=puo; we get the case of a single
lens in any medium, and have, for it, after multiplying both sides by r1r,Ayu, the equation

{7‘1 —Trs+ [Ll_l (/-01 - [lo) 7‘17'3(’03 - ’1)1)} {2T(2) - /La'l ‘U]_O'g + /.l,o-l’l)z 0'%}

= — (1 — po) (03— 00)* + .Uq—l (vp— 1) ("‘10'3 F 7‘20'(2));

agreeing with [16.]. If, in this equation, we change uo, p1, 0o, a2, v2— vy, t0 1, u, &, @, t, we
arrive at the same result as if, in the expression at the foot of [4.], we make By= 0, B3 =0.

Resuming the general COMBINATION OF ANY TWO REFRACTING SURFACES, and making, for
abridgment, as in [19.],
Ar=(ridap)™, Ay=(r28op)7,
and
t = thickness = Avy = v, — vy,
we have the expression*

AlAg (0'2—0'0)2—[1«1—1 t(Al 0'% + Ago'g)
2(A1+A.2—[lrl_lt) ¢

T® =}vip5t o2 —Foau; o2 —

which gives, for the wnitial and final rays, the approximate equations:

,U:o,llvl—ltAl )_ A1A2 (0’2"0’0) i
A1+Ag—}lll_lt A1+Ag—yl—lt’ :

S M}Ll_ltAg )_ A1A2 (0'2—0'0)
PTA + Ay —piMt) T A+ Ay pltt

wo=ao(20——‘vl—

ws=az<zs—

Hence if we make for abridgment (compare [6.], [8.])

P g e M g

& papT 1 tA,
1 A1+A2—}Ir1_lt’

UB—A1+A2—'/L;1t;

the points F’, F”/, on the axis, may be called the two focal centres of the combination; in this
sense, among others, that if the final direction be the same as would have been produced by a plate,
then this incident ray crosses the axis in F', and the final in F" .+

* [No additional difficulty is involved in calculating 7'® in a form suitable for the discussion of exdiametral
rays ; this form is given by changing o2 to o2+172, o2 to o2+12%, and (o3~ 00)? to (05— 00)2+ (ra — )% The expression
at the end of [4.] is a particular case of the expression obtained as above.]

t [For refraction through a plate, whose faces are perpendicular to the z-axis, we have oy=0 =0y, ro=71 =13,
since at each refraction Aoc=Ar=0. The focal centres are the principal points; see Appendix, Note 25, p. 508.]
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420 XXI. IMPROVEMENT OF OBJECT GLASS [23, 24

[23.] If we also make, for abridgment,

7 A4,

g e e o,
then parallel initial rays have for their final focus
3= Faoy, z23=F"+pF;
and parallel final rays have for their initial focus
zo=—Fay, zp=F —pF. (Compare [24.].)

Suppose then that an instrument is formed by enclosing the three successive media, on the one
hand within a (sufficiently large) cylinder coaxal with the two refracting surfaces of revolution;
and on the other hand within two planes, sufficiently distant from those surfaces, and perpendicular
to the common axis: and let this instrument be exposed, in vacuo, directly to a planet, so as to
form in each of its two reverse positions an image within the third medium, reckoning from the
planet. These two tmages will have equal dimensions ; for oy in the first position will be equal to
the angular semi-diameter of the planet, and so will 3 in the second position (neglecting signs);
the images will also be both inverted, if F be positive, or both erect, if F' be negative; and we may
call F the focal length of the instrument, and therefore, in a certain sense, the focal length of the
combination also, formed by the three media and the two curved refracting surfaces. Or we may
state the theorem thus: an instrument of revolution, ¢n wvacuo, bounded by plane surfaces
externally, and containing within itself any three successive media, separated from each other
by any two curved surfaces, coaxal with the instrument itself, will have its focal length = F, in
each of its two opposite positions; (because a plane refracting surface does not alter the magnitude
of an image parallel to itself;) in such a manner that in each position it will form an image of
the planet with a radius = F x angular semi-diameter of planet ; and this image will be inverted
or erect, according as F'is > or < 0.

[24.] This expression* is of the form

(Combination of any two

2T = Fustot — F'"utad — F (g — ool .
ekt Pl oying fov i) coaxal refracting surfaces.)

and the equations of the initial and final rays are, approximately,

zo= (20~ F') — F (03 — a0),
w3=a2(23—F”)—-F(0'2—00).

These two equations will give only one relation between the initial and final directions, if zy, 2
are connected by the equation

. (ZO —F’+}L01'1)(Z3—'F”—/L2F')+MM2F2=O;
and then they give

@ _ ¥ A % T SERRARE et 4
xy 20— + pol iy M e T W e g N

# [This refers to the expression obtained in [22.].]
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24] XXI. IMPROVEMENT OF OBJECT GLASS 421

Under the conditions expressed upon this last line, the point 3, 25 is the #mage of the point @y, 2 ;
that is, rays having the latter for their initial, have the former for their final focus. When the
initial focus is an infinitely distant point, then

SR L AR
20— B + po '

ao;

and the image is
.Z'3=Fd'o, 2’3=F"+,U'2F.

In like manner, when the final focus is infinitely distant,

M2 l3 LB
g™ I
and the initial focus is '
2g=— Foz, zy=F"— k. (Compare [23.].)

The image of @y, ' is @y, F'' ; hence, or more simply from the equations of the rays, the ordinate
(perpendicular to the axis) of the initial ray at the first focal centre F', is the same as the
corresponding ordinate of the final ray at the second focal centre F'';* this common ordinate
being equal to — F (a3 —ay). It vanishes when oy = oy, that is, when the final direction is the
same as it would have been, if the ray with the given initial direction had passed through the
same media, but through a plate perpendicular to the axis. (Compare foot of [22.].) This plate
must in general be thus perpendicular; because, by [17.], the condition Ayo + Ayo =0, gives,
(to the accuracy of the first dimension,)t

volop +v1810=0;
therefore unless

Dopp+ Arpp = pa — po =0,
that is, unless the 1st. and 3rd. media have the same index, we cannot have v, = vy, except when
each = 0. On the contrary, '
va_ P,

" #1—/42’

an equation which determines a certain set of prisms, such that if any one of them enclosed the
second medium, we should have oy =ay. Reciprocally, if the initial ray be directed to the first
focal centre, o3 = 0y, and the recent ratio between v, and v, must held good. As a verification,
since (by beginning of [18.])

B=—17lvy, @y=-—7;1v,,
we ought, by the present section, to find (when oy = o),

(;:=>;H=(_‘iﬁ=> %:.v;l__?"f;

o 5

* [See Appendix, Note 25, p. 508.]

+ [v denotes generally the angle between the normal to the refracting surface and the axis of the instrument;
it is positive or negative according as the projection of the normal (in the sense of z increasing) on the z-axis is
positive or negative.]

HMP 54
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422 XXI. IMPROVEMENT OF OBJECT GLASS [24, 25

which accordingly is true (compare foot of [22.]); for by foot of [21.], and top of present section,

’ It " Ft
#Jl(vl—F)=;17”z(#1—/bz)$ pyl(ve—F )=;‘17'1(M1~#o)5

t
M= 7'1A1[.(« + TzAg}II il ,:;TIAIM .TgAz[L.

When initial ray passes through first focal centre (and consequently final ray through second),

we have
: s SN . Ajp
btk TR 4 Az/.b 1

therefore the ordinate of intersection of intermediate ray with axis, is

i r1 Qg p . (vp— ) g V171 A p A+ Ve Do p
1y p+ ralop r1Ap + ralgp

Hence, when o5 = 0y, we must have

turlayr A p ;
Jisian il o Lok g g "
NPTy Wbt Wb (s )

therefore

(o lon

OT:=;: =F (riAip + re Qg p);
which accordingly agrees with the general linear relation, in [21.], between a9, o1, o3, since that
relation may be thus written:

g1 = F(O"g?’lA]IM 4 0'0”'2A2M).

And this last may be considered as a form for the general equation in differences, or linear
equation, between any three successive o’s.

[25.] In general, by [21.], if we suppose all the intervals Aw; to vanish except one, namely
Av;, we shall have 4;' =0, unless 7= j; therefore

So1 T A = Af = — i ajA;
Bu=Af2 1 ribip = 4] (1=N) 21 rilip;
therefore the part introduced by Aw;, in 27'@, is rigorously
=u; 1o Av; (s — (1 —\j) (60— 00)}
= p; 10 A% {o0 + Nj (00— 00)};
if, then, we neglect the square of Av;, this part becomes*
pi ol Avj= urt o (viga — v)).

Adding the n — 1 such terms (for j =1, 2, .. n— 1) to u;'edv, — p;o2v,, we get

wuglog—prtod) o (pit ol —pyt o)) + ot on (ppli 0 — 1yl 00),

* [Since, by [19.] or [20.], \; (o5 — o) is approximately equal to o oy.]
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25, 26] XXI. IMPROVEMENT OF OBJECT GLASS 423

that is
t] 0.2
o E(i)'{’ll“ Ai (;) ’

neglecting therefore only the squares and products of the intervals between the surfaces, we have,
generally,

a®  (on—00)

e See next section.
T35 inhgt | € )

T(B) = - %E(i)'{v,-A.

in which we are to make, for the present order of approximation,

a2, rilbip = 0o Xt ilip + o2, iridip. | (See foot of [18.].)

Hence parallel direct incident rays are brought to a final focus 2,4, such that (in the present
order of approximation) (last medium being a vacuum)

(zn+1 - 'Un)_l = Zw’;r.- Aiﬂ: + 2 %) {’_ 1 /A:l Av; (E(i) li’l',; A,-,u.)z.

For example, if there be two infinitely thin lenses, near each other, in vacuo; then
(25— va) ™' = p1 + ps + pi Avy,
Aw, being the interval between the two lenses, and p;, py their powers;
pr=(p—1)(r1="rs), pa=(us—1)(rs—ry).
In fact, here, the convergence after emerging from the first lens is p,; therefore immediately
before entering the second lens, it is (p; ' — Avy)™ =p; + p} Avy; to which the second lens adds
the convergence p,. In like manner, if there be / lenses, and an interval =\ after the kth; this
interval adds A (py + .. + pi)® to the final convergence by my formula, because
2'(,)1 rilip =pr+ ..+ pi;

and accordmgly the interval A adds A (py+..+ pg)* after emerging from the kth lens, If we call
2(.)17". i1 the power of the system of the ¢ first refractors, and denote it by F;1, then

(Znsr—vn) = Fp+ 2 01 B2 Ay

a formula which increases the propriety of regarding F; as the focal length of the system of
1 surfaces. (See [23.].)

