XXI.

ON THE IMPROVEMENT OF THE DOUBLE ACHROMATIC OBJECT GLASS*

Feb. 9, 1844.

[Note Book 28, pp. 151-209.]
[1.] Single refractor: T for sphere, for any surface of revolution, for reflecting surface.
[2.] Alternative method: $\Delta T^{(2)}, \Delta T^{(4)}$ for any refracting surface of revolution.
[3.] Lens of revolution, preliminary.
[4.] $T^{(2)}$ for lens of revolution.
[5.] Alternative method. Foci.
[6.] Focal centres and focal length of a lens.
[7.] Combination of two lenses in vacuo: $T^{(2)}$, focal centres, focal length.
[8.] Construction for emergent ray.
[9.] Relations between initial, intermediate, and final rays.
[10.] $T^{(4)}$ for a single lens : expressions for Q coefficients.
[11.] $T^{(4)}$ for a combination of two lenses.
[12.] $T^{(4)}$ for a combination of two thin lenses, close together. Condition (B) for oblique aplanaticity.
[13.] Condition (A) for direct aplanaticity.
[14.] Rays in one diametral plane : general method for evaluation of T for instrument of revolution.
[15.] $T_{i}^{(2)}$ for a single refracting surface of revolution. (Indiametral rays.)
[16.] $T_{i}^{(2)}+T_{i+1}^{(2)}$ for two refracting surfaces of revolution. (Indiametral rays.)
[17.] General method for evaluating T for any number of refracting surfaces. (Indiametral rays.)
[18.] T for any number of refracting circles. The equation in differences connecting $\sigma_{i-1}, \sigma_{i}, \sigma_{i+1}$. Evaluation of σ_{i} for thin systems.
[19.] Equation in differences when the vertices of refracting circles are distinct. Approximate solution when the distances between the vertices are small.
[20.] Alternative treatment of preceding.
[21.] Expression for $T^{(2)}$ for any number of refracting surfaces. (Indiametral rays.)
[22.] $T^{(2)}$ and focal centres for combination of any two refracting surfaces. (Indiametral rays.)
[23.] Focal length for instrument with three refracting media.
[24.] Imagery in connection with focal centres. New form for the general equation in differences.
[25.] $T^{(2)}$ for any number of refracting surfaces, the squares and products of the intervals being neglected. Power and focal length. (Indiametral rays.)
[26.] More direct method of obtaining result of preceding section.
[27.] $T^{(4)}$ for any system of refracting surfaces of revolution placed close together. (Indiametral rays.)

[^0][28.] General expression for coefficient of longitudinal aberration for any system of surfaces of revolution placed close together.
[29.] Conditions $M=0, N=0$, for direct and oblique aplanaticity for any system of surfaces of revolution placed close together, the square of the initial obliquity being neglected. (Indiametral rays.)
[30.] Application of preceding result to combination of two thin lenses close together in vacuo.
[31.] Final rays in terms of M, N, O, the square and cube of initial obliquity not being neglected. Curvature of locus of focus when $M=0, N=0$. (Indiametral rays.)
[32.] Herschel's second condition of aplanaticity.
[33.] Summary of calculations for deducing (A) and (B).
[34.] Development of the equations (A) and (B).
[35.] Comparison with Herschel.
[36.] Equations (A) and (B) transformed into (A^{\prime}) and (B^{\prime}), in terms of anterior curvatures.
[37.] Focal lengths and aberrations of a system of refracting surfaces of revolution, close together at the origin.
[38.] Application of the preceding to a single surface, a thin single lens, and a thin double lens.
[39.] Foci and aberrations for oblique parallel incident rays (indiametral).
[40.] Foci for oblique rays (indiametral).
[41.] Foci for oblique rays (indiametral).
[42.] Foci for oblique rays (indiametral).
[43.] Foci for oblique rays (indiametral).
[44.] Foci for oblique rays (indiametral).
[45.] Foci for oblique rays (indiametral).
[46.] Exdiametral rays by function T. System of refracting surfaces close together.
[47.] Factorisation of $T^{(4)}$, and evaluation of coefficients, for thin system.
[48.] Arrangement of final rays (astigmatism).
[49.] Combination of two thick lenses (indiametral rays). Evaluation of Q.
[50.] Evaluation of Q,

[1.] Single Refractor.

$$
\begin{gathered}
\text { Rigorous } \\
\text { Equations.* }
\end{gathered} \quad\left\{\begin{array}{l}
\Delta T=x \Delta \sigma+y \Delta \tau+z \Delta v, \\
0=\delta x \Delta \sigma+\delta y \Delta \tau+\delta z \Delta v \\
\delta z=p \delta x+q \delta y, \quad z-p x-q y=f(-p,-q) \\
\Delta \sigma=-p \Delta v, \quad \Delta \tau=-q \Delta v \\
\Delta T=(z-p x-q y) \Delta v=\Delta v f\left(\frac{\Delta \sigma}{\Delta v}, \frac{\Delta \tau}{\Delta v}\right)
\end{array}\right.
$$

Ex. 1. Let

$$
z=v+r^{-1}\left\{1-\sqrt{1-r^{2}\left(x^{2}+y^{2}\right)}\right\}=c-r^{-1} \sqrt{1-r^{2}\left(x^{2}+y^{2}\right)},
$$

v being ordinate of vertex of hemispheric surface, c ordinate of centre, $r^{-1}=c-v=$ [radius of]

[^1]curvature, positive when surface is concave upwards, so that rays proceeding upwards fall upon its convexity. The radical is supposed to be positive. Then
\[

$$
\begin{gathered}
(z-c)^{2}+x^{2}+y^{2}=r^{-2}, \quad p=-\frac{x}{z-c}, \quad q=-\frac{y}{z-c} \\
z-p x-q y=c+(z-c)\left\{1+\frac{x^{2}+y^{2}}{(z-c)^{2}}\right\}=c+\frac{r^{-2}}{z-c} \\
p^{2}+q^{2}=-1+\frac{r^{-2}}{(z-c)^{2}}
\end{gathered}
$$
\]

$z-c$ is negative if r be positive, and reciprocally,

$$
\begin{aligned}
& \because \sqrt{1+p^{2}+q^{2}}=\frac{-r^{-1}}{z-c} \\
& \because f(-p,-q)=c-r^{-1} \sqrt{1+p^{2}+q^{2}} \\
& \because \Delta T=c \Delta v-r^{-1} \Delta v \sqrt{1+\frac{\Delta \sigma^{2}+\Delta \tau^{2}}{\Delta v^{2}}}
\end{aligned}
$$

rigorously, for a refracting hemisphere (as I have often found before,) and indeed for a reflecting hemisphere, and for all laws of refraction or reflexion, ordinary or extraordinary.

Ex. 2. Let

$$
z=v+\frac{1}{2} r\left(x^{2}+y^{2}\right)+\frac{1}{4} s\left(x^{2}+y^{2}\right)^{2}
$$

then

$$
\begin{gathered}
\frac{p}{x}=\frac{q}{y}=r+s\left(x^{2}+y^{2}\right), \quad p x+q y=r\left(x^{2}+y^{2}\right)+s\left(x^{2}+y^{2}\right)^{2} \\
z-p x-q y=v-\frac{1}{2} r\left(x^{2}+y^{2}\right)-\frac{3}{4} s\left(x^{2}+y^{2}\right)^{2} \\
p^{2}+q^{2}=r^{2}\left(x^{2}+y^{2}\right)+2 r s\left(x^{2}+y^{2}\right)^{2}+s^{2}\left(x^{2}+y^{2}\right)^{3} \\
\left(p^{2}+q^{2}\right)^{2}=r^{4}\left(x^{2}+y^{2}\right)^{2}+\& c .
\end{gathered}
$$

therefore, neglecting $\left(x^{2}+y^{2}\right)^{3}$, we have

$$
\begin{gathered}
\left(x^{2}+y^{2}\right)^{2}=r^{-4}\left(p^{2}+q^{2}\right)^{2}, \quad x^{2}+y^{2}=r^{-2}\left(p^{2}+q^{2}\right)-2 r^{-5} s\left(p^{2}+q^{2}\right)^{2} \\
\\
f(-p,-q)=v-\frac{p^{2}+q^{2}}{2 r}+\frac{s\left(p^{2}+q^{2}\right)^{2}}{4 r^{4}} \\
\because \Delta T=v \Delta v-\frac{\Delta \sigma^{2}+\Delta \tau^{2}}{2 r \Delta v}+\frac{s\left(\Delta \sigma^{2}+\Delta \tau^{2}\right)^{2}}{4 r^{4} \Delta v^{3}}
\end{gathered}
$$

approximately, for a surface of revolution.
By making $s=\frac{1}{2} r^{3}$, the ellipticity vanishes, and we get

$$
\Delta T=\left(c-r^{-1}\right) \Delta v-r^{-1}\left(\frac{\Delta \sigma^{2}+\Delta \tau^{2}}{2 \Delta v}-\frac{\left(\Delta \sigma^{2}+\Delta \tau^{2}\right)^{2}}{8 \Delta v^{3}}\right)
$$

as by developing the rigorous radical expression in the last example.

* [See footnote to p. 370.]

HMP

Ex. 3. Let there be a single reflecting surface*; then v_{0} and v_{1} will have opposite signs, and we may suppose, considering the τ 's as vanishing, \dagger

$$
\begin{gathered}
v_{0}=-\sqrt{1-\sigma_{0}^{2}}=-1+\frac{1}{2} \sigma_{0}^{2}+\frac{1}{8} \sigma_{0}^{4}, \\
v_{1}=\sqrt{1-\sigma_{1}^{2}}=1-\frac{1}{2} \sigma_{1}^{2}-\frac{1}{8} \sigma_{1}^{4}, \\
\Delta v=2-\frac{1}{2}\left(\sigma_{1}^{2}+\sigma_{0}^{2}\right)-\frac{1}{8}\left(\sigma_{1}^{4}+\sigma_{0}^{4}\right), \\
T=2 v-\frac{v}{2}\left(\sigma_{1}^{2}+\sigma_{0}^{2}\right)-\frac{\left(\sigma_{1}-\sigma_{0}\right)^{2}}{4 r}-\frac{v}{8}\left(\sigma_{1}^{4}+\sigma_{0}^{4}\right)-\frac{\left(\sigma_{1}-\sigma_{0}\right)^{2}\left(\sigma_{1}^{2}+\sigma_{0}^{2}\right)}{16 r}+\frac{s\left(\sigma_{1}-\sigma_{0}\right)^{4}}{32 r^{4}} ;
\end{gathered}
$$

and for reflected ray,

$$
x=\sigma_{1} z+\frac{1}{2} \sigma_{1}^{3} z+\frac{\delta T}{\delta \sigma_{1}}
$$

If incident rays be parallel to axis, then

$$
\begin{gathered}
\sigma_{0}=0 \\
T=2 v-\frac{1}{2} v \sigma_{1}^{2}-\frac{1}{4} r^{-1} \sigma_{1}^{2}-\frac{1}{8} v \sigma_{1}^{4}-\frac{r^{-1}}{16} \sigma_{1}^{4}+\frac{r^{-4} s}{32} \sigma_{1}^{4} ; \\
x=\sigma_{1}\left(z-v-\frac{1}{2} r-1\right)+\frac{1}{2} \sigma_{1}^{8}\left(z-v-\frac{1}{2} r^{-1}+\frac{1}{4} r^{-4} s\right)
\end{gathered}
$$

and when

$$
z=v+\frac{1}{2} r^{-1}=\text { ordinate of principal focus, }
$$

then

$$
x=\text { lateral aberration }=\frac{1}{8} r^{-4} s \sigma_{1}^{3} ;
$$

or, reciprocally, when $x=0$, then

$$
z-v-\frac{1}{2} r^{-1}=\text { longitudinal aberration }=-\frac{1}{8} r^{-4} s \sigma_{1}^{2} .
$$

For hemisphere, this last aberration $=-\frac{1}{16} r^{-1} \sigma_{1}^{2}$; for paraboloid, it vanishes. (Rigorously, for hemisphere, longitudinal aberration $=\frac{1}{2} r^{-1}\left(1-\sec \frac{1}{2} \sin ^{-1} \cdot \sigma_{1}\right)$.)
[2.] Another method of developing ΔT, as far as small quantities of the 4th. dimension inclusive, is to make

$$
\begin{aligned}
& z=v+z^{(2)}+z^{(4)}, \\
& v=\mu+v^{(2)}+v^{(4)}, \\
& \Delta v=\Delta \mu+\Delta v^{(2)}+\Delta v^{(4)}, \\
& \Delta T=\Delta T^{(0)}+\Delta T^{(2)}+\Delta T^{(4)}, \quad \Delta T^{(0)}=v \Delta \mu, \\
& \Delta T^{(2)}=x \Delta \sigma+y \Delta \tau+v \Delta v^{(2)}+z^{(2)} \Delta \mu, \quad z^{(2)}=\frac{1}{2} r\left(x^{2}+y^{2}\right), \\
& \Delta T^{(4)}=v \Delta v^{(4)}+z^{(2)} \Delta v^{(2)}+z^{(4)} \Delta \mu, \quad z^{(4)}=\frac{1}{4} s\left(x^{2}+y^{2}\right)^{2}, \\
& \Delta \sigma+r x \Delta \mu=0, \quad \Delta \tau+r y \Delta \mu=0,
\end{aligned}
$$

these last two equations giving values of x, y, which are not indeed rigorous, but of which the want of rigour does not affect our present results; \ddagger hence,

$$
x \Delta \sigma+y \Delta \tau=\frac{\Delta \sigma^{2}+\Delta \tau^{2}}{-r \Delta \mu}, \quad z^{(2)} \Delta \mu=\frac{\Delta \sigma^{2}+\Delta \tau^{2}}{2 r \Delta \mu}
$$

* [of revolution in vacuo].
+ [That is, considering only rays in the diametral plane $y=0$. The medium lies on the positive side of the mirror.]
\ddagger [It is obvious that the substitution of the approximate values in $\Delta T^{(4)}$ introduces no error of the fourth order; but it is not so obvious in the case of $\Delta T^{(2)}$. If, however, we substitute more exact values for x, y from
and finally

$$
\left\{\begin{array}{l}
\Delta T^{(2)}=v \Delta v^{(2)}-\frac{\Delta \sigma^{2}+\Delta \tau^{2}}{2 r \Delta \mu} \\
\Delta T^{(4)}=v \Delta v^{(4)}+\frac{\left(\Delta \sigma^{2}+\Delta \tau^{2}\right) \Delta v^{(2)}}{2 r \Delta \mu^{2}}+\frac{s\left(\Delta \sigma^{2}+\Delta \tau^{2}\right)^{2}}{4 r^{4} \Delta \mu^{3}}
\end{array}\right.
$$

Also, for ordinary refraction or reflexion,

$$
\begin{gathered}
v=\mu \sqrt{1-\frac{\sigma^{2}+\tau^{2}}{\mu^{2}}} \\
\because v^{(2)}=-\frac{\sigma^{2}+\tau^{2}}{2 \mu} ; \quad v^{(4)}=-\frac{\left(\sigma^{2}+\tau^{2}\right)^{2}}{8 \mu^{3}}
\end{gathered}
$$

Thus, more explicitly, for any ordinary refractor or reflector of revolution,

$$
\left\{\begin{array}{l}
\Delta T^{(2)}=-\frac{v}{2} \Delta \frac{\sigma^{2}+\tau^{2}}{\mu}-\frac{r^{-1}}{2} \frac{\Delta \sigma^{2}+\Delta \tau^{2}}{\Delta \mu} \\
\Delta T^{(4)}=-\frac{v}{8} \Delta \frac{\left(\sigma^{2}+\tau^{2}\right)^{2}}{\mu^{3}}-\frac{r^{-1}}{4} \frac{\Delta \sigma^{2}+\Delta \tau^{2}}{\Delta \mu^{2}} \Delta \frac{\sigma^{2}+\tau^{2}}{\mu}+\frac{s r^{-4}}{4} \frac{\left(\Delta \sigma^{2}+\Delta \tau^{2}\right)^{2}}{\Delta \mu^{3}}
\end{array}\right.
$$

But we may also write, more concisely,*

$$
\left\{\begin{array}{l}
\Delta T^{(2)}=v \Delta v^{(2)}-z^{(2)} \Delta \mu \\
\Delta T^{(4)}=v \Delta v^{(4)}+z^{(2)} \Delta v^{(2)}+z^{(4)} \Delta \mu ;
\end{array}\right.
$$

or, more symmetrically,

$$
\left\{\begin{array}{l}
\Delta T^{(2)}=z^{(0)} \Delta v^{(2)}-z^{(2)} \Delta v^{(0)} ; \\
\Delta T^{(4)}=z^{(0)} \Delta v^{(4)}+z^{(2)} \Delta v^{(2)}+z^{(4)} \Delta v^{(0)}
\end{array}\right.
$$

in which $z^{(0)}, z^{(2)}, z^{(4)}$ are the three first terms of the development of the ordinate z of the surface, and $v^{(0)}, v^{(2)}, v^{(4)}$ are the three first terms of the development of the component v of normal slowness of the wave; while $z^{(2)}$ in $\Delta T^{(2)}$ is to receive its first approximate value, obtained by substituting for x, y, their own first approximate values, deduced from the two equations comprised in the formula

$$
\Delta \sigma \delta x+\Delta \tau \delta y+\Delta v^{(0)} \delta z^{(2)}=0
$$

[3.] Lens of Revolution.

Foci, Images, Focal Centres.
Now, let there be a lens. For it,

$$
\begin{aligned}
T^{(2)} & =z_{1}^{(0)}\left(v_{1}^{(2)}-v_{0}^{(2)}\right)-z_{1}^{(2)}\left(v_{1}^{(0)}-v_{0}^{(0)}\right) \\
& +z_{2}^{(0)}\left(v_{2}^{(2)}-v_{1}^{(2)}\right)-z_{2}^{(2)}\left(v_{2}^{(0)}-v_{1}^{(0)}\right)
\end{aligned}
$$

$\Delta \sigma=-p \Delta v, \Delta \tau=-q \Delta v$, we find that the additional terms introduced cancel out, and we arrive at the expression for $\Delta T^{(2)}$ which follows. For a general justification of the method, see Appendix, Note 24, p. 507. Cf. also [15.] of the present paper.]

* [These equations are the same as th ose at the top of the page.]
in which $z_{1}^{(2)}$ is a function* of $\sigma_{1}-\sigma_{0}, \tau_{1}-\tau_{0}$; and $z_{2}^{(2)}$ is a function of $\sigma_{2}-\sigma_{1}, \tau_{2}-\tau_{1}$; also σ_{1}, τ_{1} are to be eliminated by the condition \dagger that

$$
\delta_{\mathbf{1}} T^{(2)}=0
$$

or more fully that

$$
0=\left(z_{2}^{(0)}-z_{1}^{(0)}\right) \delta v_{1}^{(2)}+\left(v_{1}^{(0)}-v_{0}^{(0)}\right) \delta_{1} z_{1}^{(2)}+\left(v_{2}^{(0)}-v_{1}^{(0)}\right) \delta_{1} z_{2}^{(2)},
$$

δ_{1} referring only to the variations of σ_{1}, τ_{1}. More concisely, if t be thickness of lens,

$$
0=t \delta v_{1}^{(2)}+\Delta \mu_{0} \delta_{1} z_{1}^{(2)}+\Delta \mu_{1} \delta_{1} z_{2}^{(2)} .
$$

Now

$$
\begin{gathered}
\delta z^{(2)}=p \delta x+q \delta y, \quad 2 z^{(2)}=p x+q y, \quad \because \delta z^{(2)}=x \delta p+y \delta q, \\
p=-\frac{\Delta \sigma}{\Delta \mu}, \quad q=-\frac{\Delta \tau}{\Delta \mu}, \quad \because \neq \Delta \mu \delta z^{(2)}=-(x \delta \Delta \sigma+y \delta \Delta \tau) ; \\
\because \Delta \mu_{0} \delta \delta_{1} z_{1}^{(2)}=-\left(x_{1} \delta \sigma_{1}+y_{1} \delta \tau_{1}\right) ; \\
\Delta \mu_{1} \delta_{1} z_{2}^{(2)}=+\left(x_{2} \delta \sigma_{1}+y_{2} \delta \tau_{1}\right) ;
\end{gathered}
$$

also

$$
v_{1}^{(2)}=-\frac{\sigma_{1}^{2}+\tau_{1}^{2}}{2 \mu_{1}}, \quad \delta v_{1}^{(2)}=-\frac{\sigma_{1} \delta \sigma_{1}+\tau_{1} \delta \tau_{1}}{\mu_{1}}
$$

hence

$$
\mu_{1}^{-1} t\left(\sigma_{1} \delta \sigma_{1}+\tau_{1} \delta \tau_{1}\right)=\left(x_{2}-x_{1}\right) \delta \sigma_{1}+\left(y_{2}-y_{1}\right) \delta \tau_{1}
$$

that is

$$
0=\mu_{1}\left(x_{2}-x_{1}\right)-t \sigma_{1}, \quad 0=\mu_{1}\left(y_{2}-y_{1}\right)-t \tau_{1} .
$$

Another mode of considering the question is to observe that we have rigorously, if x_{1}, y_{1}, z_{1}, $x_{2}, y_{2}, z_{2}, \sigma_{1}, \tau_{1}, v_{1}$ be rigorous, the equation

$$
0=\left(x_{2}-x_{1}\right) \delta \sigma_{1}+\left(y_{2}-y_{1}\right) \delta \tau_{1}+\left(z_{2}-z_{1}\right) \delta v_{1}
$$

therefore also rigorously
that is, rigorously,§

$$
\frac{x_{2}-x_{1}}{z_{2}-z_{1}}=\frac{\sigma_{1}}{v_{1}} ; \quad \frac{y_{2}-y_{1}}{z_{2}-z_{1}}=\frac{\tau_{1}}{v_{1}} ;
$$

$$
\frac{x_{2}-x_{1}}{\sigma_{1}}=\frac{y_{2}-y_{1}}{\tau_{1}}=\frac{z_{2}-z_{1}}{v_{1}}
$$

if then we change the last fraction to $\frac{t}{\mu_{1}}$, or simply to $\frac{t}{\mu}$, if μ be the index of the lens, supposed in vacuo, and substitute for $x_{1}, y_{1}, x_{2}, y_{2}$ their 1 st. approximate values, $\|$ we shall obtain corresponding approximate values for σ_{1}, τ_{1}, as linear functions of $\sigma_{0}, \tau_{0}, \sigma_{2}, \tau_{2}$, which will be sufficient to give $T^{(2)}$ and even $T^{(4)}$ to the required degree of accuracy.
$*\left[z_{1}^{(2)}=\frac{\left(\sigma_{1}-\sigma_{0}\right)^{2}+\left(\tau_{1}-\tau_{0}\right)^{2}}{2 r_{1}\left(v_{1}^{(0)}-v_{0}^{(0)}\right)^{2}}, \quad z_{2}^{(2)}=\frac{\left(\sigma_{2}-\sigma_{1}\right)^{2}+\left(\tau_{2}-\tau_{1}\right)^{2}}{2 r_{2}\left(v_{2}^{(0)}-v_{1}^{(0)}\right)^{2}}.\right]$

+ [Cf. Third Supplement, 11, p. 217.]
\ddagger [The media being homogeneous, $\delta \Delta \mu=0$.]
§ [These equations are evident, since $\sigma_{1}, \tau_{1}, v_{1}$ are proportional to the direction cosines of the ray.]
$\|$ [From the equations $\Delta \sigma+r x \Delta \mu=0, \Delta \tau+r y \Delta \mu=0$, of [2.].]
[4.] Thus for a lens of revolution in vacuo, $\mu_{0}=\mu_{2}=1, \mu_{1}=\mu$, we have

$$
\left\{\begin{array}{l}
T^{(2)}=v_{2} v_{2}^{(2)}-v_{1} v_{0}^{(2)}-t v_{1}^{(2)}+(\mu-1)\left(z_{2}^{(2)}-z_{1}^{(2)}\right) ; \\
t \sigma_{1}=\mu\left(x_{2}-x_{1}\right), \quad t \tau_{1}=\mu\left(y_{2}-y_{1}\right) ; \\
r_{1}(\mu-1) x_{1}=\sigma_{0}-\sigma_{1}, \quad r_{1}(\mu-1) y_{1}=\tau_{0}-\tau_{1} ; \\
r_{2}(\mu-1) x_{2}=\sigma_{2}-\sigma_{1}, \quad r_{2}(\mu-1) y_{2}=\tau_{2}-\tau_{1} ; \\
z_{1}^{(2)}=\frac{1}{2} r_{1}\left(x_{1}^{2}+y_{1}^{2}\right), \quad z_{2}^{(2)}=\frac{1}{2} r_{2}\left(x_{2}^{2}+y_{2}^{2}\right) ; \\
v_{0}^{(2)}=-\frac{1}{2}\left(\sigma_{0}^{2}+\tau_{0}^{2}\right), \quad v_{1}^{(2)}=-\frac{1}{2 \mu}\left(\sigma_{1}^{2}+\tau_{1}^{2}\right), \quad v_{2}^{(2)}=-\frac{1}{2}\left(\sigma_{2}^{2}+\tau_{2}^{2}\right) .
\end{array}\right.
$$

Eliminating, we find

$$
\begin{gathered}
-\mu^{-1}(\mu-1) r_{1} r_{2} t \sigma_{1}=r_{2}\left(\sigma_{0}-\sigma_{1}\right)-r_{1}\left(\sigma_{2}-\sigma_{1}\right), \& c ., \\
\because R \sigma_{1}=r_{1} \sigma_{2}-r_{2} \sigma_{0}, \quad R \tau_{1}=r_{1} \tau_{2}-r_{2} \tau_{0},
\end{gathered}
$$

if we make

$$
R=r_{1}-r_{2}+\left(1-\mu^{-1}\right) r_{1} r_{2} t .
$$

Hence

$$
\begin{aligned}
& r_{1}^{-1} R\left(\sigma_{0}-\sigma_{1}\right)=\left(R+r_{2}\right) r_{1}^{-1} \sigma_{0}-\sigma_{2}=\sigma_{0}-\sigma_{2}+\left(1-\mu^{-1}\right) r_{2} t \sigma_{0}, \\
& r_{2}^{-1} R\left(\sigma_{2}-\sigma_{1}\right)=\left(R-r_{1}\right) r_{2}^{-1} \sigma_{2}+\sigma_{0}=\sigma_{0}-\sigma_{2}+\left(1-\mu^{-1}\right) r_{1} t \sigma_{2} ; \\
& \because(\mu-1) R x_{1}=\sigma_{0}-\sigma_{2}+\left(1-\mu^{-1}\right) r_{2} t \sigma_{0} ; \quad(\mu-1) R y_{1}=\tau_{0}-\tau_{2}+\left(1-\mu^{-1}\right) r_{2} t \tau_{0} ; \\
&(\mu-1) R x_{2}=\sigma_{0}-\sigma_{2}+\left(1-\mu^{-1}\right) r_{1} t \sigma_{2} ; \quad(\mu-1) R y_{2}=\tau_{0}-\tau_{2}+\left(1-\mu^{-1}\right) r_{1} t \tau_{2} .
\end{aligned}
$$

As a verification, these give

$$
\mu\left(x_{2}-x_{1}\right)=t R^{-1}\left(r_{1} \sigma_{2}-r_{2} \sigma_{0}\right)=t \sigma_{1} .
$$