[26.] (Feb. 17th, 1844.) The method, in the preceding section, of deducing the expression

2
T =—§Z@ivdi % —3 (Epiridin)™ (oa—a0)?,

in which only the squares and products of the. intervals Av; are neglected, from that given
in [21.], namely

T(z)_%vl__gv,,_—}(z(,)m Aip)~ (‘Tn"'ﬂ'o)(a'ﬂ""a'o— B,) - }on2 2147

54~2
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424 XXI. IMPROVEMENT OF OBJECT GLASS [26

which latter holds good, whatever may be the magnitudes of those intervals between the successive
surfaces, and in which we had put for abridgment

Ai' = — p,z.‘la-,-Av@-, B,; = E(i)i‘ ’ riAi/»"E(@)l lA,’,
while

oi =09+ B+ \i(an — 00— By),
A= (Zptridip) 2 iriAip;
is perhaps not inelegant in itself, and satisfactory as a rather simple result of a long and some-

what subtle analysis. But, having thus found the expression at the top of the present section,
I now see that it might have been obtained in a more elementary way, as follows. By [18.],

I

2
0 =S 1T0; IP=TP+10; T'P=—judT; TP = Frbwy Gk
and oy,.. 0,1 are to be eliminated by the n — 1 conditions of stationary value, which are of
the forms
8 e r’
0= EE@-)’{ T'> + T"®),
But, because

(t)’;T’(Z)—-%vl —%v,, +‘L‘E(z)1”"l A?’z,

therefore

8 n gy

b P e
while

3 ’” . »
8 2(1-)’{17 (2)—'A.(7‘iA“L) ]'Aid',

and thus arose the equation in differences relative to o, already employed, in [19.], &c., namely

0=A.(rAp)y Ao + p oy Avy;

all, so far, being rigorous, that is, such that no powers of the intervals are neglected. If, however,
we now neglect the squares and products of those intervals, it is evident that, in calculating
2T1'®, we may employ, for oy, .. 0,1, the approximate values furnished by altogether neglecting
those intervals ; because each of these intermediate o’s enters only as multiplied by one or other
of these intervals. And although the intervals Av; do not enter explicitly into 7", yet, because
the first approximate values of the intermediate ¢’s are precisely those which render this sum
a stationary value, it follows that the employment of more correct expressions for the ¢’s would

only add terms involving the squares and products of the Av's. We may, therefore, not only
make

L ’ . ol (2. " ey %
TO=T'0 L T"0; 'O =5 'O, [0 =3 a7"®,

but may calculate each of these two latter sums, in the present order of approximation, by
employing for the intermediate ¢’s the values furnished by the equation

O=A. (’I‘iA,;/L)_lAiO',
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26, 27] XXI. IMPROVEMENT OF OBJECT GLASS 425

which gives
i — 0o =i (o0 — 00);
therefore
Tilipp-(Tn = 90) . gy A Fi i
collealhges. T "y A vel = — A . A )2 (o — ao)?;
Ajo Sarb i ridip. (S gtridip) 2 (on— o)
therefore

it 2(i)'i I gl %(E(i)'{riAil")—l (a0 —00)*;
and therefore, finally, 7® has the form quoted at the top of the present section.
[27.] (Feb. 17, 1844.) By [18.],

T(4)= TI(4) + TII(‘) + TIII(‘) ;

in which y o
T'O=31T'P; T"O=Z3T"P; T"O=3,3T";
A 111 (4 (A'O‘)“
Mty 11(4) o 11 A i
il‘> vt L = MR
this last equation being relative to spheric surfaces. If the refracting surfaces be of revolution
(round the axis of z), but not necessarily spheric, then we may write, (see end of [17.],)

'8 e — dp A T 11(4) = -1 By
TS" %‘U,A., 39 TS i’l" (:

zi=v;+ }rial + }siat, neglecting ¢;
dZ¢

tan vy = — ~— = — r;@; — §; %

da; 8!

$r;t tanv?=riad + 82}, fi=vi— 37 tan v} + fsir; 4t tan o},

2+ @; tan vy = v; — §ria? — §s;0} = fi (tan ),

Ti= A -fi (21—‘:’) =v;Av— %1‘;1 (Ai v)‘l (A,-a')’ A 1'8;1‘1._4’ (A;v)_a (Aia')4;

and finally, by the same kind of analysis as that in [18.],

T"® = Lsiry* (Ap) (Aio) For a sphere, s; =473,

The expression for 7" gives

T'® = Jouu;S08 — doapydah + 4300 bk A

if then we neglect the squares and products of the intervals Aw;, we may calculate 7"® by
employing for gy, .. 041 the approximate expression

i =09+ N\ (g, — o).

Aio=riAip . (Z@iridip)™ (on—00);
therefore, if we neglect Aw;,
T"'?) =1sidip. (2(1)’:7',-A,-#,)“4 (on—00)t;

This expression gives
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426 XXI. IMPROVEMENT OF OBJECT GLASS [27, 28

and, denoting by F or F, the focal length of the combination, (see foot of [25.],) so that

F=F,=C@iridp)

we find

T"® = 1 F4 (3t s: i) (o5 — o)

Supposing still the intervals to vanish, we have in like manner,

10 =~ ri(ou= oot U0,

and therefore

2 2 2
iikberr 3l (7t ) {2(»?'1 % Arg+20r, — ﬂ“} i
pi Mo Hn

Also, o;=ao+ FF;'(a, — 09); for \;=FF;1, if we write Fi=(2(i)1ir,-A,-y)‘1, according to the
notation proposed at the foot of [25.]. Finally, if we still neglect the intervals between the

surfaces, we have
4

T’(4)_.1v ig__iv
R 1ﬂ3 8Yn

4
0'”'
g0

(] n

and thus we have all the elements for calculating the aberrations of the instrument, so far as they
depend on 7'®, (in the diametral plane of #z,) by means of the following equations of the initial
and final rays:

2
ro=ta (14 D) so— ) = g0 (270 4 7704 7710),

2
onnmn (14 %) (s = ) + 5o (770 + 770 4 770,
2 Son

in which (to recapitulate here all that is necessary for the present purpose), FOR ANY COMBINATION
OF REFRACTING SURFACES PLACED CLOSE TOGETHER,

2
T"O 4+ T"0 4 T"'@ = — } B (00— 00)* = 1 F'2 (00 — 00)* 2 (113 A % + 18 (on— o) ;1 silip;

(2

l ci=co+ Py F;l (o, —ag); Fl= Z(i){'riAi,u; and for spheres, s; =473,

[28.] As one of the most important applications of the formulz at the foot of the preceding
section, let us consider the case of direct parallel incident rays, and determine the longitudinal
aberrations of the final rays corresponding. In this case,

: - g " :
ao=0; 0'1I=FnFil.0'ns b (2)='—% nai,

O intry o
S;;. T"0 = — F,,a'n= '—/lanan; —%IunFnai = %";217"0-?»: &Tn ,%#;2}?”(7:;
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28] XXI. IMPROVEMENT OF OBJECT GLASS 427
and the equation of the final ray may be put under the form
Tny1— (1 +363) (Zn41 — vn— pn Fn) = %(é/‘;anU: + 1@ 4 @),

in which,
a* gt
T"® ==} Fiad3 tril Y FFa0s (27w Fp  Arg— p ool
7" = 1F4hoaZ sibip;

also

3

gl e S I IO
Bo_n.ia'”—a” uiad;

the equation of the final ray will therefore be

Tyl = Oy '7;1 (2ni1—vn— pu Fy— Lnai),

if we make for abridgment

L"=—,1,2F: {%u;zpizs— #;lF;27n+ E(i){"lﬂilFi_zATi o Z(i)’l‘siAm} 5

this last is therefore a general expression for the COEFFICIENT OF LONGITUDINAL ABERRATION
for ANY COMBINATION OF REFRACTING SURFACES OF REVOLUTION CLOSE TOGETHER (but not
necessarily in vacuo), and for direct parallel incident rays.

Thus, for two surfaces, close together,
L,=— F;F; {‘}#{2(7‘1A1# +rylgp)® — 142'17‘2 (r1Ayp + raldop)?
# “1_1 (rAp)?(ro—71) + 81810 + 8, An/.b};
in which
Al/" =p1— o, Dopu=ps—p, F2‘1 = rlAlp + TzAz;L.

For a single infinitely thin lens, in any medium, py = po, Agp=— Ay p,
Ly=— u§ (p1 — po)™® (7'1." L4 Ll {’1‘ w2 (= po)® (11 = 19)% — pg ' (g — po) 79 (71 — 1)

FRTES ¥ g Ve et
pt (pa ”°>r1+r1—ra}‘

If the lens be spheric, and if we make u = u; ' uy = relative index of lens, then [putting pe=1,]
Ly=—3F3{(u =17 (ri—r)*=2(u—1)rp (ry— 1) — 2 (L — ) 13+ 13 + rara + 73
If the power be given, and the aberration a minimuwm, then dLy =0, dry = dry, therefore

0=—2(u—1) (=) =4 (L =g ry 4+ 8 (ry+70) = 2+ 1) ra+ (1 - 2 + dp Yy
therefore
T v 2pt1

7'3—2#—.1—4’/1:_1.
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428 XXI., IMPROVEMENT OF OBJECT GLASS [28, 29

Ifu=23, then 2u+1=4,2u—1—4u1=2—-8=—2 | r,=—6r, |; thus for a glass lens of best

form (index 3), both surfaces must be convex or both concave, outwards; and the second radius
= 6 times the first. The best form would be convexoplane, or concavoplane, that is, =0, if

2 — =4, ,u.=1+;/33=1,686..

All these results respecting a single lens are well known, and have often been otherwise deduced.
For a combination of two thin lenses close together in vacuo,
Fil=(ua—1)(ri—1s) + (us— 1) (15 —74);
— P A Ly=%F3—F2ra+ F;2 pst (ra—rs) + F2(rs—1r9) + F 2 prt (ra—11)
+(1—1) (51— 82) + (s — 1) (83— %2);
Fil=(p—=1)r; Fil=(m=1)(rn—r); F3'=(m-1)(rn—r)+E—1)rs.
Accordingly, if, in the expression near foot of [12.] for the coefficient of ¢’ in
4F2T®

we change s to us, and then add 3 F;3 (=% F-3%) we get the expression just now given, for

_F4L,—F4(4Q + } F).

We may therefore proceed to transform — 4F—* L, as is done in equation (A), in [13.].

[29.] For any combination of refracting surfaces of revolution, round the common awxis (of z),
and close together, we have, by [27.],
2 2
4F 4 (o — ao) 2 T"'® 4 F-2 {,Z—” e %’ ,.1} =21l (F oo+ Fy (o0 — 0o)? Ar,
n 0
=(on— 00 2y 1 p P F2 Ari+ 200 (0n — a0) FE 0 i Bt Ar+ o P22 071, it Ay
(if then we denote this expression by Aol +2Boyo, + Cop» we have
A4+ B=F1Z - 1p 1 F71 Arg)
and if we neglect o2, we shall have
AF4AT"® =—F2 p-1r,(0b — 203 00) + A (64 — 403 09) +2 (4 + B) a3 oo
=(Cer ui F2 Ari— p F2ry) (o5 — 405, 00) + 287 (B3 pi B Ar— p ' F-1ry) 03 o
Therefore, making for simplicity v»,=0, or placing the origin at the common vertex, we have

T'@ =0; also
4F-2T""® = (a7, — 40, 00) iyt 8i s pu;

T"® =—}F(oy — 20000); S%T”m =—F(op—09)=—py Fa, + Foy;

b F =y b F= 118 S (s S a); o= (b — o) + 4o oo;
n
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therefore the approzimate equation for the final ray may be thus written:
Zpp1— Foo— ey, (2np1— pn F) = 15" % {M (a4 — 403 o) + 2F1No? a0}
n

=F4{M (o} — 80y ao) + 3 F1 No, oo} ;
in which

M=3}p2F3+ E(O‘{‘_l BIAF A — u A P g+ E(i){‘siA,-/.l. :

N =p; P24 50w Pt Ary— it F,

If 0o=0, then @,y =0 when 2,43 =p, F'— p} F* Me?; so that w,F is the ordinate of the final
Jocus, corresponding to parallel central direct incident rays, and L, is the aberration for
marginal rays, if L,=— u3 F4M; a result which agrees with the expression in last section, for

the coefficient of longitudinal aberration. It is essential to the goodness of an object glass, that
this coefficient L, and therefore that M should (at least nearly) vanish; but even after making
M =0, if the coefficient N' do not also vanish, and if the parallel incident rays be oblique, we
shall have, neglecting the square of that obliquity, the following equation for a final ray:

Znp1 — Fao— any;  (2nsa— pn F) = § F2?No? oy ;
and consequently, when z,.; = u, F, we shall have

.Z',.+1=F0'0+’3-F8N0':0'0.J

To make the aberrations vanish, for parallel oblique incident rays (in diametral plane), we
are therefore to combine the two conditions: ;

M=0; N=0;

M and N having the values assigned above. The first condition has been deduced by other writers;
the second has been added by myself, as that required for OBLIQUE APLANATICITY.*

[80.] For a combination of two infinitely thin lenses, close together, in vacuo, by preceding
section,

N=F24p F'Ar + Fy 1 Ary + 3 F 7 Arg— Fry
={(u— 1) (1= 7o) + (g — 1) (rg = r0)}* + (L — pi ") 7y (rg = 10) + (1 = 1) (ry = 73) (r3— 73)
+ug (= 1) (ry = 19) + (pa = 1) g} (ra—73) — {(pa = 1) (ry = 19) + (s — 1) (r5 —7a)} 745
and if we equate this to 0, we obtain the same condition as if, near the foot of [12.], we change
2 to pg: and therefore are conducted to the equation (B) of [13.].