We have now the system of expressions

$$
\begin{cases}\sigma_{1}=R^{-1}\left(r_{1} \sigma_{2}-r_{2} \sigma_{0}\right) ; & \tau_{1}=R^{-1}\left(r_{1} \tau_{2}-r_{2} \tau_{0}\right) ; \\ x_{1}=\frac{\sigma_{0}-\sigma_{2}+\left(1-\mu^{-1}\right) r_{2} t \sigma_{0}}{(\mu-1) R} ; & y_{1}=\frac{\tau_{0}-\tau_{2}+\left(1-\mu^{-1}\right) r_{2} t \tau_{0}}{(\mu-1) R} ; \\ x_{2}=\frac{\sigma_{0}-\sigma_{2}+\left(1-\mu^{-1}\right) r_{1} t \sigma_{2}}{(\mu-1) R} ; & y_{2}=\frac{\tau_{0}-\tau_{2}+\left(1-\mu^{-1}\right) r_{1} t \tau_{2}}{(\mu-1) R} ;\end{cases}
$$

and therefore

$$
\begin{aligned}
2 \mu(\mu-1) & R^{2}\left(T^{(2)}-v_{2} v_{2}^{(2)}+v_{1} v_{0}^{(2)}\right)=(\mu-1) t\left\{\left(r_{1} \sigma_{2}-r_{2} \sigma_{0}\right)^{2}+\left(r_{1} \tau_{2}-r_{2} \tau_{0}\right)^{2}\right\} \\
& +\mu r_{2}\left\{\left(\sigma_{0}-\sigma_{2}+\left(1-\mu^{-1}\right) r_{1} t \sigma_{2}\right)^{2}+\left(\tau_{0}-\tau_{2}+\left(1-\mu^{-1}\right) r_{1} t \tau_{2}\right)^{2}\right\} \\
& -\mu r_{1}\left\{\left(\sigma_{0}-\sigma_{2}+\left(1-\mu^{-1}\right) r_{2} t \sigma_{0}\right)^{2}+\left(\tau_{0}-\tau_{2}+\left(1-\mu^{-1}\right) r_{2} t \tau_{0}\right)^{2}\right\} \\
= & -\mu\left(r_{1}-r_{2}\right)\left\{\left(\sigma_{2}-\sigma_{0}\right)^{2}+\left(\tau_{2}-\tau_{0}\right)^{2}\right\}+\mu\left(1-\mu^{-1}\right)^{2} r_{1} r_{2} t^{2}\left\{r_{1}\left(\sigma_{2}^{2}+\tau_{2}^{2}\right)-r_{2}\left(\sigma_{0}^{2}+\tau_{0}^{2}\right)\right\} \\
& +(\mu-1) t \times\left(\& c_{.}\right) ;
\end{aligned}
$$

and this will be
if

$$
=-\mu R\left\{\left(\sigma_{2}-\sigma_{0}\right)^{2}+\left(\tau_{2}-\tau_{0}\right)^{2}-\left(1-\mu^{-1}\right) t\left(r_{1}\left(\sigma_{2}^{2}+\tau_{2}^{2}\right)-r_{2}\left(\sigma_{0}^{2}+\tau_{0}^{2}\right)\right)\right\},
$$

$$
\left(r_{1} \sigma_{2}-r_{2} \sigma_{0}\right)^{2}+\left(r_{1} \tau_{2}-r_{2} \tau_{0}\right)^{2}-2 r_{1} r_{2}\left\{\left(\sigma_{0}-\sigma_{2}\right)^{2}+\left(\tau_{0}-\tau_{2}\right)^{2}\right\}
$$

which is the (\&c.), shall be found to be

$$
=\left(r_{1}-r_{2}\right)\left(r_{1}\left(\sigma_{2}^{2}+\tau_{2}^{2}\right)-r_{2}\left(\sigma_{0}^{2}+\tau_{0}^{2}\right)\right)-r_{1} r_{2}\left(\left(\sigma_{2}-\sigma_{0}\right)^{2}+\left(\tau_{2}-\tau_{0}\right)^{2}\right) ;
$$

and, in fact, each

$$
=r_{1}^{2}\left(\sigma_{2}^{2}+\tau_{2}^{2}\right)+r_{2}^{2}\left(\sigma_{0}^{2}+\tau_{0}^{2}\right)-2 r_{1} r_{2}\left(\sigma_{2}^{2}+\tau_{2}^{2}-\sigma_{0} \sigma_{2}-\tau_{0} \tau_{2}+\sigma_{0}^{2}+\tau_{0}^{2}\right) .
$$

Hence, finally, for any lens nf revolution in vacuo, changing $\sigma_{0}, \tau_{0}, \sigma_{2}, \tau_{2}$ to $\alpha_{0}, \beta_{0}, \alpha_{2}, \beta_{2}$, we have

$$
\begin{aligned}
& T^{(2)}=-\frac{1}{2} v_{2}\left(\alpha_{2}^{2}+\beta_{2}^{2}\right)+\frac{1}{2} v_{1}\left(\alpha_{0}^{2}+\beta_{0}^{2}\right)-\frac{\left(\alpha_{2}-\alpha_{0}\right)^{2}+\left(\beta_{2}-\beta_{0}\right)^{2}}{2(\mu-1) R} \\
&+\frac{t\left\{r_{1}\left(\alpha_{2}^{2}+\beta_{2}^{2}\right)-r_{2}\left(\alpha_{0}^{2}+\beta_{0}^{2}\right)\right\}}{2 \mu R} ; \\
& R=r_{1}-r_{2}+\left(1-\mu^{-1}\right) r_{1} r_{2} t ; \quad t=v_{2}-v_{1} .
\end{aligned}
$$

[5.] Another mode of eliminating σ_{1}, τ_{1} is to form first the explicit expression (σ, τ being written instead of σ_{1}, τ_{1}),

$$
\begin{aligned}
T^{(2)}= & \frac{1}{2} v_{1}\left(\alpha_{0}^{2}+\beta_{0}^{2}\right)-\frac{1}{2} v_{2}\left(\alpha_{2}^{2}+\beta_{2}^{2}\right)+\frac{t}{2 \mu}\left(\sigma^{2}+\tau^{2}\right) \\
& +\frac{\left(\sigma-\alpha_{2}\right)^{2}+\left(\tau-\beta_{2}\right)^{2}}{2(\mu-1) r_{2}}-\frac{\left(\sigma-\alpha_{0}\right)^{2}+\left(\tau-\beta_{0}\right)^{2}}{2(\mu-1) r_{1}} \\
= & \frac{R\left(\sigma^{2}+\tau^{2}\right)-2 r_{1}\left(\alpha_{2} \sigma+\beta_{2} \tau\right)+2 r_{2}\left(\alpha_{0} \sigma+\beta_{0} \tau\right)}{2(\mu-1) r_{1} r_{2}} \\
& +\left(v_{1}-\frac{r_{1}^{-1}}{\mu-1}\right) \frac{\alpha_{0}^{2}+\beta_{0}^{2}}{2}-\left(v_{2}-\frac{r_{2}^{-1}}{\mu-1}\right) \frac{\alpha_{2}^{2}+\beta_{2}^{2}}{2}
\end{aligned}
$$

but

$$
R \sigma=r_{1} \alpha_{2}-r_{2} \alpha_{0}
$$

and

$$
\because R \sigma^{2}-2\left(r_{1} \alpha_{2}-r_{2} \alpha_{0}\right) \sigma=-\frac{\left(r_{1} \alpha_{2}-r_{2} \alpha_{0}\right)^{2}}{R},
$$

$$
\begin{aligned}
& -2(\mu-1) r_{1} r_{2} R\left(T^{(2)}-\frac{v_{1}\left(\alpha_{0}^{2}+\beta_{0}^{2}\right)}{2}+\frac{v_{2}\left(\alpha_{2}^{2}+\beta_{2}^{2}\right)}{2}\right) \\
& =\left(r_{1} \alpha_{2}-r_{2} \alpha_{0}\right)^{2}+\left(r_{1} \beta_{2}-r_{2} \beta_{0}\right)^{2}+R\left\{r_{2}\left(\alpha_{0}^{2}+\beta_{0}^{2}\right)-r_{1}\left(\alpha_{2}^{2}+\beta_{2}^{2}\right)\right\} ;
\end{aligned}
$$

which is already under a tolerably convenient form. But substituting for R its value

$$
r_{1}-r_{2}+\left(1-\mu^{-1}\right) r_{1} r_{2} t,
$$

we are conducted to the reduction

$$
\left(r_{1} \alpha_{2}-r_{2} \alpha_{0}\right)^{2}+\left(r_{1}-r_{2}\right)\left(r_{2} \alpha_{0}^{2}-r_{1} \alpha_{2}^{2}\right)=r_{1} r_{2}\left(\alpha_{0}^{2}-2 \alpha_{0} \alpha_{2}+\alpha_{2}^{2}\right)=r_{1} r_{2}\left(\alpha_{2}-\alpha_{0}\right)^{2} ;
$$

so that the second member of the recent expression becomes

$$
r_{1} r_{2}\left\{\left(\alpha_{2}-\alpha_{0}\right)^{2}+\left(\beta_{2}-\beta_{0}\right)^{2}\right\}+\left(1-\mu^{-1}\right) r_{1} r_{2} t\left\{r_{2}\left(\alpha_{0}^{2}+\beta_{0}^{2}\right)-r_{1}\left(\alpha_{2}^{2}+\beta_{2}^{2}\right)\right\} ;
$$

consequently

$$
\begin{aligned}
& 2 T^{(2)}=v_{1}\left(\alpha_{0}^{2}+\beta_{0}^{2}\right)-v_{2}\left(\alpha_{2}^{2}+\beta_{2}^{2}\right) \\
& \quad-\frac{\left(\alpha_{2}-\alpha_{0}\right)^{2}+\left(\beta_{2}-\beta_{0}\right)^{2}}{(\mu-1) R}-\frac{t\left\{r_{2}\left(\alpha_{0}^{2}+\beta_{0}^{2}\right)-r_{1}\left(\alpha_{2}^{2}+\beta_{2}^{2}\right)\right\}}{\mu R} ;
\end{aligned}
$$

which may also be written thus:

$$
T^{(2)}=\left(v_{1}-\frac{r_{2} t}{\mu R}\right) \frac{\alpha_{0}^{2}+\beta_{0}^{2}}{2}-\left(v_{2}-\frac{r_{1} t}{\mu R}\right) \frac{\alpha_{2}^{2}+\beta_{2}^{2}}{2}-\frac{\left(\alpha_{2}-\alpha_{0}\right)^{2}+\left(\beta_{2}-\beta_{0}\right)^{2}}{2(\mu-1) R} .
$$

Such is the function $T^{(2)}$ for a lens of revolution in vacuo; index μ; curvatures r_{1}, r_{2}, positive when convex to incident light; ordinates of vertices v_{1}, v_{2}; thickness $t=v_{2}-v_{1} ; R=r_{1}-r_{2}+\left(1-\mu^{-1}\right) r_{1} r_{2} t$; α_{0}, β_{0}, direction cosines for incident ray, and α_{2}, β_{2} for emergent; approximate equations of incident ray*

$$
x_{0}-\alpha_{0} z_{0}=-\frac{\delta T^{(2)}}{\delta \alpha_{0}}, \quad y_{0}-\beta_{0} z_{0}=-\frac{\delta T^{(2)}}{\delta \beta_{0}}
$$

and approximate equations of emergent ray

$$
x_{3}-\alpha_{2} z_{3}=+\frac{\delta T^{(2)}}{\delta \alpha_{2}}, \quad y_{3}-\beta_{2} z_{3}=+\frac{\delta T^{(2)}}{\delta \beta_{2}}
$$

Parallel incident rays converge to (or diverge from) the focus

$$
X_{3}=\frac{\alpha_{0}}{(\mu-1) R}, \quad Y_{3}=\frac{\beta_{0}}{(\mu-1) R}, \quad Z_{3}=v_{2}-\frac{r_{1} t}{\mu R}+\frac{1}{(\mu-1) R}
$$

and the emergent rays are parallel, if incident diverge from (or converge to)

$$
X_{0}=\frac{-\alpha_{2}}{(\mu-1) R}, \quad Y_{0}=\frac{-\beta_{2}}{(\mu-1) R}, \quad Z_{0}=v_{1}-\frac{r_{2} t}{\mu R}-\frac{1}{(\mu-1) R}
$$

[6.] $v_{1}-\frac{r_{2} t}{\mu R}$, and $v_{2}-\frac{r_{1} t}{\mu R}$, in the expression for $T^{(2)}$, are the ordinates of two points on the axis, which are sometimes called the focal centres of the lens. They are the points in which the axis is intersected by the directions of the incident and emergent rays, respectively, when those two directions are parallel to each other; \dagger and it is not difficult to deduce their ordinates by geometrical considerations. And $\frac{1}{(\mu-1) R}$ may not improperly be called the focal length, or $(\mu-1) R$ the power, of the lens. This focal length \times the sine of the semi-diameter of a planet, will give the radius of its image formed by the lens. + This image will remain unaltered in magnitude when the lens is reversed.

For the case of a sphere, the two focal centres ought to coincide in the centre of the sphere. Accordingly we have, for a sphere,

$$
r_{2}=-r_{1}, \quad t=2 r_{1}^{-1}, \quad \mu R=2 r_{1}
$$

and the ordinates become $v+r_{1}^{-1}, v_{2}-r_{1}^{-1}$, which are equal each to the central ordinate. This ordinate of the centre being c, we have then, for a sphere,

$$
T^{(2)}=\frac{c}{2}\left(\alpha_{0}^{2}+\beta_{0}^{2}-\alpha_{2}^{2}-\beta_{2}^{2}\right)-\frac{\left(\alpha_{2}-\alpha_{0}\right)^{2}+\left(\beta_{2}-\beta_{0}\right)^{2}}{4\left(1-\mu^{-1}\right) r_{1}}
$$

The focal length (from centre) is $\frac{1}{2\left(1-\mu^{-1}\right) r_{1}}$, and the power is $2\left(1-\mu^{-1}\right) r_{1}$. This focal

[^2]length $=$ curvature, or inage is on second surface, when $2\left(1-\mu^{-1}\right)=1$, that is, when $\mu=2$. Accordingly, for this index, the focal length of 1st. surface* is = diameter ;
$$
\frac{\mu}{(\mu-1) r}=\frac{2}{r}
$$

The focal length of a sphere, from its 2 nd. surface, is

$$
\frac{(2-\mu) r_{1}^{-1}}{2(\mu-1)}
$$

If $\mu=\frac{3}{2}$, this last length $=\frac{1}{2} r_{1}^{-1}=$ half the radius.
For any lens of revolution in vacuo, if we denote the ordinates of the two focal centres by $F^{\prime}, F^{\prime \prime}$, and the focal length by F, we have the expression \dagger

$$
T^{(2)}=\frac{1}{2} F^{\prime}\left(\alpha_{0}^{2}+\beta_{0}^{2}\right)-\frac{1}{2} F^{\prime \prime}\left(\alpha_{2}^{2}+\beta_{2}^{2}\right)-\frac{1}{2} F\left\{\left(\alpha_{2}-\alpha_{0}\right)^{2}+\left(\beta_{2}-\beta_{0}\right)^{2}\right\}
$$

And the properties of the lens, independent of its position (and of aberrations), depend only on $F^{\prime \prime}-F^{\prime}$ and F; in which

$$
F^{\prime \prime}-F^{\prime}=t\left(1-\frac{r_{1}-r_{2}}{\mu R}\right)=\frac{(\mu-1) t}{\mu R}\left(r_{1}-r_{2}+r_{1} r_{2} t\right)=\frac{(\mu-1) t i}{\mu i+t}
$$

i being interval of centres of curvatures,

$$
=c_{1}-c_{2}=r_{1}^{-1}-r_{2}^{-1}-t
$$

The focal centres close up into one, 1st. for $t=0$, infinitely thin lens; 2nd. for $i=0$, concentric surfaces.
[7.] For a combination of two coaxal lenses of revolution in vacuo, we have (the order being $\left.\alpha^{\prime}, \alpha, \alpha^{\prime \prime}\right):$

$$
\begin{gathered}
T^{(2)}=\quad \frac{1}{2} F_{1}^{\prime}\left(\alpha^{\prime 2}+\beta^{\prime 2}\right)-\frac{1}{2} F_{1}^{\prime \prime}\left(\alpha^{2}+\beta^{2}\right)-\frac{1}{2} F_{1}\left\{\left(\alpha-\alpha^{\prime}\right)^{2}+\left(\beta-\beta^{\prime}\right)^{2}\right\} \\
-\frac{1}{2} F_{2}^{\prime \prime}\left(\alpha^{\prime \prime 2}+\beta^{\prime \prime 2}\right)+\frac{1}{2} F_{2}^{\prime}\left(\alpha^{2}+\beta^{2}\right)-\frac{1}{2} F_{2}\left\{\left(\alpha-\alpha^{\prime \prime}\right)^{2}+\left(\beta-\beta^{\prime \prime}\right)^{2}\right\} \\
=\frac{1}{2} F^{\prime \prime}\left(\alpha^{\prime 2}+\beta^{\prime 2}\right)-\frac{1}{2} F^{\prime \prime \prime}\left(\alpha^{\prime \prime 2}+\beta^{\prime \prime 2}\right)-\frac{1}{2} F^{\prime}\left\{\left(\alpha^{\prime \prime}-\alpha^{\prime}\right)^{2}+\left(\beta^{\prime \prime}-\beta^{\prime}\right)^{2}\right\} ; \\
\left(F_{2}^{\prime}-F_{1}^{\prime \prime}-F_{2}-F_{1}\right) \alpha+F_{2} \alpha^{\prime \prime}+F_{1} \alpha^{\prime}=0 ; \\
\left(F_{2}^{\prime}-F_{1}^{\prime \prime}-F_{2}-F_{1}\right) \beta+F_{2} \beta^{\prime \prime}+F_{1} \beta^{\prime}=0 ; \\
\frac{1}{2}\left(F_{2}^{\prime}-F_{1}^{\prime \prime}-F_{2}-F_{1}\right) \alpha^{2}+\left(F_{2} \alpha^{\prime \prime}+F_{1} \alpha^{\prime}\right) \alpha=-\frac{\left(F_{2} \alpha^{\prime \prime}+F_{1} \alpha^{\prime}\right)^{2}}{2\left(F_{2}^{\prime}-F_{1}^{\prime \prime}-F_{2}-F_{1}\right)} ; \& c . ; \\
\left\{\begin{array}{c}
F_{1} F_{2} \\
F^{\prime}=\frac{F_{1}}{F_{1}+F_{2}+F_{1}^{\prime \prime}-F_{2}^{\prime}} ; \quad\left(F_{1} F_{2}\left(\alpha^{\prime \prime}-\alpha^{\prime}\right)^{2}+\left(F_{2} \alpha^{\prime \prime}+F_{1} \alpha^{\prime}\right)^{2}=\left(F_{1}^{\prime}+F_{2}^{\prime}\right)\left(F_{2} \alpha^{\prime \prime 2}+F_{1} \alpha^{\prime 2}\right) ;\right) \\
F^{\prime \prime}= \\
F_{1}^{\prime \prime}-F_{1}+\frac{F_{1}\left(F_{1}+F_{2}\right)}{F_{1}+F_{2}+F_{1}^{\prime \prime}-F_{2}^{\prime}}=F_{1}^{\prime \prime}+\frac{F_{1}\left(F_{2}^{\prime}-F_{1}^{\prime \prime}\right)}{F_{1}+F_{2}+F_{1}^{\prime \prime}-F_{2}^{\prime \prime}} ; \frac{F_{2}\left(F_{1}+F_{2}\right)}{F_{1}+F_{2}+F_{1}^{\prime \prime}-F_{2}^{\prime \prime}}=F_{2}^{\prime \prime}-\frac{F_{2}\left(F_{2}^{\prime}-F_{1}^{\prime \prime}\right)}{F_{1}+F_{2}+F_{1}^{\prime \prime}-F_{2}^{\prime}}
\end{array}\right.
\end{gathered}
$$

* [Marginal note by Hamilton.] For a single refraction out of vacuo, at origin, of direct parallel indiametral rays,
for focus,

$$
T^{(2)}=-\frac{\sigma^{2}}{2 r(\mu-1)}
$$

$$
-\frac{\sigma z}{\mu}=\frac{\delta T^{2}(2)}{\delta \sigma}, \quad \because z=\frac{\mu r^{-1}}{\mu-1}
$$

+ [This expression is valid for any optical instrument of revolution in vacuo.]

Thus, if $F_{1}^{\prime \prime}=F_{2}^{\prime}$, that is if 1 st. focal centre of 2 nd. lens coincide with 2 nd. focal centre of 1 st. lens, we have

$$
F=\frac{F_{1} F_{2}}{F_{1}+F_{2}^{\prime}} ; \quad F^{\prime \prime}=F_{1}^{\prime} ; \quad F^{\prime \prime}=F_{2}^{\prime \prime} ;
$$

that is, the 1 st. focal centre of 1 st. lens will be the 1 st. of the combination; the 2 nd. focal centre of the 2 nd. lens will be the $2 n d$. centre of the combination; and the sum of the powers of the two component lenses will be the power of the combination.

For example let there be two hemispheres, vertex to vertex, as in the figure, not necessarily
 of equal radii, nor of equal indices; the last emergent ray will be parallel to the first incident, if the 1st. refracted ray pass through the common vertex of the two hemispheres; and then the focal centres F_{1}, F_{2}, of the combination, will evidently coincide with F_{1}^{\prime} and $F_{2}^{\prime \prime}$, of the two hemispheres. As to the power of the combination, let μ_{1}, μ_{2} be the two indices; ρ_{1}, ρ_{2} the radii ; the common vertex origin; then for parallel direct incident rays, the ordinate of the point of convergence after passing through the 1st. lens is $\frac{\rho_{1}}{\mu_{1}-1}$; the power of that lens is therefore $\frac{\mu_{1}-1}{\rho_{1}}$ (because vertex is 2 nd. focal centre and is at origin); the convergence, immediately after entering the $2 n d$. lens, is

$$
\left(1-\mu_{2}^{-1}\right) \rho_{2}^{-1}+\frac{\mu_{1}-1}{\mu_{2} \rho_{1}}=\frac{1}{\mu_{2}}\left(\frac{\mu_{1}-1}{\rho_{1}}+\frac{\mu_{2}-1}{\rho_{2}}\right) ;
$$

corresponding focal distance

$$
=\frac{\mu_{2} \rho_{1} \rho_{2}}{\left(\mu_{1}-1\right) \rho_{2}+\left(\mu_{2}-1\right) \rho_{1}} ;
$$

subtract ρ_{2}, and there remains

$$
\frac{\rho_{2}\left\{\rho_{1}-\left(\mu_{1}-1\right) \rho_{2}\right\}}{\left(\mu_{1}-1\right) \rho_{2}+\left(\mu_{2}-1\right) \rho_{1}} ;
$$

add $\frac{\text { this }}{\mu_{2}}$ to $\frac{\rho_{2}}{\mu_{2}}$, and we get focal length of combination (measured from $F_{2}^{\prime \prime}$)
\because power of combination

$$
=\frac{\rho_{1} \rho_{2}}{\left(\mu_{1}-1\right) \rho_{2}+\left(\mu_{2}-1\right) \rho_{1}} ;
$$

$$
\begin{aligned}
& =\frac{\mu_{1}-1}{\rho_{1}}+\frac{\mu_{2}-1}{\rho_{2}} \\
& =\text { sum of powers of the two component hemispheric lenses, as it ought to be. }
\end{aligned}
$$

The same theorems hold good for any two plano-spheric lenses, with vertices placed in contact.
[8.] Using the expressions of [6.] and [7.] for the function $T^{(2)}$ of a lens of revolution in vacuo*

$$
2 T^{(2)}=F^{\prime \prime}\left(\alpha^{\prime 2}+\beta^{\prime 2}\right)-F^{\prime \prime \prime}\left(\alpha^{\prime \prime 2}+\beta^{\prime 2}\right)-F\left\{\left(\alpha^{\prime \prime}-\alpha^{\prime}\right)^{2}+\left(\beta^{\prime \prime}-\beta^{\prime}\right)^{2}\right\},
$$

in which $F^{\prime \prime}, F^{\prime \prime}$ are the ordinates of the two focal centres, and F is focal length; the equations

[^3]of an incident and of the corresponding emergent ray are, respectively, in the present order of approximation,
\[

$$
\begin{aligned}
x^{\prime} & =\alpha^{\prime}\left(z^{\prime}-F^{\prime}\right)-F\left(\alpha^{\prime \prime}-\alpha^{\prime}\right), \\
y^{\prime} & =\beta^{\prime}\left(z^{\prime}-F^{\prime}\right)-F\left(\beta^{\prime \prime}-\beta^{\prime}\right) ; \\
x^{\prime \prime} & =\alpha^{\prime \prime}\left(z^{\prime \prime \prime}-F^{\prime \prime}\right)-F^{\prime}\left(\alpha^{\prime \prime}-\alpha^{\prime}\right), \\
y^{\prime \prime} & =\beta^{\prime \prime}\left(z^{\prime \prime}-F^{\prime \prime}\right)-F\left(\beta^{\prime \prime}-\beta^{\prime}\right) .
\end{aligned}
$$
\]

Hence

$$
x^{\prime}=-F \alpha^{\prime \prime}, \quad y^{\prime}=-F \beta^{\prime \prime}, \quad \text { when } z^{\prime}=F^{\prime}-F ;
$$

and

$$
x^{\prime \prime}=F \alpha^{\prime}, \quad y^{\prime \prime}=F \beta^{\prime}, \quad \text { when } z^{\prime \prime}=F^{\prime \prime}+F \text {. }
$$

Also

$$
x^{\prime \prime}=x^{\prime}=-F\left(\alpha^{\prime \prime}-\alpha^{\prime}\right), \quad y^{\prime \prime}=y^{\prime}=-F\left(\beta^{\prime \prime}-\beta^{\prime}\right),
$$

when

$$
z^{\prime}=F^{\prime \prime}, \quad z^{\prime \prime}=F^{\prime \prime}
$$

$$
F^{\prime}, F^{\prime \prime}, \text { focal centres }
$$

$P^{\prime} F^{\prime \prime}=F^{\prime \prime} P^{\prime \prime}=$ focal length.
If $P^{\prime} F^{\prime \prime}$ be direction of incident ray, $F^{\prime \prime} P^{\prime \prime}$, parallel thereto, will be the direction of the emergent; and the last algebraic theorem shows that if $G^{\prime} G^{\prime \prime}$ is parallel to $F^{\prime \prime} F^{\prime \prime}$, and if the direction of the incident ray passes through G^{\prime}, then the direction of the emergent will pass through $G^{\prime \prime}$, or will be $G^{\prime \prime} P^{\prime \prime}$, if $Q^{\prime} G^{\prime}$, parallel to $P^{\prime} F^{\prime}$, be the direction of the incident ray. This theorem gives a very easy construction to determine the emergent ray $G^{\prime \prime} P^{\prime \prime}$, corresponding to any given incident $Q^{\prime} G^{\prime}$, when the points $F^{\prime \prime}, F^{\prime \prime}$, and the focal length $F^{\prime \prime} P^{\prime \prime}$ are known; for we have only to draw $G^{\prime} G^{\prime \prime}, F^{\prime \prime} P^{\prime \prime}$, and so determine two points $G^{\prime \prime}, P^{\prime \prime}$, on the sought emergent ray.