In general if n be an even number, and if we consider a combination of g infinitely thin

lenses close together in vacuo, we shall have pg = py= pg=&c. = 1; wy, ps, .. will be the indices
of the successive lenses, which we shall suppose to be given ; and if the powers of those lenses be
also given, or the differences Ary, Ars, .. on which those powers depend, we shall know F,, Fy, .. F; ‘

* [These are L. Seidel’s first two conditions (A4str. Nach. 43 (1856), 317) for the case of a thin system, but
otherwise more general, since Hamilton’s surfaces are not necessarily spheres. Hamilton’s “condition for oblique
aplanaticity” is the same as what Seidel called “Fraunhofer’s condition,” on account of its satisfaction by
Fraunhofer’s heliometer objective at Konigsberg. ]

HMP ; 55
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430 XXI. IMPROVEMENT OF OBJECT GLASS [30, 31

therefore each of the terms of the form u;!F;2Ar;, in M, is either a known linear function of
two successive curvatures, a posterior and an anterior, namely when ¢ is even, or else a known
quadratic function of an anterior curvature, namely when ¢ is odd : F; H being = (Fih 4 riAgp)®
Also, if the surfaces be spheric, each successive pair of terms of the form s;A;u gives a sum,

such as*
(u—=1)(ry—19) (7'% + 71Tyt r%), (us = 1) (rs—14) ("'g + 731+ 7'2), &e.,

which is a known quadratic function of two successive curvatures, anterior and posterior, of
a single lens; therefore on the whole, for any combination of thin spheric lenses close together in
vacuo, with given indices and powers, M (in preceding section) is a krown quadratic function of
the curvatures of all the surfaces, or simply of the ;—L anterior curvatures, ry, 73, &c.; or (if we

prefer to put it so) of the g sums of curvatures, anterior and posterior, for each lens separately,

namely 7;+7,, 13+ 74, &c.: while N (in the same section) is a known linear function of the
n
2
DOUBLE ACHROMATIC OBJECT GLASS ; I determine the two sought sums ; + 7, and 73+ 74, by the
two equations, quadratic and linear, M = 0, N =0. For a thin ¢riple object glass, we should have
one quadratic and one linear equation between three such disposable sums, and might in general
introduce some other condition. (But see next section, for the dependeuce of the third coefficient
0, on the indices and powers of the lenses.)

same 5 sought quantities. This is the principle of my calculation, referred to in [13.], for a THIN

[31.] With the recent meanings of M, N, we have, for any combination of refracting surfaces
of revolution close together at the origin,t

4T (0= ooy IO = F=2 (u oy = i o3 ra + 0331~ i )
+(M—$p,2 P2+ p-1F2ry) (on—00)* + 2F (N — p; 2 F2 4 p F-11,) 09 (0 — 00)

= (M = 2 F9) (0 — o0 + 2F-1 (N — p=2F~2) 6 (6 — a0) — F2033 7 A,-/I—L ;

because
(on—00)2+ 200 (04 — 09) — 02 = — a3,
and
1
Hylry = p i+ Bt s A= — E(QQr;Ai}—L !
Also

—4$(on— 00 —209(0n—a9) =— 402 — 0gon+ 0l =— 3 (on+00)* + 203 ;

therefore if we make

1
0=2u 2F1-3 tr;A 2

we shall have

4F 2 (on—0o) 2T W =M (o — 00)2+ 2F 1 Nog(on— 09) + F 2002 — 2 F 3 (an + 00)?;

* [Omitting a numerical factor, 4.]
t [See top of [29.].]
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31] XXI. IMPROVEMENT OF OBJECT GLASS 431

and therefore *

T® 4+ TO=—1F (0, —00)*+ } FM (00— 00)* + 3 F* Noy(op — 00 + 1 F?003 (0, — 00)*
—4p2F (02 — o}

The equations of the initial and final rays may be put under the forms:

S(T® 4+ T® . \2 S(T® 4 TW
4"‘0—%:(1+%:—§)zo=——(——‘-); w”H_%ﬁ(l-'-%(%.))z"H:_(_——');

oo, 0 80'11

and consequently the equation of the final ray is, without neglecting any power of ao,t

@aa=Foo (1= FO3) + 7" (sns1 = pnF + } i Fol + hn F2007))
+ F*M (o0 — 00)® + § F3Noy (a0 — 00)?;

so that, in the present order of approximation, oblique parallel indiametral incident rays are all
refracted to one common focus, namely

Xusa=Foy (1= §F06Y, Znyy=puF (1-}FOG3) (1 - }pad),
when the two conditions M =0, N =0, are satisfied.}
We may also remark that if the final medium be the same as the initial, so that w, = po, then
pon (1 =2 05) = w0,
and

Z}OX”“ > ,Yl Znyr=paF (1 - 1 F0q?) = distance of focus from origin;
0

the direction of this distance being the same as that of the incident rays. In fact, the ray
incident on the first vertex, that is, at the origin, emerges without any change, if u,=p,; but
it undergoes a change of direction if u, be different from uo, because then the equation o, = oy
gives @, =p-1go. In this last, which is the more general case, we have @, = p; ' ot ;

al K== 'Yl Znir=paF (1 — } FOg}) = distance of focus from centre of lens ;

also

1F003 = 2 FO@y o (1 - 42 FE irids ,1:) )

#* [To obtain 7'®, we put »;=0 in the expression at the beginning of [26.].]

t+ [Except, of course, powers higher than the fourth in 7']

1 [This point is the primary focus. It is seen from the identical relations of p. 456 that it is impossible to
correct a thin system simultaneously for spherical aberration, coma and astigmatism. Thus Hamilton’s system

is astigmatic, and the condition for flatness in the locus of the primary focus, namely,

FO=-pz?% or 3 nrs(p~t)=3u2F",
differs from Petzval’s condition, 37 7;4;(p~1)=0, which is only applicable to a system corrected for astigmatism.
Petzval’s condition was published, without proof, in 1843 (cf. J. P. C. Southall, Geometrical Optics (1913), p. 439).]

55-2
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432 XXI. IMPROVEMENT OF OBJECT GLASS [31, 32
For a thin double lens in vacuo,
0=(2+2) =D (a=r2) +(24) (=) (ra =12
therefore the curvature of locus of focus is
F—1+0=( )(#1—1)(r1—r2)+(3+ )(#3—1)(r3 #):

and the concavity of this locus is turned towards the object glass. If = be dispersion ratio, so that

, (s —1) (r3—re) ==& (1 — 1) (11— 72),
then, focal length multiplied by curvature of locus of focus

=1+F0=(1—w)‘1{3+pf1—(3+p;1)w}=3+71L,

if
I S it T
s R
that is, if
pr=prt b — 1 = (urt =5

Thus radius of curvature of locus of focus, for indiametral rays, originally parallel, is focal length
w
+34prt A (et =)

[82.] Herschel's second condation of aplanaticity.

(Feb. 21st. 1844). By the preceding section, for any combination of coaxal refracting surfaces
of revolution placed close together at the origin, the equations of the initial and final rays may be
thus written :

H 8T@
2= (14 7% 0) —~F(ou—o0)— 5,

c a2 ST@
ouia =22 (14 ) swia— (o =00+ 75,3
Mg On

and therefore the abscissa (z; = 23 =..= &,) of incidence is nearly
z=—F (o, — 0p).

Adopting as an abridgment this last expression, and supposing that a ray from 0, z is refracted
to 0, 2,1, we have

po_ oo(l+ $ pg o) i & pRT ST®
%_W_—a"ml_%/‘o —a o ooy’
80’0
Hon 0'7,(1+%/I«_2 : iy Lig Lgn iy ey BT v
Z_»n:.l TIW— - Opll —-—%/.L” g, +a 0oy San 1
ooy,
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32] XXI. IMPROVEMENT OF OBJECT GLASS 433

also e 2
4 4
o Ssi b %ﬁo =4T@; —(op—oo)2'=F7
X n

therefore

ﬁ_@_l_gzai_,"'&_z”g —2 Pl —2 771(4)

Z,H_]_ 2y F— 21” (0’,‘— 0'0) % 4F (G'n 0'0) 1 i
Also

03— (paptg ) 03 — (02 = 03) (o0 + 00) = — 000l + oo + (1 — p2 %) 05

2 2
if then we neglect (:l’) , or (2:—“) , we have

n 0

o3 —@—%,= MF?*(o? — 2040y) + 2NFagon — ;2 F a0y

in which we may make oo = g, “° “*:* thus the conditions requisite in order that z,.; may be
“n %0

independent of ¢,,, when we neglect o4 and o222, are

M=0, N=juF2

these therefore must agree with those which Herschel has proposed, for the construction of an
aplanatic object glass, applicable to terrestrial objects. Accordingly they agree with those which
I deduced from Herschel’s formula, in my calculation of Jan. 2nd, 1844.

A somewhat easier though less elegant analysis would be the following. Our object is to
eliminate oy between the equations of the initial and final rays, after making in those equations,
that is, in the two first of the present section, @y=0, #,;1=0, and neglecting z;2. We may
therefore substitute for a9, in the second equation, its value derived from the first, namely

' i« _, 07T®
oo=po 55 ou + w2yt 5o,
oo being treated as = 0 in the last term, or 7@ confined to the part proportional to o9¢?. In this
manner we find, by the second equation,

8T® LYAC)
-1 i e -1 A TR U R Ab o -y
Byt zni=F (1= poFz5") (1 —4p; ay) Py mo k25 0'7,80'0’1‘
) ; @)
oo being treated as = uoF'z; gy, in a‘,ga'ﬂ' Make then for abridgment, (see [10.],)

10 = Qot+ Qoto0+(Q +Q,) 20l + @/ ausl+ Q" o,

and we shall have, in the present order of approximation,

zuir = ' (1= po Bz ") = pn (4Q + 452 F) 0% = pin (4Q, — 12 F) po F'z; 0%,

n

* [This is given by the equations of the rays to the first approximation ; we have corrected an obvious error
in the formula, which (in the MS.) lacks the factor ¢, and has a minus sign.]
1 [In the last term we have inserted o, which is lacking in the MS.]
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434 XXI. IMPROVEMENT OF OBJECT GLASS [32, 33

To destroy the aberration for direct parallel incident rays, we are to make 4Q + }u2F=0,

(compare [12.])) that is, by preceding section, M =0; and to destroy also the aberration for rays
proceeding from a distant point on the axis, we are to employ the condition 4@, —ju-2F =0,

that is, N =} u 2 F~2, as above. Herschel’s second condition is always incompatible with mine.*

[83] Summary of Calculations for deducing (A) and (B).

With respect to my own form of a thin double object glass, the chief calculations are the

following.
4 2
Ti=7'i_1Aiv-{1 —a/ 1+ (2'3) }, rigorously ;+

]

therefore approzimately,
Ti= T§2) & Tus:.;) o} T'"s“'),

(v=n-5.0) (zoerro=-20)

27‘,; A,; v

in which

>

A;o)? 7 (Ajo\2  o?
o—_ Biol  pug_ T (B L.
T 2riAip’ Lok 4 (A,;,u) & M

IO = hrit (M) (Bac); T=T®+ 170+ 170,
70 — z(@)’{ T?); 7@ = E(z)nl T"g"); e — 2@)’{ ng);

Ao Ai+1 a

‘v Ajo=C0r;A;p,
’l',-A,—,u. Ti+1Ai+lll" % oy g

)
O=SE(T$2)+ Q) =-
C=F(on—o00), Fr=3@iribip; TP=—3Fribip(on— oof,
2
T®=—3F(on—0o); T"P=—3riF?(cn—o0)A % g TP =4ripFt (on = a0)';

F_10'i=F_10'o+Fi—l(0'n—0'o), if F,;—1=2(,')f’l‘iAi/L;
E(i)nlriAi¢=rn¢n_7'1¢0"'2(i)’1z_1¢,;A7'i;

» 0_2 2
T"® =} F*(an — 09)? {— F-2r, ;T: i F‘2r1,%+ St N (F oo+ Flo, — o-o)zA'r,;} i
T®=Qct + Qc3a0+(Q +Q,) c2ol+Q onc} + Q' a};
8T@

o0y

'z'n+1=,u';10"n(1 +%,“;2°‘3,,) zn+1_F(a'n"‘ 0'0) &

=Foo+Q/of+pu; on (1 + §p.203) (Zns1 — pn F + 200 Q' + Q,,07)
+(4Q +3p; 2 F) ol + 3Q,0003;

#* [L. Seidel (dstr. Nach. 43 (1856), 328) also remarked that these conditions were incompatible in the case
of a telescope objective.]