A geometrical proof of the theorem may be had by taking $P^{\prime \prime} R^{\prime \prime}=G^{\prime \prime} F^{\prime \prime}\left(=G^{\prime} F^{\prime}=Q^{\prime} P^{\prime}\right)$, so that $F^{\prime \prime} R^{\prime \prime}$ shall be parallel to $Q^{\prime} F^{\prime}$ and to $G^{\prime \prime} P^{\prime \prime}$. Then, because of the position of the point Q^{\prime}, the incident rays $Q^{\prime} F^{\prime}, Q^{\prime} G^{\prime}$ have their corresponding emergent rays parallel to each other, that is, the emergent ray corresponding to $Q^{\prime} G^{\prime}$ has the same direction as $G^{\prime \prime} P^{\prime \prime}$. But it also passes through $P^{\prime \prime}$, because the parallel incident rays $Q^{\prime} G^{\prime}, P^{\prime} F^{\prime}$ give emergent rays which meet on $R^{\prime \prime} P^{\prime \prime}$, and one of these rays is $F^{\prime \prime} P^{\prime \prime}$. Thus a certain incident position (Q^{\prime}) gives the emergent direction (parallel to $F^{\prime \prime} R^{\prime \prime}$), and the incident direction (parallel to $P^{\prime} F^{\prime}$) gives a certain emergent position ($P^{\prime \prime}$).

For a single lens,

$$
F^{\prime \prime}=v_{1}-\frac{t r_{2}}{\mu R} ; \quad F^{\prime \prime}=v_{2}-\frac{t r_{1}}{\mu R} ; \quad F=\frac{1}{(\mu-1) R} ; \quad R=r_{1}-r_{2}+\left(1-\mu^{-1}\right) r_{1} r_{2} t ;
$$

and for a combination of two,

$$
F=\frac{F_{1} F_{2}}{F_{1}+F_{2}+F_{1}^{\prime \prime}-F_{2}^{\prime}} ; \quad F^{\prime}=F_{1}^{\prime}+\frac{F}{F_{2}}\left(F_{2}^{\prime}-F_{1}^{\prime \prime}\right) ; \quad F^{\prime \prime}=F_{2}^{\prime \prime}-\frac{F}{F_{1}}\left(F_{2}^{\prime}-F_{1}^{\prime \prime}\right) .
$$

For a telescope,

$$
\begin{aligned}
F=\infty, \quad F_{1}+F_{2}= & F_{2}^{\prime}-F_{1}^{\prime \prime}, \quad F_{2} \alpha^{\prime \prime}+F_{1} \alpha^{\prime}=0, \quad F_{2} \beta^{\prime \prime}+F_{1} \beta^{\prime}=0 \\
& \text { magnifying power }=-\frac{F_{1}}{F_{2}}
\end{aligned}
$$

[9.] For the combination of two lenses, by [7.],

$$
\frac{\alpha}{\bar{F}}=\frac{\alpha^{\prime \prime}}{F_{1}}+\frac{\alpha^{\prime}}{F_{2}} ; \quad \bar{\beta}=\frac{\beta^{\prime \prime}}{F_{1}}+\frac{\beta^{\prime}}{F_{2}} ;
$$

α, β belonging to the intermediate ray (between the lenses); $\alpha^{\prime}, \beta^{\prime}$ to initial, and $\alpha^{\prime \prime}, \beta^{\prime \prime}$ to final ray; while F_{1}, F_{2}, F are the component and resultant focal lengths.

It is easy to explain these equations, geometrically, by the aid of the construction in [8.].

Let an incident ray $G_{1}^{\prime} G^{\prime}$, parallel to the axis, take the direction $G_{1}^{\prime \prime} P_{1}$ after passing through the 1st. lens, and the direction $G^{\prime \prime} P$ after passing through the combination. Let $F_{1}^{\prime}, F_{1}^{\prime \prime}$ be the focal centres of the 1 st. lens, and $F^{\prime}, F^{\prime \prime}$ of the combination. Then, by the theorem of [8.], applied to the 1st. lens,

$$
F_{1}^{\prime \prime} G_{1}^{\prime \prime}=F_{1}^{\prime} G_{1}^{\prime}
$$

and by the same theorem applied to the 2 nd . lens,

$$
F^{\prime \prime} G^{\prime \prime}=F^{\prime} G^{\prime}
$$

but because the 1st. incident ray is parallel to the axis,

$$
F^{\prime} G^{\prime}=F_{1}^{\prime} G_{1}^{\prime}
$$

therefore

$$
F^{\prime \prime} G^{\prime \prime}=F_{1}^{\prime} G_{1}^{\prime \prime}
$$

that is,

$$
F \alpha^{\prime \prime}=F_{1} \alpha
$$

when $\alpha^{\prime}=0$. In like manner, if the final ray be parallel to the axis, the intermediate and initial rays will meet the ordinates to the axis, erected at the anterior focal centres of the 2nd. lens and the combination respectively, at heights above (or below) the axis equal to each other, because equal to the height of the final ray above (or below) that axis; therefore

$$
F \alpha^{\prime}=F_{2} \alpha,
$$

when $\alpha^{\prime \prime}=0$. If then we admit, as known, that a linear relation, without a constant term, exists between $\alpha, \alpha^{\prime}, \alpha^{\prime \prime}$, we see that it can be only that written at the beginning of this section; and similarly for the relation between $\beta, \beta^{\prime}, \beta^{\prime \prime}$.
[10.] Aberrations of Lens.
For a single lens, by [2.], [4.], if α, β be the final and $\alpha^{\prime}, \beta^{\prime}$ the initial direction cosines; μ, index; v_{1}, v_{2}, ordinates of vertices; r_{1}, r_{2}, curvatures; s_{1}, s_{2}, coefficients of $\left(\frac{x^{2}+y^{2}}{2}\right)^{2}$ in develop-
ment of z for the two surfaces; t, thickness, $=v_{2}-v_{1} ; R=r_{1}-r_{2}+\left(1-\mu^{-1}\right) r_{1} r_{2} t$; we shall have

$$
\begin{aligned}
T^{(4)} & =\frac{v_{1}}{8}\left(\alpha^{\prime 2}+\beta^{\prime 2}\right)^{2}-\frac{v_{2}}{8}\left(\alpha^{2}+\beta^{2}\right)^{2}+\frac{t}{8} \frac{\left(\sigma^{2}+\tau^{2}\right)^{2}}{\mu^{3}} \\
& -\frac{r_{1}^{-1}}{4} \frac{\left(\sigma-\alpha^{\prime}\right)^{2}+\left(\tau-\beta^{\prime}\right)^{2}}{(\mu-1)^{2}}\left(\frac{\sigma^{2}+\tau^{2}}{\mu}-\left(\alpha^{\prime 2}+\beta^{\prime 2}\right)\right)+\frac{r_{2}^{-1}}{4} \frac{(\sigma-\alpha)^{2}+(\tau-\beta)^{2}}{(\mu-1)^{2}}\left(\frac{\sigma^{2}+\tau^{2}}{\mu}-\left(\alpha^{2}+\beta^{2}\right)\right) \\
& +\frac{s_{1} r_{1}^{-4}}{4} \frac{\left(\left(\sigma-\alpha^{\prime}\right)^{2}+\left(\tau-\beta^{\prime}\right)^{2}\right)^{2}}{(\mu-1)^{3}}-\frac{s_{2} r_{2}^{-4}}{4} \frac{\left((\sigma-\alpha)^{2}+(\tau-\beta)^{2}\right)^{2}}{(\mu-1)^{3}}
\end{aligned}
$$

in which*

$$
\sigma=R^{-1}\left(r_{1} \alpha-r_{2} \alpha^{\prime}\right), \quad \tau=R^{-1}\left(r_{1} \beta-r_{2} \beta^{\prime}\right)
$$

Hence

$$
\begin{aligned}
& \operatorname{Rr}_{1}^{-1}\left(\sigma-\alpha^{\prime}\right)=r_{1}^{-1}\left\{r_{1} \alpha-\left(r_{2}+R\right) \alpha^{\prime}\right\}=\alpha-\alpha^{\prime}-\left(1-\mu^{-1}\right) r_{2} t \alpha^{\prime} \\
& \operatorname{Rr}_{2}^{-1}(\sigma-\alpha)=r_{2}^{-1}\left\{\left(r_{1}-R\right) \alpha-r_{2} \alpha^{\prime}\right\}=\alpha-\alpha^{\prime}-\left(1-\mu^{-1}\right) r_{1} t \alpha
\end{aligned}
$$

and $T^{(4)}$, as an explicit function of $\alpha, \beta, \alpha^{\prime}, \beta^{\prime}$, becomes

$$
\begin{aligned}
T^{(4)} & =\frac{1}{8} v_{1}\left(\alpha^{\prime 2}+\beta^{\prime 2}\right)^{2}-\frac{1}{8} v_{2}\left(\alpha^{2}+\beta^{2}\right)^{2}+\frac{1}{8} t \mu^{-3} R^{-4}\left\{\left(r_{1} \alpha-r_{2} \alpha^{\prime}\right)^{2}+\left(r_{1} \beta-r_{2} \beta^{\prime}\right)^{2}\right\}^{2} \\
& -\frac{r_{1} \mu^{-1} R^{-4}}{4(\mu-1)^{2}}\left\{\begin{array}{c}
\left(\alpha-\alpha^{\prime}-\left(1-\mu^{-1}\right) r_{2} t \alpha^{\prime}\right)^{2} \\
+\left(\beta-\beta^{\prime}-\left(1-\mu^{-1}\right) r_{2} t \beta^{\prime}\right)^{2}
\end{array}\right\}\left\{\begin{array}{c}
\left(r_{1} \alpha-r_{2} \alpha^{\prime}\right)^{2}-\mu R^{2}\left(\alpha^{\prime 2}+\beta^{\prime 2}\right) \\
+\left(r_{1} \beta-r_{2} \beta^{\prime}\right)^{2}
\end{array}\right\} \\
& +\frac{r_{2} \mu^{-1} R^{-4}}{4(\mu-1)^{2}}\left\{\begin{array}{r}
\left(\alpha-\alpha^{\prime}-\left(1-\mu^{-1}\right) r_{1} t \alpha\right)^{2} \\
+\left(\beta-\beta^{\prime}-\left(1-\mu^{-1}\right) r_{1} t \beta\right)^{2}
\end{array}\right\}\left\{\begin{array}{c}
\left(r_{1} \alpha-r_{2} \alpha^{\prime}\right)^{2}-\mu R^{2}\left(\alpha^{2}+\beta^{2}\right) \\
+\left(r_{1} \beta-r_{2} \beta^{\prime}\right)^{2}
\end{array}\right\} \\
& +\frac{s_{1} R^{-4}}{4(\mu-1)^{3}}\left\{\begin{array}{r}
\left(\alpha-\alpha^{\prime}-\left(1-\mu^{-1}\right) r_{2} t \alpha^{\prime}\right)^{2} \\
+\left(\beta-\beta^{\prime}-\left(1-\mu^{-1}\right) r_{2} t \beta^{\prime}\right)^{2}
\end{array}\right\}-\frac{s_{2} R^{-4}}{4(\mu-1)^{3}}\left\{\begin{array}{r}
\left(\alpha-\alpha^{\prime}-\left(1-\mu^{-1}\right) r_{1} t \alpha\right)^{2} \\
+\left(\beta-\beta^{\prime}-\left(1-\mu^{-1}\right) r_{1} t \beta\right)^{2}
\end{array}\right\} .
\end{aligned}
$$

(Accordingly this expression agrees, some slight differences of notation excepted, with page 1 of my investigations begun Jan. 13th. 1832, which is stated to agree with page 32 of 7 th . series of investigations respecting lenses of revolution, written in 1831.†)

If we make for abbreviation

$$
\epsilon=\alpha^{2}+\beta^{2}, \quad \epsilon_{1}=\alpha \alpha^{\prime}+\beta \beta^{\prime}, \quad \epsilon^{\prime}=\alpha^{\prime 2}+\beta^{\prime 2}
$$

we have

$$
\begin{gathered}
\left(r_{1} \alpha-r_{2} \alpha^{\prime}\right)^{2}+\left(r_{1} \beta-r_{2} \beta^{\prime}\right)^{2}=r_{1}^{2} \epsilon-2 r_{1} r_{2} \epsilon+r_{2}^{2} \epsilon^{\prime} \\
\left(\alpha-\alpha^{\prime}-\left(1-\mu^{-1}\right) r_{2} t \alpha^{\prime}\right)^{2}+\& c .=\epsilon-2\left(1+r_{2} t-\mu^{-1} r_{2} t\right) \epsilon_{1}+\left(1+r_{2} t-\mu^{-1} r_{2} t\right)^{2} \epsilon^{\prime} \\
\left(\alpha-\alpha^{\prime}-\left(1-\mu^{-1}\right) r_{1} t \alpha\right)^{2}+\& c_{c}=\epsilon^{\prime}-2\left(1-r_{1} t+\mu^{-1} r_{1} t\right) \epsilon_{1}+\left(1-r_{1} t+\mu^{-1} r_{1} t\right)^{2} \epsilon
\end{gathered}
$$

if then we make

$$
1+r_{2} t-\mu^{-1} r_{2} t=\rho_{2}, \quad 1-r_{1} t+\mu^{-1} r_{1} t=\rho_{1}
$$

[^4]we shall have the following more concise expression:
\[

$$
\begin{aligned}
T^{(4)} & =\frac{v_{1}}{8} \epsilon^{\prime 2}-\frac{v_{2}}{8} \epsilon^{2}+\frac{t}{8} \mu^{-3} R^{-4}\left(r_{1}^{2} \epsilon-2 r_{1} r_{2} \epsilon_{1}+r_{2}^{2} \epsilon^{\prime}\right)^{2} \\
& -\frac{r_{1} \mu^{-1} R^{-4}}{4(\mu-1)^{2}}\left(\epsilon-2 \rho_{2} \epsilon+\rho_{2}^{2} \epsilon^{\prime}\right)\left\{r_{1}^{2} \epsilon-2 r_{1} r_{2} \epsilon_{1}+\left(r_{2}^{2}-\mu R^{2}\right) \epsilon^{\prime}\right\} \\
& +\frac{r_{2} \mu^{-1} R^{-4}}{4(\mu-1)^{2}}\left(\epsilon^{\prime}-2 \rho_{1} \epsilon,+\rho_{1}^{2} \epsilon\right)\left\{r_{2}^{2} \epsilon^{\prime}-2 r_{1} r_{2} \epsilon+\left(r_{1}^{2}-\mu R^{2}\right) \epsilon\right\} \\
& +\frac{s_{1} R^{-4}}{4(\mu-1)^{3}}\left(\epsilon-2 \rho_{2} \epsilon+\rho_{2}^{2} \epsilon^{\prime}\right)^{2}-\frac{s_{2} R^{-4}}{4(\mu-1)^{3}}\left(\epsilon^{\prime}-2 \rho_{1} \epsilon_{1}+\rho_{1}^{2} \epsilon\right)^{2}
\end{aligned}
$$
\]

(Function $T^{(4)}$, for any single lens of revolution in vacuo: μ, index ; v_{1}, v_{2}, ordinates of vertices; t, thickness; r_{1}, r_{2}, curvatures; s_{1}, s_{2}, coefficients of $\left(\frac{x^{2}+y^{2}}{2}\right)^{2} ; R=r_{1}-r_{2}+\left(1-\mu^{-1}\right) r_{1} r_{2} t ; \rho_{1}, \rho_{2}$, $\epsilon, \epsilon_{l}, \epsilon^{\prime}$, abridgments, as above.)
If we write, for abridgment,

$$
T^{(4)}=Q \epsilon^{2}+Q_{1} \epsilon \epsilon,+Q^{\prime} \epsilon \epsilon^{\prime}+Q_{\prime \prime} \epsilon_{1}^{2}+Q_{1}^{\prime} \epsilon, \epsilon^{\prime}+Q^{\prime \prime} \epsilon^{\prime 2}
$$

and substitute for R^{-1} its value $(\mu-1) F, F$ being focal length, we have, by above, for any single lens of revolution in vacuo:

$$
\begin{aligned}
Q= & -\frac{1}{8} v_{2}+\frac{1}{8} t \mu^{-3}(\mu-1)^{4} F^{4} r_{1}^{4}-\frac{1}{4} \mu^{-1}(\mu-1)^{2} F^{4} r_{1}^{3}+\frac{1}{4} \mu^{-1} \rho_{1}^{2} r_{2} F^{2}\left\{(\mu-1)^{2} F^{2} r_{1}^{2}-\mu\right\} \\
& +\frac{1}{4}(\mu-1)\left(s_{1}-\rho_{1}^{4} s_{2} F^{4} ;\right. \\
Q^{\prime \prime}= & \frac{1}{8} v_{1}+\frac{1}{8} t \mu^{-3}(\mu-1)^{4} F^{4} r_{2}^{4}+\frac{1}{4} \mu^{-1}(\mu-1)^{2} F^{4} r_{2}^{3}-\frac{1}{4} \mu^{-1} \rho_{2}^{2} r_{1} F^{2}\left\{(\mu-1)^{2} F^{2} r_{2}^{2}-\mu\right\} \\
& -\frac{1}{4}(\mu-1)\left(s_{2}-\rho_{2}^{4} s_{1}\right) F^{4} ; \\
Q_{1}= & -\frac{1}{2} t \mu^{-3}(\mu-1)^{4} F^{4} r_{1}^{3} r_{2}+\frac{1}{2} \mu^{-1}(\mu-1)^{2} F^{4} r_{1}^{2}\left(r_{2}+\rho_{2} r_{1}\right) \\
& -\frac{1}{2} \mu^{-1} \rho_{1} r_{2} F^{2}\left\{(\mu-1)^{2} F^{2} r_{1}\left(r_{1}+\rho_{1} r_{2}\right)-\mu\right\}-(\mu-1)\left(\rho_{2} s_{1}-\rho_{1}^{3} s_{2}\right) F^{4} ; \\
Q_{1}^{\prime}= & -\frac{1}{2} t \mu^{-3}(\mu-1)^{4} F^{4} r_{1} r_{2}^{3}-\frac{1}{2} \mu^{-1}(\mu-1)^{2} F^{4} r_{2}^{2}\left(r_{1}+\rho_{1} r_{2}\right) \\
& +\frac{1}{2} \mu^{-1} \rho_{2} r_{1} F^{2}\left\{(\mu-1)^{2} F^{2} r_{2}\left(r_{2}+\rho_{2} r_{1}\right)-\mu\right\}+(\mu-1)\left(\rho_{1} s_{2}-\rho_{2}^{3} s_{1}\right) F^{4} ; \\
Q^{\prime}= & \frac{1}{4} t \mu^{-3}(\mu-1)^{4} F^{4} r_{1}^{2} r_{2}^{2}-\frac{1}{4} \mu^{-1} r_{1} F^{2}\left\{(\mu-1)^{2} F^{2}\left(r_{2}^{2}+\rho_{2}^{2} r_{1}^{2}\right)-\mu\right\} \\
& +\frac{1}{4} \mu^{-1} r_{2} F^{2}\left\{(\mu-1)^{2} F^{2}\left(r_{1}^{2}+\rho_{1}^{2} r_{2}^{2}\right)-\mu\right\}+\frac{1}{2}(\mu-1)\left(\rho_{2}^{2} s_{1}-\rho_{1}^{2} s_{2}\right) F^{4} ; \\
Q_{\prime \prime}= & \frac{1}{2} t \mu^{-3}(\mu-1)^{4} F^{4} r_{1}^{2} r_{2}^{2}-\mu^{-1}(\mu-1)^{2} r_{1} r_{2} F^{4}\left(\rho_{2} r_{1}-\rho_{1} r_{2}\right)+(\mu-1)\left(\rho_{2}^{2} s_{1}-\rho_{1}^{2} s_{2}\right) F^{4} .
\end{aligned}
$$

Hence,

$$
2\left(2 Q^{\prime}-Q_{\prime \prime}\right) F^{-2}=r_{1}-r_{2}+\mu^{-1}(\mu-1)^{2} F^{2}\left\{r_{2}\left(\rho_{1}^{2} r_{2}^{2}+r_{1}^{2}\right)-r_{1}\left(\rho_{2}^{2} r_{1}^{2}+r_{2}^{2}\right)+2 r_{1} r_{2}\left(\rho_{2} r_{1}-\rho_{1} r_{2}\right)\right\}
$$

When $t=0$, this last expression reduces itself to $\left(1-\mu^{-1}\right)\left(r_{1}-r_{2}\right)$; and

$$
2 Q^{\prime}-Q_{n}=\frac{F}{2 \mu} .
$$

[11.] Changing first μ, t, R, to μ_{1}, t_{1}, R_{1}; then changing
to

$$
\mu_{1}, t_{1}, R_{1}, v_{1}, v_{2}, r_{1}, r_{2}, s_{1}, s_{2}, \rho_{1}, \rho_{2}, \epsilon, \epsilon, \epsilon_{1}^{\prime},
$$

in which

$$
\mu_{2}, t_{2}, R_{2}, v_{3}, v_{4}, r_{3}, r_{4}, s_{3}, s_{4}, \rho_{3}, \rho_{4}, \epsilon^{\prime \prime}, \epsilon_{\prime \prime}, \epsilon,
$$

$$
\begin{aligned}
& R_{2}=r_{3}-r_{4}+\left(1-\mu_{2}^{-1}\right) r_{3} r_{4} t_{2}, \\
& t_{2}=v_{4}-v_{3}, \\
& \rho_{3}=1-r_{3} t_{2}+\mu_{2}^{-1} r_{3} t_{2}, \\
& \rho_{4}=1+r_{4} t_{2}-\mu_{2}^{-1} r_{4} t_{2}, \\
& \epsilon^{\prime \prime}=\alpha^{\prime \prime 2}+\beta^{\prime \prime 2}, \\
& \epsilon_{\prime \prime}^{\prime \prime}=\alpha \alpha^{\prime \prime}+\beta \beta^{\prime \prime}
\end{aligned}
$$

and adding the two results: we find for any combination of two coaxal lenses of revolution in vacuo,

$$
\begin{aligned}
T^{(44)} & =\frac{1}{8} v_{1} \epsilon^{\prime 2}+\frac{1}{8}\left(v_{3}-v_{2}\right) \epsilon^{2}-\frac{1}{8} v_{4} \epsilon^{\prime \prime 2} \\
& +\frac{1}{8} t_{1} \mu_{1}^{-3} R_{1}^{-4}\left(r_{1}^{2} \epsilon-2 r_{1} r_{2} \epsilon+r_{2}^{2} \epsilon^{\prime}\right)^{2} \\
& +\frac{1}{8} t_{2} \mu_{2}^{-3} R_{2}^{-4}\left(r_{3}^{2} \epsilon^{\prime \prime}-2 r_{3} r_{4} \epsilon_{\prime \prime}+r_{4}^{2} \epsilon\right)^{2} \\
& +\frac{r_{1}^{2} \epsilon-2 r_{1} r_{2} \epsilon_{1}+r_{2}^{2} \epsilon^{\prime}}{4 \mu_{1}\left(\mu_{1}-1\right)^{2} R_{1}^{4}}\left\{\left(\rho_{1}^{2} r_{2}-r_{1}\right) \epsilon-2\left(\rho_{1} r_{2}-\rho_{2} r_{1}\right) \epsilon_{1}+\left(r_{2}-\rho_{2}^{2} r_{1}\right) \epsilon^{\prime}\right\} \\
& +\frac{r_{6}^{2} \epsilon^{\prime \prime}-2 r_{3} r_{4} \epsilon_{\not \prime}+r_{4}^{2} \epsilon}{4 \mu_{2}\left(\mu_{2}-1\right)^{2} R_{2}^{4}}\left\{\left(\rho_{3}^{2} r_{4}-r_{3}\right) \epsilon^{\prime \prime}-2\left(\rho_{3} r_{4}-\rho_{4} r_{3}\right) \epsilon_{\prime \prime}+\left(r_{4}-\rho_{4}^{2} r_{3}\right) \epsilon\right\} \\
& +\frac{R_{1}^{-2}}{4\left(\mu_{1}-1\right)^{2}}\left\{r_{1} \epsilon^{\prime}\left(\epsilon-2 \rho_{2} \epsilon+\rho_{2}^{2} \epsilon^{\prime}\right)-r_{2} \epsilon\left(\epsilon^{\prime}-2 \rho_{1} \epsilon,+\rho_{1}^{2} \epsilon\right)\right\} \\
& +\frac{R_{2}^{-2}}{4\left(\mu_{2}-1\right)^{2}}\left\{r_{3} \epsilon\left(\epsilon^{\prime \prime}-2 \rho_{4} \epsilon_{1 \prime}+\rho_{4}^{2} \epsilon\right)-r_{4} \epsilon^{\prime \prime}\left(\epsilon-2 \rho_{3} \epsilon_{\prime \prime}+\rho_{3}^{2} \epsilon^{\prime \prime}\right)\right\} \\
& +\frac{s_{1} R_{1}^{-4}}{4\left(\mu_{1}-1\right)^{3}}\left(\epsilon-2 \rho_{2} \epsilon_{1}+\rho_{2}^{2} \epsilon^{\prime}\right)^{2}-\frac{s_{2} R_{1}^{-4}}{4\left(\mu_{1}-1\right)^{3}}\left(\epsilon^{\prime}-2 \rho_{1} \epsilon_{1}+\rho_{1}^{2} \epsilon\right)^{2} \\
& +\frac{s_{3} R_{2}^{-4}}{4\left(\mu_{2}-1\right)^{3}}\left(\epsilon^{\prime \prime}-2 \rho_{4} \epsilon_{\prime \prime}+\rho_{4}^{2} \epsilon\right)^{2}-\frac{s_{4} R_{2}^{-4}}{4\left(\mu_{2}-1\right)^{3}}\left(\epsilon-2 \rho_{3} \epsilon_{\prime \prime}+\rho_{3}^{2} \epsilon^{\prime \prime}\right)^{2} ;
\end{aligned}
$$

(Function $T^{(4)}$ for any double lens of revolution in vacuo.)
which may be reduced to an explicit function of $\epsilon^{\prime}, \epsilon_{,}^{\prime}, \epsilon^{\prime \prime}$, in which

$$
\epsilon_{1}^{\prime}=\alpha^{\prime} \alpha^{\prime \prime}+\beta^{\prime} \beta^{\prime \prime}
$$

by employing the relations

$$
\alpha=F\left(F_{1}^{-1} \alpha^{\prime \prime}+F_{2}^{-1} \alpha^{\prime}\right), \quad \beta=F\left(F_{1}^{-1} \beta^{\prime \prime}+F_{2}^{-1} \beta^{\prime}\right),
$$

which give

$$
\left\{\begin{array}{l}
\epsilon_{1}=F F_{1}^{-1} F_{2}^{-1}\left(F_{2} \epsilon_{1}^{\prime}+F_{1} \epsilon^{\prime}\right), \\
\epsilon_{\prime \prime}=F F_{1}^{-1} F_{2}^{-1}\left(F_{2} \epsilon^{\prime \prime}+F_{1} \epsilon_{1}^{\prime}\right) \\
\epsilon=F^{2} F_{1}^{-2} F_{2}^{-2}\left(F_{2}^{2} \epsilon^{\prime \prime}+2 F_{1} F_{2} \epsilon_{1}^{\prime}+F_{1}^{2} \epsilon^{\prime}\right)
\end{array}\right.
$$

Also,

$$
R_{1}^{-1}=\left(\mu_{1}-1\right) F_{1} ; \quad R_{2}^{-1}=\left(\mu_{2}-1\right) F_{2}^{\prime}
$$