+ [Cf. [18.].]
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33] XXI. IMPROVEMENT OF OBJECT GLASS 435

4Q+3p;2F=0, @=0; ‘. neglecting* o3,
4TOF4(op—00) 2= — Ju 2 F 30y (on+ 200)

=—F2ryp-lod + Em?'lm‘lFi‘zAr;o‘n (on—209)
+ 2F‘12(’){“1p{1Fi‘1Ar¢ ondo+ §ou (0n— 200) 2113 A
=—3pu 2 F30, (on — 200) — 2u, 2 F 3 0n00;

0= Jug2 P>+ 3 o p B0 Ar 4 43 ird A — i ra P

0= pp*F2 43,01 p; Fo A= ptr, FL

So far, we have made no supposition respecting the five! indices, but have only supposed the
four surfaces to be spheric, and close together ; we might even extend the two resulting equations
to any system of four coaxal surfaces of revolution, close together, by changing, in the first
equation, %E@’;'r‘gA,-p to E(i)’l's,-A,-,u. But if we now suppose n=4, po=pe=pa=1, p=p',
ps=p", F1=p, Fil=p', p—p'=p", (W, u’ the indices, and p’, p" the powers of the two

component lenses,) then
’ n

"'1—"'2=M,L“ 7'3—7”4=l'm;

i 1’
! — 1 7 ’
pit FrtAr =— (—“—#.—)p 5 g Byt Ary=p" (rs —1y),

"

ps Fy?Arg = — ,7(%7_—1) (9 + (W' = 1)l

1

/‘leflA7‘1=—%“-7;l5 #QIF{IA"‘2=P' (Tafrz)$ FQIFQIA%:—’;H—(ED—_—I){P’+(l"”"1)"”3}3

and the two conditions become :

7 ’r ’ ’” ,"'1 FIRE
0=3(p +p"P+3p' (r{+rre+1r2)+%p (r§+r3'r4+r§)—“—}7—p r§

Hag ot

+p2 e =)= B i+ W = D =gt @
o= r+ :;Z_PL’?_*_ Ir_ __’_’_i',,,___ r+ "—-17‘ il ; 2

* [The defect of astigmatism depends on o2 (see [48.] or p. 378), and does not occur when o3 is neglected. ]

+ [These formule for the correction of spherical aberration and coma, for any infinitely thin system of
spherical refracting surfaces, possess the advantage of involving only the fundamental data of the instrument
(curvatures and indices). In this, although otherwise less complete and general, they possess an advantage over
the conditions of L. Seidel (4str. Nach. 43 (1856)). The forms of Seidel’s conditions for a thin system will be
found in J. P. C. Southall’s Geometrical Optics (1913), p. 470, where there follow interesting historical references
to other general methods. Although Hamilton’s argument here appears to apply only to rays in one diametral
plane (for which of course the phenomenon of coma, geometrically described in No. XIX, does not present itself),
Hamilton gives later, in [46.], the extension of the argument. The essential fact underlying the step from two to
three dimensions is that, when we put r=0, 7=0 in the general expression for 7', the coefficients @, @, (unlike
@', @,) remain still the coefficients of distinct terms, and may therefore be evaluated by the consideration of
indiametral rays alone.]

1 [In the foregoing argument there is no numerical limit to the number of surfaces involved.]
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436 XXI. IMPROVEMENT OF OBJECT GLASS [33, 34

in which, p =p’ + p"”; and
Lok R ISR LY -
£ Work g et ko |

Hence (A) and (B) of [13.].

[84.] Development of the equations (A) and (B).

In fact, if we make
’ ! g

27‘1=7”1+7‘2+,u‘,‘p_—‘i, 2"‘z=7‘1+7‘2-'u,p_1,
” r”
2rg=1r3+14 +}720__—1, 2y =13+ 14— Ff‘_l, wl=m!, p't=m",
we have
) AL e
4(ri+rra+r)p’ =8 (ri+m)?p +m;
ml/z "3
4" (3 rort 1) =3 (re k1 p" o+ g Cr
: 2m/2p's
—8(1—m)p'ri==21 —m')p' (r1+ re)®— 4m'p2 (ry + 1) — g
. ml 7 mII I’
8p 2(7”3—7'2)=4']7'2(—(7'1+7‘2)+7'3+7‘4+ 1_—{’%,+ I—_L;n,—);
1 + (L= my i = T () )+ (24
T m" P 3 I—m" 3 4 D p
" ” n_r 4 ’’ 2m’,2p,' ’ 17\
==2(1 —m") p" (rs + e — dm”"p" (2p’ + p") (ra +ra) — 77 (2" + ")}

2 W m” ’”
—8pira=—4(p'+p") (ra+7'4— i _fn,,);
in the sum of which 6 terms and of 4 (p’ + p”')?, the coefficient of (r; +73)? is
' -2(1-m")p'=C2m' +1)p’;

that of (7'3 + 7'4)2,
3pll B 2 (1 It mll) pll oo (2mll + 1)pll;

of r1+ 179,
—dm'p?—4p2=—4 (m' +1) p'?;
Of 7'3 + r4’ 9" ’
£ ' 4p" —4m"p" (2p" +p") - 4 (P’ + PP =—4(m" + 1)p" (p" + 2p);
of p'?,
m'? 2m'? 4m'

A=—m'? 1—-m' 1——m'+4‘

_mP=2(1—m)m2+4dm' (1 —m')+4(1—m')? 4—4m'— m'+2m"®

(1—m')? (1—-m'p :
of p'’3,
m''? A 2m'’2 i dm’’ v 4 —4m" —m'"? + 2m'"3
A=m"P 1—=m” "1=m"” "~ 1 -m"y !
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34, 35] XXI. IMPROVEMENT OF OBJECT GLASS 437

and the remaining terms are

dm”p"p" _ 8m"p'p" (p' +p")  4m"p'p” (p' +2p")
1—m” 1—m" 1-m"

+ 12plpll (pl +pll)

= (8m" +12) p'p" (p' +p");
so that the equation (1), of last section, when multiplied by 4, becomes, (halving all the recent
results),

0=(m +§)p' (r+7r)+(m" +3)p"” (rs + 1" = 2(m" + 1) p" (p" + p"') (rs + 14)
—2p" {(m' + 1) p’ (ry+72) + (M + 1) p”’ (r3 + 74)}

4—dm' —m"?+2m"® . 4—dm" —m'"*+2m"" . (4)
e =—my P T ai—wmy

+2(2m" +3) p'p" (p' +p")+

+

which differs from the equation (A) of [13.], only by the substitution of m’, m", p', p", for
my, Mg, P1, P2, that is, for the reciprocals of the indices, and for the powers, of the two lenses;
ry, T2, T3, 71, being still the curvatures*® of the four successive spheric surfaces, positive when
convex to the incident light.

Again, if, in the double of the second member of equation (2) of last section, we change
Wy, to m' =Y m'' 7L and 2ry, 27y, 213, 214 to their values at the top of the present section, we
find that the coefficient of 7y + 75 is — m'p" — p'; of rs+ry, p' —m"p" — (p' + p”")=—=(m" + 1) p”;
and the remaining terms are

3 a3 g m12p12 mlplz mllplpll i mllzpll (pll + 2pl) 'm" (pll +p')pll
2 +27] icw Tiew T 1em? o 1=-m" Yo 1—m"

= @) P @+ ) (54 2P = (0 =) P @ ) ()
therefore (2) gives

(m' +1)p" (ry+ra)+(m" + 1)p” (rg+74) =(m' —m"") p"2 + (m"" + 2).(p' +p"2 | (B)

Equation (B) gives the value of the second line of equation (A); it also gives (ri+72)* as a
quadratic function of 73+ 74; and thus it enables us easily to transform (A) into an ordinary
quadratic equation relative to 73+ 74, after solving which, we can find 7 + s, and thus ry, ra, 75, ry4,

because :
L n_rn

ety o g M= .
1_m17 3 4 1—-7)’!."

S B

[85.] Comparison with Herschel.

My equations (A) and (B) (are intended to) serve for the construction of a thin double object
glass, of which the aberrations in the diametral plane shall vanish, for oblique parallel incident
rays, if the square of the obliquity of those rays be neglected. Herschel aimed to construct one
of which the aberrations should vanish, for rays incident from a distant point in the axis, when
the square of the nearness of that point is neglected. By the theory given in [32.], my formule
will be adapted to this latter problem, by merely changing 2p? to § p? that is, by subtracting half

* [That is, reciprocals of the radii.]

HMP 56
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438 XXI. IMPROVEMENT OF OBJECT GLASS [35

the square of the power of the double lens from the second member of the equation (B) of [34.],

without making any change in the equation (A). But as Herschel assigns equations between the
Yo

two anterior curvatures, 7, and r3, we must, for the purpose of comparison, change 7, to r; — g 2

m’lp”
and 7, to 75— T=m and then (7; 4 73)? becomes

4m p r] m'2p'?

2
4 (1 m')R’
and (rs + 7r4)* becomes
Pl "p"’l" muzprlz .
ST T—m” TA—mp’

consequently, in (A) thus altered (as to its form), the coefficient of 7} is 2(2m’+1)p’; of 73,
2(2m" +1) p"; of ry,

om’ (2m’ + 1) p'? ovg_ 2(m' +2)p"
AT S 4 A AR Y
of 73, oIm’ (277L"+1)p“2 25 0 b i 2(mn_|_2) png B i
7 R —4(m +Dp (p +2P)=“W"‘8(m +1)p'p";
of p'3,

m2(m'+1)  2m’ (m' +1) Vs 4 —4m' —m'2 4 2m"®
(1-m')? RN Ty 2(1—m')?
=3 (1=m/)2(m2(2m' +1) + 4w’ (1 — m'?) + 4 — dm’ — m + 2m"%}

- 2 .
L A=m
Ofp”a, ( m )
m"2(m" +3) 2m" (m"” +1) i 4—dm" —m'" 4+ 2m"3 9 '
(1 gl 1-m" AR ool b T i

’ 112

of p2p”, 2(2m"” + 3); and of p'p
4m” (m" + H1)
1

the equation (A) becomes therefore, after being halved,

r2(m’+8) =22,

£ i @ yié (m' pre 2)]7'27"1 (mu & 2)p112r
et 2 2 Lot
0=(2m +1)p"ri+(2m"” +1) p'' 12 = 1=m" ;
4 (m’ ' i P’ " 2 (m” +3)p'p" it
—4m" +1)p'p 7‘3+( g (1 ,,)2+(2m +3)p%p WA ™ il

which accordingly agrees with Herschel’s equation (v), Light, art. 313, if we adapt that equation
to our present notation, by changing the symbols L', L”, u’, u”, R', R", to p’, p”, m'~Y, m"" -1, ry,

”
r3, after taking care to read the last term of (v) as g -:j,’u L'*1", as was remarked to Mr. Phillips

in my letter of Jan. 3d. 1844 ; see p. 385 [of present volume]. In fact, it is easy to assure our-
selves by mental calculaticns, that with this correction of the press, the equation (v) is a
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consequence of the earlier equation (u), on the same page 391, of Light. And I must own that
the equation (A’), in the present section, is of a somewhat simpler form than the equation (A) in
the preceding section. With respect to Herschel’s other equation, it must be deduced from (B),
by changing 2 (p’ + p”)® to § (p’ + p"')% as mentioned above; doubling therefore, for simplicity,
and transposing, we get for coefficient of p?,

2m' (m” + 1) e e
g el e

of p'’%, & 3 and of 2p’p"’, — (3 + 2m'’); that is, we obtain the equation
1— P p q

’ L4 rn 1" 3 + m, ’ 3 + m / rn ’ II
O=4(m +1)p'r+4(m" +1)p 7*3—mp2—m —-2@ +2m")p'p
which accordingly agrees with Herschel’s formula (f), art. 469; or with my (B), by changing first
member to (p’ + p" )% (See p. 385 [of present volume].)

[86.] Deduction of (A’) and (B') from (1) and (2) of [33.].