[12.] For the case of two infinitely thin lenses, close together, we may suppose

$$
\begin{aligned}
0 & =v_{1}=v_{2}=v_{3}=v_{4}=t_{1}=t_{2} \\
R_{1} & =r_{1}-r_{2}, \quad R_{2}=r_{3}-r_{4} ; \\
\rho_{1} & =\rho_{2}=\rho_{3}=\rho_{4}=1 \\
F_{1}^{\prime} & =F_{1}^{\prime \prime}=F_{2}^{\prime}=F_{2}^{\prime \prime}=F^{\prime}=F^{\prime \prime}=0 \\
F^{-1} & =F_{1}^{-1}+F_{2}^{-1} ; \quad F_{1}^{-1}=\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right), \quad F_{2}^{-1}=\left(\mu_{2}-1\right)\left(r_{3}-r_{4}\right) ;
\end{aligned}
$$

and calling these last powers p_{1} and $p_{2},\left(F^{-1}=p_{1}+p_{2}\right)$ we have

$$
\begin{gathered}
\left(p_{1}+p_{2}\right) \alpha=p_{1} \alpha^{\prime \prime}+p_{2} \alpha^{\prime}, \\
\left(p_{1}+p_{2}\right)\left(\alpha-\alpha^{\prime}\right)=p_{1}\left(\alpha^{\prime \prime}-\alpha^{\prime}\right) \\
\left(p_{1}+p_{2}\right)\left(\alpha-\alpha^{\prime \prime}\right)=p_{2}\left(\alpha^{\prime}-\alpha^{\prime \prime}\right) \\
\epsilon-2 \epsilon+\epsilon^{\prime}=\left(\frac{p_{1}}{p_{1}+p_{2}}\right)^{2}\left(\epsilon^{\prime \prime}-2 \epsilon_{1}^{\prime}+\epsilon^{\prime}\right), \\
\epsilon^{\prime \prime}-2 \epsilon_{\prime \prime}+\epsilon=\left(\frac{p_{2}}{p_{1}+p_{2}}\right)^{2}\left(\epsilon^{\prime \prime}-2 \epsilon_{,}^{\prime}+\epsilon^{\prime}\right),
\end{gathered}
$$

and $T^{(4)}$ becomes divisible* by $\epsilon^{\prime \prime}-2 \epsilon^{\prime}{ }^{\prime}+\epsilon^{\prime}$.
(Feb. 13th. 1844.) And if we make, for abridgment,

$$
\alpha=f^{\prime} \alpha^{\prime}+f^{\prime \prime} \alpha^{\prime \prime},
$$

$$
f^{\prime}=\frac{F_{1}}{F_{1}+F_{2}-\left(F_{2}^{\prime}-F_{1}^{\prime \prime}\right)}, \quad f^{\prime \prime}=\frac{F_{2}}{F_{1}+F_{2}-\left(F_{2}^{\prime}-F_{1}^{\prime \prime}\right)}
$$

so that for the case here supposed $f^{\prime}+f^{\prime \prime}=1$, then

$$
\begin{gathered}
\alpha-\alpha^{\prime}=f^{\prime \prime}\left(\alpha^{\prime \prime}-\alpha^{\prime}\right), \quad \alpha^{\prime \prime}-\alpha=f^{\prime}\left(\alpha^{\prime \prime}-\alpha^{\prime}\right) \\
\epsilon-2 \epsilon+\epsilon^{\prime}=f^{\prime 2}\left(\epsilon^{\prime \prime}-2 \epsilon_{1}^{\prime}+\epsilon^{\prime}\right), \quad \epsilon^{\prime \prime}-2 \epsilon_{\prime \prime}+\epsilon=f^{\prime 2}\left(\epsilon^{\prime \prime}-2 \epsilon_{1}^{\prime}+\epsilon^{\prime}\right)
\end{gathered}
$$

and the quotient of the division of $T^{(4)}$ by $\epsilon^{\prime \prime}-2 \epsilon_{,}^{\prime}+\epsilon^{\prime}$ is composed of the following parts
1st. $\frac{\left(r_{1}^{2} \epsilon-2 r_{1} r_{2} \epsilon+r_{2}^{2} \epsilon^{\prime}\right)\left(r_{2}-r_{1}\right) f^{\prime \prime 2}}{4 \mu_{1}\left(\mu_{1}-1\right)^{2}\left(r_{1}-r_{2}\right)^{4}}=\frac{-F^{2}}{4 \mu_{1}\left(r_{1}-r_{2}\right)}\left(r_{1}^{2} \epsilon-+\right)$

$$
=\frac{-F^{2}}{4 \mu_{1}\left(r_{1}-r_{2}\right)}\left\{\overline{\left(r_{1} f^{\prime}-r_{2}\right) \alpha^{\prime}+r_{1} f^{\prime \prime} \alpha^{\prime \prime}}+\& \mathrm{c} .\right\}
$$

$$
=\frac{-F^{2}}{4 \mu_{1}\left(r_{1}-r_{2}\right)}\left\{\overline{\left(r_{1}-r_{2}\right.} \alpha^{\prime} f^{\prime}+\overline{\left.\left.r_{1} \alpha^{\prime \prime}-r_{2} \alpha^{\prime} f^{\prime \prime}\right)^{2}+\& c .\right\}}\right.
$$

$$
=-\frac{F^{2}}{4 \mu_{1}}\left\{\left(r_{1}-r_{2}\right) f^{\prime 2} \epsilon^{\prime}+2 f^{\prime} f^{\prime \prime}\left(r_{1} \epsilon_{1}^{\prime}-r_{2} \epsilon^{\prime}\right)+\frac{f^{\prime \prime 2}}{r_{1}-r_{2}}\left(r_{1}^{2} \epsilon^{\prime \prime}-2 r_{1} r_{2} \epsilon_{1}^{\prime}+r_{2}^{2} \epsilon^{\prime}\right)\right\}
$$

* [This is true for every "thin" system. See Appendix, Note 26, p. 511.]

2nd. $\frac{\left(r_{3}^{2} \epsilon^{\prime \prime}-2 r_{3} r_{4} \epsilon_{1 \prime}+r_{4}^{2} \epsilon\right)\left(r_{4}-r_{3}\right) f^{\prime 2}}{4 \mu_{2}\left(\mu_{2}-1\right)^{2}\left(r_{3}-r_{4}\right)^{4}}=-\frac{F^{2}}{4 \mu_{2}} \frac{\left\{\left(r_{3} \alpha^{\prime \prime}-r_{4} \alpha\right)^{2}+\& c .\right\}}{r_{3}-r_{4}}$

$$
\begin{aligned}
& =\frac{-F^{2}}{4 \mu_{2}\left(r_{3}-r_{4}\right)}\left\{\left(\overline{r_{3}-r_{4}} f^{\prime \prime} \alpha^{\prime \prime}+\overline{r_{3} \alpha^{\prime \prime}-r_{4} \alpha^{\prime}} f^{\prime}\right)^{2}+\& c .\right\} \\
& =-\frac{F^{2}}{4 \mu_{2}}\left\{\left(r_{3}-r_{4}\right) f^{\prime \prime 2} \epsilon^{\prime \prime}+2 f^{\prime} f^{\prime \prime}\left(r_{3} \epsilon^{\prime \prime}-r_{4} \epsilon_{\prime}^{\prime}\right)+\frac{f^{\prime 2}}{r_{3}-r_{4}}\left(r_{3}^{2} \epsilon^{\prime \prime}-2 r_{3} r_{4} \epsilon_{1}^{\prime}+r_{4}^{2} \epsilon^{\prime}\right)\right\}
\end{aligned}
$$

3rd. $\frac{f^{\prime \prime 2}\left(r_{1} \epsilon^{\prime}-r_{2} \epsilon\right)}{4\left(\mu_{1}-1\right)^{2}\left(r_{1}-r_{2}\right)^{2}}=\frac{F^{2}}{4}\left\{r_{1} \epsilon^{\prime}-r_{2}\left(f^{\prime 2} \epsilon^{\prime}+2 f^{\prime} f^{\prime \prime} \epsilon_{1}^{\prime}+f^{\prime \prime 2} \epsilon^{\prime \prime}\right)\right\}$;
4th. $\frac{f^{\prime 2}\left(r_{3} \epsilon-r_{4} \epsilon^{\prime \prime}\right)}{4\left(\mu_{2}-1\right)^{2}\left(r_{3}-r_{4}\right)^{2}}=\frac{F^{2}}{4}\left\{r_{3}\left(f^{\prime 2} \epsilon^{\prime}+2 f^{\prime} f^{\prime \prime} \epsilon_{1}^{\prime}+f^{\prime \prime 2} \epsilon^{\prime \prime}\right)-r_{4} \epsilon^{\prime \prime}\right\}$;
5th. $\frac{\left(s_{1}-s_{2}\right) f^{\prime \prime 4}\left(\epsilon^{\prime \prime}-2 \epsilon_{1}^{\prime}+\epsilon^{\prime}\right)}{4\left(\mu_{1}-1\right)^{3} R_{1}^{4}}=\frac{\mu_{1}-1}{4} F^{4}\left(s_{1}-s_{2}\right)\left(\epsilon^{\prime \prime}-2 \epsilon_{1}^{\prime}+\epsilon^{\prime}\right)$;
6th. $\frac{\left(s_{3}-s_{4}\right) f^{\prime 4}\left(\epsilon^{\prime \prime}-2 \epsilon_{1}^{\prime}+\epsilon^{\prime}\right)}{4\left(\mu_{2}-1\right)^{3} R_{2}^{4}}=\frac{\mu_{2}-1}{4} F^{4}\left(s_{3}-s_{4}\right)\left(\epsilon^{\prime \prime}-2 \epsilon_{1}^{\prime}+\epsilon^{\prime}\right)$.
Hence, in $\frac{4 F^{-4} T^{(4)}}{\epsilon^{\prime \prime}-2 \epsilon_{1}^{\prime}+\epsilon^{\prime}}$, the coefficient of $\epsilon^{\prime \prime}$, (because

$$
\begin{aligned}
f^{\prime \prime} F^{-1} & =F_{1}^{-1}=\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right)=p_{1} \\
f^{\prime} F^{-1} & =F_{2}^{-1}=\left(\mu_{2}-1\right)\left(r_{3}-r_{4}\right)=p_{2} \\
F^{-1} & =F_{1}^{-1}+F_{2}^{-1}=p_{1}+p_{2}
\end{aligned}
$$

is

$$
\begin{aligned}
= & -\frac{\left(\mu_{1}-1\right)^{2}}{\mu_{1}} r_{1}^{2}\left(r_{1}-r_{2}\right)-\frac{r_{3}-r_{4}}{\mu_{2}}\left\{\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right)+\left(\mu_{2}-1\right) r_{3}\right\}^{2} \\
& +\left(\mu_{1}-1\right)^{2}\left(r_{1}-r_{2}\right)^{2}\left(r_{3}-r_{2}\right)-r_{4}\left\{\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right)+\left(\mu_{2}-1\right)\left(r_{3}-r_{4}\right)\right\}^{2} \\
& +\left(\mu_{1}-1\right)\left(s_{1}-s_{2}\right)+\left(\mu_{2}-1\right)\left(s_{3}-s_{4}\right) ;
\end{aligned}
$$

the coefficient of ϵ^{\prime} is

$$
\begin{aligned}
= & -\frac{\left(\mu_{2}-1\right)^{2}}{\mu_{2}} r_{4}^{2}\left(r_{3}-r_{4}\right)-\frac{r_{1}-r_{2}}{\mu_{1}}\left\{\left(\mu_{2}-1\right)\left(r_{3}-r_{4}\right)-\left(\mu_{1}-1\right) r_{2}\right\}^{2} \\
& +\left(\mu_{2}-1\right)^{2}\left(r_{3}-r_{4}\right)^{2}\left(r_{3}-r_{2}\right)+r_{1}\left\{\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right)+\left(\mu_{2}-1\right)\left(r_{3}-r_{4}\right)\right\}^{2} \\
& +\left(\mu_{1}-1\right)\left(s_{1}-s_{2}\right)+\left(\mu_{2}-1\right)\left(s_{3}-s_{4}\right)
\end{aligned}
$$

and the coefficient of $-2 \epsilon^{\prime}$, is

$$
\begin{aligned}
= & \frac{\left(\mu_{1}-1\right)}{\mu_{1}} r_{1}\left(r_{1}-r_{2}\right)\left\{\left(\mu_{2}-1\right)\left(r_{3}-r_{4}\right)-\left(\mu_{1}-1\right) r_{2}\right\} \\
& -\frac{\left(\mu_{2}-1\right)}{\mu_{2}} r_{4}\left(r_{3}-r_{4}\right)\left\{\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right)+\left(\mu_{2}-1\right) r_{3}\right\} \\
& +\left(\mu_{1}-1\right)\left(\mu_{2}-1\right)\left(r_{1}-r_{2}\right)\left(r_{2}-r_{3}\right)\left(r_{3}-r_{4}\right) \\
& +\left(\mu_{1}-1\right)\left(s_{1}-s_{2}\right)+\left(\mu_{2}-1\right)\left(s_{3}-s_{4}\right)
\end{aligned}
$$

(Feb. 14th.) By above, if $v_{1}=v_{2}=v_{3}=v_{4}=0$, that is, if the two lenses be infinitely thin and close together at the origin, then

$$
T^{(4)}=\left(\epsilon^{\prime \prime}-2 \epsilon_{1}^{\prime}+\epsilon^{\prime}\right)\left(Q \epsilon^{\prime \prime}-\frac{1}{2} Q_{\prime \prime} \epsilon_{1}^{\prime}+Q^{\prime \prime} \epsilon^{\prime}\right) ;
$$

in which, $4 F^{-4} Q, 4 F^{-4} Q^{\prime \prime}$, and $F^{-4} Q_{\prime \prime}$ have respectively the values assigned above, as the coefficients of $\epsilon^{\prime \prime}, \epsilon_{,}^{\prime}$ and $-2 \epsilon_{,}^{\prime}$, in

$$
4\left(\epsilon^{\prime \prime}-2 \epsilon_{,}^{\prime}+\epsilon^{\prime}\right)^{-1} F^{-4} T^{(4)}
$$