In [83.], I have given a summary of all the calculations required for deducing the two
equations, quadratic and linear, between the curvatures of a thin double spheric lens in vacuo,
which will render it aplanatic for parallel incident indiametral rays of small obliquity : namely
those marked (1) and (2), near the foot of the section just referred to. In [34.], I gave the cal-
culations required for transforming these equations into the two marked (A) and (B), between
r1+ 73 and r3+74; and in [356.], eliminated 7, and r4. It would however have been simpler to
have begun by performing this last elimination. Equation (1) being put under the form:

0=(p +p"P+p (2 +rrg+ 1)+ p" (r)+rsra+1)) =21 —m') p'r} + 2p" (5 —1ry)

i I%" fm" p’' + (1 —m") s} =2 (p" + p")’r4,

(under which form it results very easily from the analysis of [33.],) if we change ry and 74 to their

values in the preceding secticn, namely
! 4 4 e tr

maip

ra=ri—i——,, Ta=7"3— s

1—m 1—m
we find, for the coefficient of 73,
3p'=2(1—m)p' =(1+2m)p’;

of 73,
f 3pll_2(1_7,nll)pll=(1 + 2mll)pll;
oI 71,
3m' p'? R
i _m/"'zp ——1_m/ ’
Of’l'a,
3 e ’ II r 1 1 2 1
1)n p” +2P2 m'' p'p 2(p:+p )2=_%Z' 4(1+m")p’ oo
of p’3,
1+( m' >2'+ 2m’ _(1+ m’ )2_(1_,,”1)_2.
1-—m T=m" Exmll 2
Ofplla

mll 2 2mll ¥ O
1+(l—m"> +1__,,nu—(1"'m ) ’
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440 XXI. IMPROVEMENT OF OBJECT GLASS [36

of plgpn’
2 " 2 r”
8=t o =34 20"
and of p'p’"2,
dm” 3 +m"
iy, w0

the equation (A’), in the preceding section, is therefore thus deduced, with great case, from the
equation (1) of [33.].

In like manner if we substitute for 3, r4, their values in the equation [namely, (2) of [83.],
with the signs changed,]

RE

O=m'p' ri+p' (ra—ms) + ;n_ﬁ,, (" p"+ (L —=m")rs} + (p' +p")ra—(p' +p")?

we find for the coefficient of vy, (m' + 1) p’; of rs, (m"" +1)p"’; of p’3,

m’ 1
il L b e
of Ilz’
g m'’ 1
TTim 1=_1—m"’
and of p’p”,
m''? m"

TEG o RemiS b mal;

therefore my condition (2) may be put under the form :

73 12

(m' +1)p'ry+ (m"” + 1) p''ry = 1 ]ﬁ b if—m" +(m" +2) p'p”. (B")

Accordingly this last equation might be obtained from Herschel’s formula (f), or from the
equivalent formula at the foot of the preceding section, by changing the first member from 0 to
(p" + p”)? that is, to the square of the power of the compound lens, and reducing. But it seems
to be convenient, as a summary of what is most necessary in the way of calculation for my
purpose, to annex this section to [33.]; and that we may have both equations in one view,

I shall here copy the other:

0=02m'+1)p'r?+ (2m"” + 1) p" 12

m+2 m'’ + 2

L s el ” r 1
1= P =P =47+ 1) pp"rs (A%)
p’3 i p”a 4 m” +3 "2 4 (2mn "’ 3) 19,11
¥ (1=m')?" (1—-m')> i—-m' PP ol
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[87.] Focal Lengths and Aberrations of a System of Refracting Surfaces
of Revolution, close together at the origin.

(Feb, 22d, 1844.) By [32.],

1(tm m_1 L i -4 (g — g )4 T@
B (- R - R T s

and by [33.], making, by [32.],

LS T I . W #n_F_M=1)

5 (for central rays,
Znt1 20

Op — 0O Zn+1 agp — 0 2y
we have i

» r a
4F 4 (on — ao)*T"® = — ";;'—: + "—%%—1 + 2 tpt (p:’ -+ F;l) Arg;
n

4F~4(n— ooy ST""® =3 M hep, = 33138 p, if surfaces be spheric;

therefore, the equation determining the focal lengths and aberrations of the system is

B _po_1 _ r #o "1 1P -1\ g {
i1 2 F {% n+l 23 Z£+: + 2(ﬂl i 1(% + Fi l) g E(ﬁSiAiM}’

in which po, .. i, .. pn are the indices of the n + 1 successive media; 7y, .. 7, are the curvatures

3 i SRy i o+ y?\2 .
of the n successive surfaces; 8y, .. 8, the a-parabolicities, or the coefficients of (_—;—_3/_) in the

developments of the 2z's; Aju= pi— pia, F;1=2(i)fr¢Am, F=F,; Ari=ria—1;; @ 18 the
semi-aperture, or the common coordinate, perpendicular to the axis, of all the near points of
incidence or refraction ; z, is the ordinate of intersection of the initial ray with the common axis
of revolution, and 2,4 is the ordinate of the intersection of the final ray with that axis.

In the second member of the formula, we may change to I‘ 2 + ;,, and then that member
Znt1 )

takes the form
Mo+ poMzyt + pghazy® + pidazy®) a?;

in which the coefficients have the values:
Ao = 3u 2 P2 — p P2+ 35 0 F PP A+ 2 8B
M=3u 2 F 2= 2u 1 F g 4+ 22 " VP DAY
M= §ug P — ity 4 g+ Bt i Ay = G B =5 i (W)
M=t —pg?)

Comparing these expressions with the definitions given in [29.], [31.], of M, N, O, we have the

relations
)\0=M; A= 2N—£‘[1’;2F_2; Ag= 0- %,“-—211" ok
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442 XXI. IMPROVEMENT OF OBJECT GLASS [37, 38

In this manner therefore we might find again that the conditions for the construction of Herschel’s
object glass, being Ay =0, \; =0, are
M=0, N=}p2F-?

as in [32.]. (Mine are M =0, N= 0, by [29.].)
[38.] For a single surface, n=1, F~1 =y (u; — uo),
No=3%py® (1= po)rf — it (= )73 + (11 — po) 81
M= §pr2 (pn— po)®rf — 2p7 (11 — po) 735
Az = Guy® (1 — po) 71+ pyt gt (s — o) 715

Ag =3 (7= pe%);

that is,
248 (p1 = po) 21y Mo = (1 — po)® — 2p1 (p1 — po) + 2p3 7y 381 =, for a sphere;
2p3 o (1 = po) ' P A1 = 3o (1 — o) — dptopin = — po (pa + Bpto)
2p3 g (1 — pro) ™1y P he = B+ 2popa = pro (2p11 + 3po) ;
2uf iy (ma — g0y Na = — pro (i + po);
also

po(ri— 252 — popa 251 (ra— 25" = po (11 = 2512 {— (pa + po) 257 + poma} 5

therefore the formula for a refraction at a single spheric surface is

Ha
23

= a*
s <m—po>r1=@‘%%—ﬁ°—’ (1= 25 {= G+ po) 25 + o) 5. ”

This accordingly agrees with Herschel’s formulz, namely
F=(-mE+mD; Af="1"")(R_DpmR—(1+m)D}s

(In a paper in the Phil. Mag. for October, 1841 [No. XIII of the present volume, equation (26.)],
I deduced, for the aberration of a single refracting spheric surface, an equation which, in the
present notation, is

oM H 1 o 1@
first member (as above) = g 4 (m=—2z51-2;) (21— 2, 1)2—2— X
Accordingly,
o 0 NS U S IR .o o S P SBIE TS 1
/“1(2 1) /"’0(0 1) ,“1_}1'0(0 2 ))
For a lens in vacuo, n=2, po=pe=1, p1=p,

Fil=ru=1), Fil=F1=(r—r)(u-1)

prt B Ar = —p (=11 F7 prt T Ay = — pte B,

—Ea')?”Ai,lZ:_Tl(/“_l—l)—rz(l—#"1)=#_1F‘1;

www.rcin.org.pl



38] XXI. IMPROVEMENT OF OBJECT GLASS 443

therefore
2FNg=F2— 2y F-1 — 21 (u— 1) 12 + 2 ( S*)

Py Ty

2FX1= 3F_l—4!7'g—4*[l,_1’l'1=— (3 i 3[l:+%) 1‘1—-(3,u,+ 1)"’2;
2FNy=38 + 2u7?; As=0.
If the lens be spheric, the coefficient of 7% in 2uF'\, is

: p(p=1P=2(p—1)+pu=2~2u"+u%;
that of ry7y 1s

—2(n=1Pp-2(p-Dp+p=—24+2p2+pu;

pllp=1P+2@-1)+1} =
Hence, for a single infinitely thin spheric lens in vacuo, with curvatures ry, 7p, index , focal length
F, we have the equation

and that of 3 is

23 29 F 2,qu’{ ((4+3p —3u®) ri+ (4 3p®) ra) 2,1+ (2 + 3p) 2, ®

o (@2 ) (et 2= 2 }[

agreeing with Herschel’s formula. (Compare [28.].)
(Feb. 23d, 1844.) For a thin double spheric lens in vacuo, we have *

————%,:w”{M+(2N—\}F‘2)zo‘1+(O—z}F‘l)zf}; ’

in which
Fr= (' —1)(ri—ry) + (" — 1) (rs—14),
and M, N, O have been already developed [pp. 429, 430]. Thus M (= — F-4L = F-4(4Q + 1 F))
is the quarter of the function of indices and curvatures, which is equated to zero in (A) of [13.],
or [34.]; or it is the half of the function equated to zero in (A’), of [85.], [36.]. (As a verification,
when ry=ry=r;=0, z;1= 0, we thus get
¥ " y
i M_—(T%—m"’?"—’}"‘ "o,
which agrees with the expression for a single plano-spheric lens, exposed to parallel rays, namely,
by this section,
1_1 4
b oy ot )
For the same double lens, 2V is the ﬁrst member of (B) of [13.], with the signs changed; or it is
the second member minus the first member of (B) of [34.]; or &V is second member minus first
member of (B) of [36] Finally, by [31.],
O0=2F1+m'p" +m" p".
In general, for ANY COMBINATION OF THIN LENSES IN VACUO, (spheric or not,)
Ne=3F14+Zmp=73 (3 +m)p.
* [This is derived directly from the general result of the preceding section, on substituting for the N’s their

values in terms of M, &, O (p. 441). Changing z; to z,, 4, the result is applicable to any system of thin lenses
(spheric or not) close together iz vacuo.]
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144 XXI. IMPROVEMENT OF OBJECT GLASS [39

[89.] Foci and Aberrations for oblique parallel initial rays.

(Feb. 22d, 1844.) By [87.], for any combination of refracting surfacesof revolution close together
in vacuo at the origin, the focal lengths and aberrations may be determined by the formula

1 it ol M )\2>
F v g R ) s, . .’L‘Z,
Zn+1 20 +F+ (7\0 i Zo+ Zg

in which, with the notation of [29.], [81.],
N=M; M=2N-L1F-2; N=0-}F

The initial ray passes through the points 0, 2y and «,0; the final through #,0 and 0, zn1. (The
final @, 0 is not exactly enough coincident with the initial #, 0; see below, and [40.])* Hence the
equation of the initial ray may be put under the form

.E_o_i_é 1:

Ty

& 2y
and that of the final under the form
f”‘_*'} + E"_“‘_l =1;
z Zn-}-l
if &, & be the general or current coordinates of the one, and £,41, {usa those of the other. Now

let the initial rays be given to have a small and common inclination to the axis; then Pl

small and constant = — ¢p; or 21 = —%’ , @ being a quantity of which we shall neglect the square.
0
Then the formula gives

o o e i Al 1 AL A
Zn+1
therefore

Bra=a =2 =0+ tofurs (L4 0?) = (F+ 20 G

such, then, is, approximately, the equation of the final ray from the point , 0, if the initial ray
be parallel to & = ey &, and if @, be very small. For example, the final ray from 0, 0 is £,41 = {ut1,
that is, light passes through the common vertex with an unchanged direction. Also if = Feo,
then the principal part of the inclination of the final ray vanishes.

Now consider the intersection of any other final ray with that from the vertex. We have, for
this intersection,

0=1+&u <7\1an _%'_sz);
that is,
Goii=F (1 + FMa? — Frapz)™ = F — F¥\a? + P20,

This conclusion is not exact ‘enough, owing to the differences of the #’s of intersection of the
initial and final rays with the axis of #, which is perpendicular to the axis of the system at the
common vertex. See [40.]. See also the investigation resumed and completed in [41.], and by
other methods in [43.], [44.].*

* [These remarks were inserted subsequently.]
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39, 40] XXI. IMPROVEMENT OF OBJECT GLASS 445

When M =0, N=0, and u, = go=1, we have, on the one hand, by [37.], the relation*
bk Pk a? el b
" Pt ot 5 A CEI L TR
F being the focal length of the combination of surfaces of revolution, supposed to be close together
in vacuo, and to be constructed according to my two conditions for the destruction of aberration;

0 is a certain other constant, namely, by [81.], 2F ' — X r4; i; 2o, 2n41 are the ordinates of

intersection of the initial and final rays with the axis of the combination, or of z, the common
vertex being taken for origin, and  is the semiaperture. Under the same conditions, by [31.],

T=—4F (an—a)?+ 1 F200 (an— &) — 1 F (o} — });
therefore the equations of the initial and final rays are respectively
(b) @y — ty (1 + §02) 29 + F (5 — @) = § 209 (@, — @) (200 — @) — § Ftg (0, — });
(© Tni1— tn (1 + 362) 2041 + F (24 — &) = § F20a} (2, — @) — § Fay (a}, — ).
To show that (a) is consistent with (b) and (c), we may observe that the two last equations give,

when zy=0, 2,4, =0,

F(a”“do)zaa n +%ag+%F0ao(2au-aﬂ)_*ao(aﬂ+aﬂ)}]

2o
P =) g, (14 403+ §FOG ~ o (00 )
=a, (1 —$aoey + 3 FOC2);
therefore
@ 55k =26 = P =~ }F-tagtn + 0a3;

the error being of the 4th dimension. Now, to the accuracy of the 1st dimension, or indeed of

the 2nd, inclusive, we have
w .
o=—F(a,—); C!o=—;n an—"m,
therefore

2
0= 0(2), -4Ftam=—}Fatsisl, == 4P ae (o' + FY);
0
therefore (d) transforms itaelf into (a); and reciprocally, (a) may be changed to (d).

[40.] (Foct for oblique rays.)

Now, the equation (c) expresses that if @ be given, all the final rays pass through the

common focus
(e) Xpn=aF(1-3F0cd), Zp.=(1-3a})F(1—-4F0a});
(compare [31.];1) and I wish to see whether we could deduce the existence and position of this
common point or focus of the final rays, for a given small obliquity of the parallel initial rays,
from the equation (a) or (d).
# [The « of this formula was defined, without ambiguity, in [32.], p. 432.]
_ + [The initial and final rays are at present considered to be in vacuo.]
HMP 57
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446 XXI. IMPROVEMENT OF OBJECT GLASS [40

That there is nearly such a common focus for the final rays, when the initial rays have been
oblique to the axis but parallel to each other, may be proved even from the equation of focal
lengths (not aberrations) for direct rays, namely

(f) 7l =g + F,
For the relation
Ko =28 _ iy o1y Py 7, ),
—Zn+1

is satisfied for all values of # and 2z, which are in a constant ratio to each other, namely
x=—0yzg, by supposing Z,;1=1F, X,,;=a,F. Thus, the law of the formation of approximate
oblique foci, for parallel (and indeed for diverging or converging) initial rays, may be deduced
from the law (f) of the approximate foci for diverging (or converging) initial rays. In fact, by
the law (f), we can so far trace the course of a given initial ray, as to determine, with only an
error of the 2nd dimension, the intersection of the final ray with the axis of 2, and with only an
error of the 3rd dimension in the intersection of the same ray with the axis of #, (the refracting
surfaces being close together at the origin ;) we can therefore determine the coordinates X and Z
of this intersection of two final rays with each other, with only an error of the 3rd dimension
(at most) in X, and of the 2nd dimension in Z.

Thus, if the initial rays diverge from or converge to Xy, Z,, we have the two equations
(8) Xo=2(1-2Zoz"), Xpn=a(l-Znnz},);

therefore

Xni1Z,}, — XoZt = w (2,1 — 251 = FY);
and this will be satisfied independently of #, by establishing the following equations, which
contain the theory of vmages :

(h) Z3}y=Z;*+F; X o121 =XZ;.

But although the equation (a) determines for a given initial ray the intersection of the final
ray with the axis of z, so as to leave only an error of the 4th dimension, yet because that
equation leaves us still liable to commit an error of the 3rd dimension with respect to the
intersection of the same final ray with the axis of #, or the point where it emerges from the last
refracting surface, we are liable, till farther information is procured respecting this last point, to
commit an error of the 3rd dimension relatively to X, and therefore one of the 2nd dimension
relatively to Z, of the intersection of two final rays with each other. We must not therefore
expect to deduce, though we may perhaps verify, the existence of the focus (e), with the
accuracy required above, by means of the equation (a) alone.

We must therefore combine with (a) another formula, derived from (b) and (c), for the
change of , at the common tangent to all the surfaces, that is, when 2= 0, 2,41 =0; namely

@) Az=3%F (a, — @) {FO— (e, + o)} ;
or, in the same order of approximation, (see foot of preceding section,)
(j) Az=3F15% {(2— FO) z; + F1};
in which, [see [31.]]
e 1
2(,') 174 A ;

2—-F0= :
E(,.)’{n-Am

NANA] T Walse |
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41] XXI. IMPROVEMENT OF OBJECT GLASS 447

[41] (Foce for oblique rays.)

Resuming therefore the investigations begun in [39.], with respect to the intersection, which
we shall now call Xy, Z,,1, of any two final rays corresponding to any two parallel oblique

incident rays, or rays for which ; is constant, and employing the two formule (a) and (j); we
0

have, as an equation of a final ray, the following:

Xn+l Zn+l di Bhe
(k) w__+Aw+?+1_l’
that is,
@ Xoa{1-3F 12 (2-F0z71 + F-1)}

+ @ Zpsa {25t + F1= 20?25 +(0 — § F ) 222 = .
Differentiating this equation with respect to @, but treating #z;* as constant, we find
(m) —§Xp 1 F1(2—F0 wz5! + 2F12) + Zpiy (F1— F2a?2571 + (0 - F ) a25%) =15
so that we are led to try to satisfy the system of equations

3 X0 1 F 12 —-FO) w25t + Zina (F1+(0 -3 F 1) 2252 =15
and
Xon(l—3F 20+ Zywz; (1 - F2a%) =0,
that is,
Xnya+ Znwzy'=0;
which can in fact be satisfied (in our present order of approximation) by supposing

Zpu={F1+}(F1+0)a?z% 1 =F (1 —§a*2;®) (1 - § FOa?2;%);

(n) "
and Xpn=-—22;1Zp41;

that is, if we make — 225! = tan sin™ ,, and therefore 1 — $a%2;% = cos sin™ e,

X n+1 Z'n+1

=F(1-4F0a});

(O) o 1—%03—

formule which agree with (e). :
The formule (a) and (j) are therefore sufficient to show that, under the conditions which
have conducted to them, namely, those denoted already by
® : M=0, N=0, pa=po=1,
the aberration of the system is destroyed, for oblique parallel indiametral incident rays: which
is one part of the theory of my object glass.

(Feb. 23d.) For any combination of coaxal refracting surfaces of revolution, placed close together
at the origin, we have, by [81.], instead of the expression (j) at the foot of the preceding section,
the following, in which Az is the total change of abscissa of intersection of the ray with the axis
of z, that is, with the common tangent to the surfaces:

Az = 8871;+ g =} F3N (0, — 00)* + $ F200¢ (00— 00)* — 2 F (00 + 00) (90 = 00)*;

57-2
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448 XXI. IMPROVEMENT OF OBJECT GLASS [41, 42

therefore
Az=3F*(N —p2F~2%) (0p— 00> + $ F (FO —2u;?) 0o (an — 00)?

I's *
iy o {N— p2F-2 4+ (0 — 2u-2 F-1) /LO}
2 20

o? 1
= _§ {— 2(1.) ;‘_l,u.i_lFflA’ri + ;L;"IFJI'I‘” + /.Loz(')_l E(i)'{nAi 7[} 5
2y’ being the ordinate of the point where the first incident ray crosses the axis of the system.t

From geometrical considerations, I think that this ought to be equal to

a3 1
E E(i)'{TiAiz_,ia

z{ being the ordinate of the point where the ith refracted ray crosses the axis of the system. If
so, we must have

il Oy Bo\ |, -1 (Mo
A1z_’=#llF11+F’0201A1;=r1<1_l—‘;>+201(E_l)’
that is,
1

N ) s
ol + 71 (01 — o),

which is true; and also,

1
Tnlpn— —,“_l Fﬂ 1("'n—1"7'n)+,“,,,1F;17'n P = IF 117'71—1'*‘/"020 ""n(/l'” i ;lla
z

that is,

Z;—l_z'—l s 1F -1 __'u—l Fn—1+,'l‘oz (/‘n "':"’n-1)
that is,

'l =V (Bl oz ) =2 — un (B + pozyY) =0,
or,

pn = posst + F 31,
which is also true.

[42.]f (Foci for oblique rays.)

Let XPQ be any incident, and X'Pg the corresponding refracted ray, CX X" being a tangent
to the refracting surface CP at the vertex C, and X, on the
axis (g@Q), being the centre of curvature. Let P}, as in
Herschel’s figure on last page,§ be a perpendicular let fall

M B z R _ fror.n the point .of incidence P, on th(? axis CQ; l')ut let' us,
as in the notation already employed in my own investiga-

, tions on recent pages of this book, denote PM by x;; CE
by 7;1; let us also denote CQ by z;_,; and Cq by 2. Then, CM = }7;42, nearly;

oM iy bonia ¥ AOX — MP
= %Z._iri-%é: A~~~ yamdl 4
MQ i ¥ MP

* [Since —°—= ’%; see [37.].]

OTn= 090
t [z =2.]
{ [The method of the characteristic function is not used in [42.] to [45.] inclusive.] |
§ [We have omitted the page referred to, and a few others, headed * Comparison with Herschel.”]

\
x

www.rcin.org.pl



42] XXI. IMPROVEMENT OF OBJECT GLASS

therefore
CX - MP =} 2,~1r;a?
neglecting #7; similarly
OX" — MP = §2/ria;
therefore
XX = 0X —0X = §(& ! - i) et

neglecting 2. Hence if we denote CX by «]_,, and CX" by «|_, + A/, we have

/3
i-1 ¥ 5
i Al;’ ’

8

()

in which, as in former investigations,

5 o '—-1__ -1
A.z, 2 7o

449

Let therefore the first incident ray cut the axis of 2, on the common tangent CX to all the
refracting surfaces of revolution at their vertex, in a point of which the abscissa, on that tangent,
is @/, or simply 2’. The last refracted ray will cut the same axis, or tangent, CX, in a point of

which the abscissa is

1
w,,' =w'+4}w'32(0’{r,~Aiz—, .

But ;
£ =pr (pozyt + F;Y),

if we neglect the aberrations which have no effect in the present investigation (relatively to @,");
2, being here the same as zo. Hence, denoting for abridgment 2o’ by 2, we have for the abscissa

& of intersection of the final ray with the axis of #, the expression:
o =a + 3 {#02(1)17'1At +2(1,)1T5 .( F_l)}

in which we are to consider F;! as equal to zero, because

1
Ay 5 =2"1— 2" = pgz;" A ;—4.+ Byt

Thus,
Ziridi (W) =rap B =3 ) 1T VP A

and by employing the symbols A of [37.], this last expression becomes

et L7 | el
With the same symbols,

2 piride C—) == Mt P
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450 XXI. IMPROVEMENT OF OBJECT GLASS [42, 43

thus we may write, for any combination of coazal refracting surfaces of revolution, placed close
together at the origin,

' 1=g1 - i {7&1 + 27\4 it oY (F_.l bl M)}

rre (43 e (ot e () o ()

', 0 and 0, 2’ being the coordinates of the two points in which the initial ray crosses the axes
of z and z; and 2"/, 0 and 0, 2" being the coordinates of the two points where the final ray
crosses the same axes; so that the equations of these rays may be thus written :

X'z o 7' 1=1 : X! g1 v Z'-1-1 :

Al ] 1 j
po being initial, and p, final index ; P Z(i)’l‘n A;p, as before, and N, A1, Ag, Ag having the values

assigned in [37.].
And, in the order of approximation to which we have hitherto confined ourselves, we may
investigate all circumstances respecting the arrangement of any system of indiametral rays, by

the help of these last systems of equations.

[43.] (Focu for oblique rays.)

Thus, if the initial rays be parallel, ' will bear a constant ratio to 2’; and to find the
intersection of two infinitely near refracted rays, we may differentiate the equation of the

4

refracted ray with respect to a’, treating % as constant ; and thus we obtain, after multiplying

by &/,

X +——(1+>\4(”"x>>2"=%—(x1 $p2Fa +Z"( ,+2x0—)
HMnZ I"n Hn

Neglecting at first small terms, we have the two equations

X”_ -1 gt (0 1 X"_ o /rll'o
=l By g, Dot 2

which give as approximate coordinates of the intersection of the two 1nﬁnite1y near rays,

’
X/I=__,“‘OZIF; Z"=I"11F;

then substituting these values in the terms of the 2nd dimension, in the equation in the present
section, and in that obtained by subtracting it from the one in the preceding section, namely

ZII XIII Xlla’I
1= gt S a4 P+ =5 2 00— 42 1)
7\
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43] XXI. IMPROVEMENT OF OBJECT GLASS 451

we find 1st.,
Zt ,u.ow 2F

:”'o
= Selag T

25
(xl %ll'n 3 F—ﬁ) i /2 (xﬁ 'ﬁ”’n Wiy F‘_l)

1;1-0 g g
_M( “)
2

. . . . &
so that this expression will involve one term varying with 2" and another with 7

o
(% being constant,) unless the two following conditions are satisfied:

AN=0; M=—4pu2F3
that is, as before,

M=0, N=0,

But 2nd., when these two conditions are satisfied, then, (see [37.],)

z i #owlg s it ”,oa;lﬂl 2 FO
GO e AR
=(1-4a2)(1-3F0o0}),
if
@ @’ Ho

- a a0 = Mol ;
p 7 n s 0= %o
1—3%ad z Hn

and, by the first equation in the present section,

o Io """"F (1 -3 (1 =32 FO ) = pnan F (1 -} FOG2),

VX 2% =, F(1-3FOc}), s in [31]

We find therefore, in this way also, namely from the connexion between the equations of an
initial and a final ray, given in the last section, or from the expression for 2", combined with that
for z”, as depending on &’ and 2/, that the additional condition, besides Ao = 0, or M = 0, necessary
in order that, for parallel oblique initial rays, the final rays in the diametral plane may converge
to one common focus, is

M=—3u;2F? or N=0, as before.

Nor have we in this last method of investigating these conditions M =0, N =0, employed the
function 7' any farther than as in deducing the expressions of [87.] for Ag, A1, Az, Ag; Which might,
however, have been deduced by other methods, for example, by that which Herschel uses.

The theory of my object glass, therefore, (at least so far as indiametral rays are concerned,) and
the fundamental equations which'construct it, might have been deduced, although less elegantly,
without the introduction of my characteristic function T.
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452 XXI. IMPROVEMENT OF OBJECT GLASS [44

[44] (Foce for oblique rays.)

Without differentiating the EQUATION OF THE FINAL RAY, given in [42.], let us put it under
the form

’\ 2 1"
O={XH Z /"0‘7:' <1+x3(/"'0$)>} { 1+£ (F_1+7\-2<
pn 2 Hon

7

“’ {(X"+4£— 7 )xl—gX"p;2F'-2}+w'3-i—7\0;

>)+X7””;—.#(7\z—%#;2ﬁ"1)}

’
and then we see that if it is to be satisfied for given values of ; , X", Z", while &’ remains

undetermined, we must have
Z! g N2 X ' e [ie\%)
a1t w,ﬁ)( ; ); w=-" {1+(x3 éFM—%#nz)(7>},

M=—§p2F?; N=0.

And if we now employ the expressions, (see [37.]),
M=M; M=2N—{u2F2; XN=0-§p2F'; M=%, —p5");

we arrive (as before) at the conditions
M=0'N=0,
and at the coordinates

X" =ppFo, (1 - 342 FOc)),
2" = p,F (1 - }a2) (1- }u3FOG),

in which J )
RS T T, e I .
O = P (1 ?]22;2> y Oy fim 3
therefore £/t
‘\/an +Z/lz =/"RF<1 4 %/LZFOa%),
as before. (See [31.].)

(Feb. 24th.) The equation of the final ray, given at the top of this section, is accurate to the

3rd dimension inclusive ; and if the initial rays be parallel to each other, although oblique to
4
the axis, then§ is constant, but &’ is variable. Now ' is the distance of the initial ray from

the origin, that is, from the common vertex of the n refracting surfaces, measured upon their
’
common tangent ; if then we make #’ =0, without making ; = 0, we shall obtain the equation
of the final ray which corresponds to the ray incident at the vertex, namely :
(44
. i Z /"0*” (1+K3 (ﬂ«ow)).
7 z

n
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44, 45] XXI. IMPROVEMENT OF OBJECT GLASS 453

Substituting for As its value, \g=§ (u2 — u;%), and making

a:' .’B’ Mo%o
w=-5 (1-4(7)), w=t52.

X"=e,2"(1+3}ad),

this equation becomes

as might have been expected, because the ray incident at the vertex emerges there, with that
Ho%o
e
If we next inquire what is the intersection of THIS final ray, with any other, corresponding to any
value of &’ different from zero, we are to suppress the part independent of 2’ in the equation at

change of direction (if u, be different from pe) which is expressed by the equation e, =

the top of this section, and then divide by o/, (treating alwaysf-, as constant,) and we thus find:

PR K (F—l e ("Z,’”'> ) X2 2 (ha = gz F-)

Fn

"

” Z 144 - ! / Z
4{(x +4°- "2”) M—§X " utF 2}+w2;:)\0;

that is, in the same order of approximation, (neglecting here terms of 3rd dimension,)

1= Z’ {F-l + x,(

Hn

”

7 4 () oa- i P} + 2L A8 2 o gt 400

7z l‘m

that is,

;1,—;. 3 (et §u2F) (’“"”) + 2 a4 dup ) (" : ) + oo™,

NI?

[45.] (Foce for oblique rays.)

If in the next place we seek the intersection of the ray emerging from the vertex, with that
which emerges from an infinitely near point, the incident rays having been parallel ; we are to

? .
make 2’ =0, (but not ; = O,) in the formula just now given, and we find

as a formula which determines the central focus for oblique rays in the diametral plane of an
‘instrument, composed of any number of coaxal refracting surfaces of revolution, placed close
together in vacuo® at the origin. This central focus is the point X", Z", of which the coordinates
are given in the upper half of the preceding section.

* [The restriction of being n vacuo is not actually made.]

HMP ‘ 58
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454 XXI. IMPROVEMENT OF OBJECT GLASS [45, 46

Let the ordinate of this central focus of oblique rays, or the Z” determined by the last
formula, be called, for a moment, Z'"; then, the formula at the end of the preceding section
becomes:

g_?l i Z\u + (7\1 o %#;21;'—2) (Iuo ) +Xow

and gives

II=Z\II_

so that there are in general two kinds of indiametral aberration, for parallel incident rays; one
kind depending solely on the semiaperture «, and answering to the term o2 in the expression

for Z" ; the other kind depending partly on that semlaperture ', and partly on the obliquity or

inclination of the incident rays, of which the tangent is — z_ If both these aberrations, or parts

of aberration, are to vanish, we must have not only Ag=0, which is the most usual and

recognised condition, but also
X1+‘;‘M;2F_2=O,

and thus are still again conducted, by a slightly different path, to the same two conditions
already several times (in this book) assigned by me, for the construction of an aplanatic
object glass.

If the most usual condition of aplanaticity, namely A\o=0, be satisfied, but not mine; or if,
(which is indeed a case of the last supposition,) the two conditions of Herschel are satisfied,
namely Ao =0, A; = 0; then the longitudinal aberration for oblique parallel rays involves a term
proportional to the semiaperture «’, and changing sign therewith; so that the corresponding

term of lateral aberration is of one constant sign, independent of the sign of the semiaperture ',
’

being indeed proportional to a2 (:) while ; depends only on the inclination of the initial

rays to the axis of the instrument. In fact when Z’’ has the value above assigned for the central
focus of oblique rays, the aberration of X"/, measured from the ray which issues at the vertex, is,
if Ao=0, expressed by the formula:

X"+§f”gf' (1 )( b 2 ,2) L "F O+ just Py an

n

[46.] Ex-diametral rays, by function T.

System of Refracting Surfaces, close together at the origin.

(Feb. 29th, 1844.) For the last 40 pages, (right and left hand,)* we have considered only
the arrangement of rays in the diametral plane of zz. But let us now resume the investigation

* [That is, of the note book. Seven of these pages, devoted to a comparison of Hamilton’s results with those
of Herschel on spherical aberration, are not reproduced here, and one page, headed “Foci for oblique rays.
Caustic curve.”, is blank. The investigations on rays in a diametral plane, as here reproduced, are contained in
sections [14.] to [45.], inclusive.]
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46] XXI. IMPROVEMENT OF OBJECT GLASS 455

of [83.], supposing indeed still 7o=0,* but not 7;=0; so that
T=3T; T;=r1Av. {1 W \/1 o (Ai‘U)2+(AiT)2} ;

(Asv)?
gt
il R P
Ti=T®+T"®+ T"®; TO+ IO =— (_A%SL)R;
(Aiv) = (Aipy? {1 + 3 (Aip) A e Tﬁ} ;

PO L. ol e L 0 i ol i 1 T . o L
y Wl P T 4 (A T Y (Aip)?
TO=37®; T'&=3T"®; T"O=3T"®; T=TO+]"04 "0,
S S
e p— (2) - = 7T@:
80‘,‘ T ;. 0 81’,; T i
A,-o' i Ai+1o' X A,;’T s AH_I'T

5 = = s DNjo=0riAspu; AjT=DriAip;
"'iAi,U' ”'i+1Ai+1,U', ”'iAi,Uf "'i+1Ai+1,“, X e i o il

F1=3,irAip, oi—oo=0F;', m—my=7=DF;, F,=F,
on—0co=C0F-, 1,=DF-; F(o;—a0)=F;'(on—00), Flri=F;lm;
F1Aj0=(on—0ao) rilAip, F1A;r=mnriAsp;

TP = — | Firdip (oa = of+ 2], T9=—4F (o= a0l +73);

" 0'2+‘7'2 "
P79 = — 3P ST ((on—of b 2], T = FriAum ((on— oo + 3%
2 4 2 2 :
T6 = } F4 (o= o0)* + 7°) {- F—%,,"”MT" + Py :%’,Jr 3o 1 (F o0+ Filon— oo+ F ) Ar,.} ;

T7'® = 3 P (00— 00t + 722 St Agps = 1 TS (00 — 00+ 72 St s gt

Hence, if in the expressions [in [33.]] for 7® and (a, — g0)2 I'®, for indiametral rays, that is, for
the case 7, =0, we change ¢ to o2 + 72, we shall get the expressions for 7® and

{(ow— 0P+ 27 T,
for exdiametral rays; the refracting surfaces being supposed to be all close together at the origin.

Now, in the notation of [33.], for tndiametral rays,

T® =Qot + Qa3a0+ (@ + Q) oo+ Q onad + Q" a};
therefore

r® (‘Tﬂ 3 0'0)_]': Qai g (Q + QI) ai"o"" (Q+ Qr + Q’ o Qn) a"no% 4 (Q < Q; i Q' o Qn " Q/’) ‘73,
# [The incident rays are assumed to be parallel to the plane y=0.]

+ [This latter expression applies to surfaces of revolution in general; the former to spheres only.]

58-2
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456 XXI. IMPROVEMENT OF OBJECT GLASS [46, 47

and *

0=Q+Q+Q+Q,+Q'+¢";

also, in like manner,
T® (on—00) 2= Qo+ (2Q + Q) onoo + (3Q +2Q, + Q' + Q,) a3,

0=4‘Q+3Qr +2(Q + QH) o0 Qr’;
therefore, for exdiametral rays, the additional part is
T {Q (05 +7) +(2Q + Q) ondo +(3Q +2¢, + Q"+ Q,) 0(2)} + Q'TE; (on — 00)?%;
and the whole
 TO=Q(e+ 2P+ Qoo (0t + 1)+ Q 0} (2 +72)+Q, 0303 + @ ofon+ Q" o,
if we make *

and *

4Q+2Q,+ @, =0,

a condition necessarily compatible with whatever value of @'+ (), may have been previously
deduced from the study of the indiametral rays, or from the development of 7@ for r,=0.
Reciprocally, this last condition must be fulfilled, if we wish to have the form just assigned for
7@, for the case of an exdiametral system.

[47.] The three conditions*
Q+Q+Q +Q,+Q'+¢"=0,
4'Q o 3Q[ +2 (Q’ L Qn) - Q;I =0,
4Q+2¢,+¢,=0,
are doubtless those required for the divisibility of the expression
I =Q(a*+ 7%+ Q000 (¢*+ %) + @ 03 (o* + 7°) + ), 0} 0* + @/ 0}a + Q" o}
by o*4+7*—20¢0+0}. It may be instructive to verify this divisibility, and to assign an
expression for the quotient.

Retaining @, @,, @', and expressing @,, @/, " by these, we have

Q) =—4Q—-2Q,;
Qy, =4Q+ Q’ v 2Q’;
¢ =-Q+G

But :
(*+ 1P —dolo? + oo — 0§ = (0 + 1 — 2000 + 7)) (6 + 72+ 2090 — al);

090 (62 +7%) — 2030% + oo = (a® + 7 — 2040 + 0}) 090 ;
a3 (o?+ 1) — 2030+ ob= (0 + 1> — 2000 + ¢2) 03 ;
the division therefore succeeds, and the quotient is

Q(*+7%)+(2Q + Q) a0 — (@ — Q') a3,

* [These three relations between the coefficients in the general expression for any instrument of revolution,
T(4)= Q‘2 + Q’ ‘GI + Q’eel + Q’I ‘/2+ QI"! E’ + Q’IGIZ,

are consequences of the condition that the system is thin and situated at the origin, 77¢) being then divisible by
e—2¢,+ ¢ ; see Appendix, Note 26, p. 511.]
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47, 48] XXI. IMPROVEMENT OF OBJECT GLASS
Comparing then this last expression with that given by the last section for
(a®+ 7 —2000 + o)1 19,
(in which we have written o, 7, for o,, 7,,) we find
4F—4Q = — F_zll,;lrn'l" 2('_);&—1/"‘—1[1';2A7‘.;+ E(i)'{‘S,’Aiﬂc 5
2F1(2Q+Q) =2t u ' F N (F 1= F ) Ary = 3 hsi By

AF 4 (Q - Q) = F2u;'ry +2(i)'1'—1.“5-1 (F-1= F702 Ar; + E(i),llsiAw;

and consequently
2P~ (4Q +Q) = — F2pzlry + 3 )+ VP Ay

2F-3(2Q" + Q)= F"l,uo“lrl + 2,01 (P = F ) Arg;
therefore finally,

4F- 2(2Q+Q;+Q)""l“n1"'ﬂ+l‘ol"'l+2 T Arp= =2 il

[48.]* The equations of a final ray are

YA
ooy’

0-2 +'T2
Tpy1 — fin (1 + 2 2 )Z‘ll-{-l + F(o-fn oy 0'())=

o+ 72 ST@
:'/n+1_“—”(1+ 2u? )z"+1+FT"=8_T;;
in which

(4)
‘ % =4Qo, (a2 +72)+ Q00 (802 +72)+ 2(Q' +Q,) o20u+ Qo3

(4)
] SSTT—élQT,.(aZ +72) +2Q, 000',.'1',,+2Q o2 Ta;
n

if then we make, as in [33.],
4’Q=_%/‘;2E Qr=07

the equations of a final ray will become

e ot
w”+1—F0‘o—Q,’»0'g=0'n(l+ 2 2 ){ZZH F+2(Q’+QH) 0},

n

0' +7 Zn41 ’
y,.+1—7,.<1+ b ){Z—F+2Q o%}.

1

07

457

Hence, under these conditions, and in the present order of approximation, the final rays all

intersect the two following FOCAL LINES:

* [In modern terminology, this section contains a discussion of astigmatism in an instrument of revolution,
~ corrected for spherical aberration and coma by the relations 4@= —4u-2F, @,=0. See also p. 378, The fact that the

system is thin does not enter essentially until the last few lines, although of course it is necessary in the case of a thick
system to employ different origins in the initial and final media in order to have for 7'® the simple form assigned
in [46.]. The origins must in fact be chosen at the principal points (points of unit lateral magnification); the

distances of the principal foci beyond and in front of these points will be p, # and po #.]
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458 XXI. IMPROVEMENT OF OBJECT GLASS

[48, 49

Ist. Tpa=Foo+Q 03, zn1=paF —2u.(Q +Q,)03;
IInd. Ynr1=0, Zpir=pn F — 20,Q o2,
The ordinate z of the IInd, minus that of the Ist, is equal to 2u,@Q),¢2; in which, by preceding
section,
¥ g, 4Q s 2Q/ 5
hence, by present section,
Qu i %/"; il

and the interval between the two focal lines is therefore equal to

't Fog,

= distance of IInd beyond Ist.

[49.] Combination of Two Lenses.
(Indiametral Rays.)

(April 4th, 1844.) By [11.], changing ¢, €, ¢,, ¢/, ¢,, €”, to &% &2, ac’, &'a”’, ea’, &'"%, we obtain
Jor any combination of two coazal lenses of revolution in vacuo, and for indiametral rays,

T@ =ty + § (vg—v) 0 — Lo’
(ra — rea’)?
(rga’’ — rqa)?

dpta (e — 1)* B

r10? (@ — pad P — a0 (pra — '

+ 3apu Ry (e — rad’)t + dapg S Ryt (rya” — rya)t
S G DA IS K S
L

{ra (pse” — 0 — 7o (@' — pac))

rge? (2" — pat)? — rya’’? (pga’’ — a)?

4(m— 1P R}

4(pa—10 Ry

s1(@— pa)t— sy (pa—a')t | s3(a” — paa)* — 54 (pse”’ —)*

-+

4(pa— 1) By

4 (ll'z o 1)8R42'

b}

in which, vy, vs, v5, ¥4 are the ordinates of the four vertices; 7y, 73, 73, 74 the four curvatures,

positive when surfaces are convex to incident light; s;, 85, 83, 84 coefficients of (

22\ 2

2

) in the

developments of z (each y being zero); u;, ps indices of the two lenses; ¢, ¢, @'’ inclinations of
initial, intermediate, and final rays (each in vacuo) to the axis of the combination; #, ¢y, thick-

nesses, 5o that t; = v — vy, o =124 — v3;

R1=r1—’r2+(1—,u1'1)7'1'r‘2t1; .R2=7'3—7'4+(1—[L;1)7‘37'4t2;
pr=1=mti+pirty=1=1—p)rits; pe=14nt—p vty =14 (1 —purt) rety;

ps=1—rta+pyirsty=1—(1—p;)rsts; pa=1+7raty—p;lraty=1+(1—pu;")raty;
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49, 50] XXI. IMPROVEMENT OF OBJECT GLASS
a=f’a’+fllall;
f'=F(ua—1)Ry; f"=F(u—1)Ry;
Fl=(u—1)Bi+(ua— 1) Ry + A (1 — 1) (ua — 1) Ry Ry

7161 Taly |
iRy g Ry '

7@ — Qa"‘+ Q,a’a"s o (Qr & Q,,) a'2q’’? o eralsau " Q"a".

A=vy— 03—

Hence,

Q =} (13— v2) f""* — Yva+ Yt p TS R7A74 f7"8 + bty SRyt (ra — ra f7)1
11 (rapd = 1) S™ | (s — raf") {raps — f") — rs (1 — puf")}}

dpr (pn — 1)* R} e dpg (2 — 1) R}
TNl Sl C=pl P = rilp =N (0= plen) £
4 (p—1)* By 4 (pa— 1) R3 4 (m—1)*Ry
3 {88 (1 = paf") —8a(ps — ")} .
4 (pue— 17 R3 i

Q=3 —w) S +3tpr RIS} (f 1= 1) = tapg S B fra (ra ="' ra)®

13 P —4

¥ 2—7‘) e ’ 1 ’ ’
e =04 i (s =)= s (= o) + 0=

2u1 (pa — 1) B}

459

the QW + Q@ of the next section. So far the 14 quantities uy, wa, vy, vy, vs, Vs, 71, 73, 73, 74
81, 82, 3, 8, remain entirely arbitrary ; the two component lenses are not necessarily spheric, nor

thin, nor close together.
[60.] The first differential coefficient of 7™ with respect to e, is

33— 1)@+ 3t p 3 R4y (ra — e’ )3 — $taps d Rytry (rge’’ — rqa)?
ry(rie —ra)
2uy (u — 1) R}
_ ra(rsa’ —rq0)
2ps (o — 1)2Rg
% (ri@—rya’)?
- 2 (=17 R}
(" — e
2ps (pe— 1) R}
+ 3 (=1 R? ria? (e — p’) — rya (pra — &' = rapyo? (pyo — ')}

[ra(pra—a') —ri (e - pa’)?}
{ra(psa’ — ) —ry (a" — pyar)?}
{rap1(pra—a')—mr (e — py’)}
{ra(pse” — @) = r3pa (a” — pyar)}
+ (2 =12 By [l (pu” — 0) + 130.(0 — p10)® — r4pac® (@ — pac)}

+ (p—= 1) R4 {31 (¢ = paat’)> — p18y (pr — &' )P}
+ (u2— 1) B34 {84 (pse”’ — @)* — pysy (@” — paar)’} ;
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"3

and if, in this, we make &’ =0, @=f"a"”, and then divide by &"?, and multiply by 7', we find, as
one part of @),

Q,(l) e %fl {(vs_ 7)2)f”3 4 tlul—-sRl—Aj,’.{,f L tz,“‘g_s-R2_47'4 (7'3 —f”’l‘4)3

”‘%f”s (szf =7%) ™ 74 (73 —f””'4) {7‘4 (ps —f")z""'s (1 —f"P4)2}

o (g fl)z Ri‘ e (p2 — 1)2 R;

rff"”'(rzpf—'rl) & (75 —f”"‘4)2 {7'4 (ps —f") —1rzpa (1 —f"m)}

pa (1 — 1)* Ry pa (p2 — 1) Ry
) 2r2p]2.f113 7'4 (Ps _fll) + rsfll (1 _fllp4)2 s r4p4fll2 (1 "'f”P4)

(m — 1)® R (ua—1) R

2 (s1—pisa) f''2 sa(ps— [ —ssps(1 — " pa)®

2 .

MGTPST T Bl (ha— 1) RS )

The other part of ), is to be found by first taking the differential coefficient of 7® with respect
to &', and making e’ =0, which gives, so far,

7172 (TzP% —r)ad 7‘%053 (rap1— 7'1P2)
2 (- 1P BRI 2m (- 1P R
rop1a® (pasy— pisy) @® g
2(m—1P R (m—1PR{’
and then, by making ¢ =/f""«", and dividing by "% we obtain

pr %tlﬂstl—"”"z"’faa

+

7173 (repd — 1) + 75 (rapy — 71p2)
pa (p1— 1)?
i rypy R} 2 2 (pas1— P?Sz)} i
(p—1) (m—=1) J’

N

and finally,*
Q=0 +Q0.

[There follow a few pages devoted to the case in which one of the two lenses is infinitely thin,
and in contact with the other; the investigation then ends.]

* [The method employed is the following: write 7' =(G (d', a, a"))s=y/a' +r7a»=H (d', a”); then

1 (oH
9= (50

¢H (,0G 0 ? A ot ;
il o’ (f Oa 12 od a=!’a'+l"¢”, (W a'=0 3 (f Oa +a_g>a.’-=o. a=f"a" 3

therefore @,= @,V + @,®), where
! (oG 1
(1)___.f_ i WAL fiai ;
Q: P (aa)a,=0_ a=/",,,"’ Ql a8 @Z),/:o, a=f"a' ]

[A method for the computation of the aberration coefficients in the general instrument of revolution, following
Hamilton’s method and notation, will be found in the Appendix, Note 27, p. 512.]
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