The coefficient of $\epsilon^{\prime \prime}$ in $T^{(2)}$ is*

$$
-\left(\frac{F^{\prime \prime}+F}{2}\right)=-\frac{1}{2} F
$$

therefore if longitudinal aberration vanish for direct parallel incident rays, we must have \dagger

$$
\begin{gathered}
-\frac{1}{2} F \epsilon^{\prime \prime}+Q \epsilon^{\prime \prime 2}=\text { const. }+ \text { const. } .^{\prime} \sqrt{1-\epsilon^{\prime \prime}}=\text { const. }^{\prime} \times\left(-\frac{1}{2} \epsilon^{\prime \prime}-\frac{1}{8} \epsilon^{\prime \prime 2}\right) \\
Q=-\frac{1}{8} F .
\end{gathered}
$$

(Compare p. $383, \ddagger Q=\frac{1}{4} P, P=-\frac{1}{2} F$.) Hence

$$
\begin{aligned}
& 4 F^{-4} Q=-\frac{1}{2} F^{-3} \\
& Q_{\prime}=-2 Q-\frac{1}{2} Q_{\prime \prime}
\end{aligned}
$$

if then $Q_{1}=0$ (see same p. 383,) we have

$$
4 F^{-4} Q+F^{-4} Q_{\prime \prime}=0
$$

and if $Q=-\frac{1}{8} F$, then also

$$
F^{-4} Q_{\prime \prime}-4 F^{-4} Q=F^{-3}
$$

an equation which, it is remarkable, is independent of $s_{1}, s_{2}, s_{3}, s_{4}$; and is divisible by F^{-1}. The quotient of this division gives,

$$
\begin{aligned}
& \left(1-\mu_{1}^{-1}\right) r_{1}\left(r_{1}-r_{2}\right)+\mu_{2}^{-1}\left(r_{3}-r_{4}\right)\left\{\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right)+\left(\mu_{2}-1\right) r_{3}\right\} \\
& \quad+\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right)\left(r_{2}-r_{3}\right)+r_{4}\left\{\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right)+\left(\mu_{2}-1\right)\left(r_{3}-r_{4}\right)\right\} \\
& \quad=\left\{\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right)+\left(\mu_{2}-1\right)\left(r_{3}-r_{4}\right)\right\}^{2}
\end{aligned}
$$

that is,

$$
\mu_{1}^{-1} p_{1} r_{1}+\mu_{2}^{-1} p_{2} r_{4}+p_{1}\left(r_{2}-r_{3}\right)+\left(p_{1}+p_{2}\right) r_{4}+\frac{\mu_{2}^{-1} p_{2}\left(p_{1}+p_{2}\right)}{\mu_{2}-1}=\left(p_{1}+p_{2}\right)^{2}:
$$

or finally,

$$
\left(\mu_{1}^{-1}+1\right) p_{1}\left(r_{1}+r_{2}\right)+\left(\mu_{2}^{-1}+1\right) p_{2}\left(r_{3}+r_{4}\right)=\left(\mu_{1}^{-1}-\mu_{2}^{-1}\right) p_{1}^{2}+\left(\mu_{2}^{-1}+2\right)\left(p_{1}+p_{2}\right)^{2}
$$

(Equation (B) of Jan. 2nd. 1844.)

* [Cf. the expression at the beginning of [8.]; $F^{\prime \prime}=0$, since the focal centres of the thin combination coincide at the origin.]
+ [In order that the emergent rays (corresponding to an incident system parallel to the axis) should all pass rigorously through a single point on the axis, it is necessary and sufficient that when we put $a^{\prime}=\beta^{\prime}=0$, we should have $T=k+k^{\prime} \gamma^{\prime \prime}$, where k, k^{\prime} are constants.]
\ddagger [This reference is to the letter to Prof. Phillips.]
H M P
[13.] (Feb. 15th. 1844.) Since the coefficient of $\epsilon^{\prime \prime}$ in $\frac{4 F^{-4} T^{(4)}}{\epsilon^{\prime \prime}-2 \epsilon_{1}^{\prime}+\epsilon^{\prime}}$ is $4 F^{-4} Q$, (for a thin double lens of revolution in vacuo,) while $F^{-1}=p_{1}+p_{2}$, we have*

$$
\begin{aligned}
& 4 F^{-4}\left(4 Q+\frac{F}{2}\right)-4\left(\mu_{1}-1\right)\left(s_{1}-s_{2}\right)-4\left(\mu_{2}-1\right)\left(s_{3}-s_{4}\right)=-\left(1-\mu_{1}^{-1}\right) \& \mathrm{c} . \\
= & -\left(1-m_{1}\right) p_{1}\left\{\overline{r_{1}+r_{2}}+\frac{m_{1} p_{1}}{1-m_{1}}\right\}^{2}-\frac{m_{2}^{2} p_{2}}{1-m_{2}}\left\{2 p_{1}+p_{2}+\left(m_{2}^{-1}-1\right)\left(r_{3}+r_{4}\right)\right\}^{2} \\
& +2 p_{1}^{2}\left\{\frac{m_{1} p_{1}}{1-m_{1}}+\frac{m_{2} p_{2}}{1-m_{2}}-\left(r_{1}+r_{2}\right)+\overline{r_{3}+r_{4}}\right\}+2\left(p_{1}+p_{2}\right)^{2}\left\{\frac{m_{2} p_{2}}{1-m_{2}}-\overline{r_{3}+r_{4}}\right\}+2\left(p_{1}+p_{2}\right)^{3} \\
= & -\left(1-m_{1}\right) p_{1}\left(r_{1}+r_{2}\right)^{2}-\left(1-m_{2}\right) p_{2}\left(r_{3}+r_{4}\right)^{2}-2\left(1+m_{1}\right) p_{1}^{2}\left(r_{1}+r_{2}\right) \\
& -2\left(1+m_{2}\right)\left(p_{2}^{2}+2 p_{1} p_{2}\right)\left(r_{3}+r_{4}\right) \\
& +\frac{2-m_{1}^{2}}{1-m_{1}} p_{1}^{3}+\frac{2-m_{2}^{2}}{1-m_{2}} p_{2}^{3}+2\left(3+2 m_{2}\right) p_{1} p_{2}\left(p_{1}+p_{2}\right)
\end{aligned}
$$

this last quantity, therefore, when added to

$$
4\left(\mu_{1}-1\right)\left(s_{1}-s_{2}\right)+4\left(\mu_{2}-1\right)\left(s_{3}-s_{4}\right)
$$

is to give an evanescent sum, if the longitudinal aberration is to vanish, for direct parallel incident rays.

If the surfaces be all spheric, then $s_{1}=\frac{1}{2} r_{1}^{3}, \& c$. ; therefore

$$
\begin{aligned}
4\left(\mu_{1}-1\right)\left(s_{1}-s_{2}\right) & =2\left(\mu_{1}-1\right)\left(r_{1}^{3}-r_{2}^{3}\right)=2 p_{1}\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right)=\frac{p_{1}}{2}\left\{4\left(r_{1}+r_{2}\right)^{2}-4 r_{1} r_{2}\right\} \\
& =\frac{p_{1}}{2}\left\{3\left(r_{1}+r_{2}\right)^{2}+\left(r_{1}-r_{2}\right)^{2}\right\}=\frac{m_{1} p_{1}^{3}}{2\left(1-m_{1}\right)^{2}}+\frac{3}{2} p_{1}\left(r_{1}+r_{2}\right)^{2}
\end{aligned}
$$

$$
4\left(\mu_{2}-1\right)\left(s_{3}-s_{4}\right)=\& c
$$

therefore for a thin double spheric lens in vacuo, the condition of direct aplanaticity is

$$
\begin{align*}
& \left(4 F^{-4}\left(4 Q+\frac{F}{2}\right)=\right) \\
& \begin{aligned}
\left(m_{1}+\frac{1}{2}\right) & p_{1}\left(r_{1}+r_{2}\right)^{2}+\left(m_{2}+\frac{1}{2}\right) p_{2}\left(r_{3}+r_{4}\right)^{2}-2\left(m_{2}+1\right) p_{2}\left(p_{1}+p_{2}\right)\left(r_{3}+r_{4}\right) \\
& -2 p_{1}\left\{\left(m_{1}+1\right) p_{1}\left(r_{1}+r_{2}\right)+\left(m_{2}+1\right) p_{2}\left(r_{3}+r_{4}\right)\right\} \\
\quad & +\frac{4-4 m_{1}-m_{1}^{2}+2 m_{1}^{3}}{2\left(1-m_{1}\right)^{2}} p_{1}^{3}+\frac{4-4 m_{2}-m_{2}^{2}+2 m_{2}^{3}}{2\left(1-m_{2}\right)^{2}} p_{2}^{3}+2\left(3+2 m_{2}\right) p_{1} p_{2}\left(p_{1}+p_{2}\right)=0
\end{aligned}
\end{align*}
$$

while the additional condition for oblique aplanaticity \dagger is, by end of [12.],

$$
\begin{align*}
& \left(-4 F^{-3}\left(Q_{1}+4 Q+\frac{F}{2}\right)=\right) \\
& \quad\left(m_{1}+1\right) p_{1}\left(r_{1}+r_{2}\right)+\left(m_{2}+1\right) p_{2}\left(r_{3}+r_{4}\right)-\left(m_{1}-m_{2}\right) p_{1}^{2}-\left(m_{2}+2\right)\left(p_{1}+p_{2}\right)^{2}=0 \tag{B}
\end{align*}
$$

* $\left[m_{1}=\mu_{1}^{-1}, m_{2}=\mu_{2}^{-1}\right.$; see next page. $]$
+ [Earlier writers had used the word aplanatic to mean free from spherical aberration, the incident rays being direct. In modern usage, following E. Abbe, the word implies in addition the satisfaction of the "sine condition," which gives absence of circular coma of all orders (cf. G. C. Sieward, The Symmetrical Optical System, p. 51). When Hamilton's conditions for direct and oblique aplanaticity are both satisfied, the system (being free from spherical aberration and coma) is aplanatic in the modern sense, to the order considered. See footnote to p. 429.]

These equations (A) and (B), which had been deduced in former investigations, were used by me on the 2nd. of January (1844), to determine the radii for the four surfaces of Mr. Phillips's double object glass.* m_{1}, m_{2} are the reciprocals of the indices of the two component lenses; p_{1}, p_{2}, their powers;

$$
\because p_{1}=\left(m_{1}^{-1}-1\right)\left(r_{1}-r_{2}\right), \quad p_{2}=\left(m_{2}^{-1}-1\right)\left(r_{3}-r_{4}\right) ;
$$

$r_{1}, r_{2}, r_{3}, r_{4}$ being the four successive curvatures, positive when convex to the incident rays. The equation (A), under other forms, agrees with known results, for example, with Herschel's; the equation (B) is my new condition, for the improvement of the achromatic telescope. (See [33.], [34.].)

[14.] Rays in one Diametral Plane.

(Feb. 15th. 1844.) Let me now recapitulate, or reproduce, the most necessary part of the foregoing calculations, for the important case where the rays are supposed to be all contained in one common diametral plane of the instrument, which we shall take for the plane of $x z$.

In any one medium, index μ,
or more concisely

$$
\begin{array}{ll}
\sigma=\mu \alpha, \quad v=\mu \gamma, & \sigma^{2}+v^{2}=\mu^{2}, \quad \alpha \delta \sigma+\gamma \delta v=0, \quad \frac{x^{\prime \prime}-x^{\prime}}{\alpha}=\frac{z^{\prime \prime}-z^{\prime}}{\gamma}, \\
& \left(x^{\prime \prime}-x^{\prime}\right) \delta \sigma+\left(z^{\prime \prime}-z^{\prime}\right) \delta v=0 ;
\end{array}
$$

$$
\Delta x \delta \sigma+\Delta z \delta v=0
$$

For any one refraction, at surface $\delta z=p \delta x, \Delta \sigma=-p \Delta v$,

$$
\Delta \sigma \delta x+\Delta v \delta z=0
$$

Thus, if light pass from x_{0}, z_{0}, to x_{n+1}, z_{n+1}, undergoing n refractions at $x_{1}, z_{1}, \ldots x_{n}, z_{n}$; and having its components of slowness successively $\sigma_{0}, v_{0} ; \sigma_{1}, v_{1} ; \ldots \sigma_{n}, v_{n}$; we shall have

$$
\begin{cases}\left(x_{1}-x_{0}\right) \delta \sigma_{0}+\left(z_{1}-z_{0}\right) \delta v_{0}=0 ; & \left(\sigma_{1}-\sigma_{0}\right) \delta x_{1}+\left(v_{1}-v_{0}\right) \delta z_{1}=0 ; \\ \left(x_{2}-x_{1}\right) \delta \sigma_{1}+\left(z_{2}-z_{1}\right) \delta v_{1}=0 ; & \left(\sigma_{2}-\sigma_{1}\right) \delta x_{2}+\left(v_{2}-v_{1}\right) \delta z_{2}=0 ; \\ \cdots \\ \left(x_{n+1}-x_{n}\right) \delta \sigma_{n}+\left(z_{n+1}-z_{n}\right) \delta v_{n}=0 ;\end{cases}
$$

therefore if

$$
\begin{aligned}
& T_{1}=x_{1}\left(\sigma_{1}-\sigma_{0}\right)+z_{1}\left(v_{1}-v_{0}\right), \\
& T_{2}=x_{2}\left(\sigma_{2}-\sigma_{1}\right)+z_{2}\left(v_{2}-v_{1}\right), \& c .,
\end{aligned}
$$

and

$$
T=T_{1}+T_{2}+\ldots+T_{n},
$$

we shall have

$$
\begin{aligned}
\delta T & =x_{n+1} \delta \sigma_{n}-x_{0} \delta \sigma_{0}+z_{n+1} \delta v_{n}-z_{0} \delta v_{0} \\
& =\left(x_{n+1}-\frac{\alpha_{n}}{\gamma_{n}} z_{n+1}\right) \delta \sigma_{n}-\left(x_{0}-\frac{\alpha_{0}}{\gamma_{0}} z_{0}\right) \delta \sigma_{0} .
\end{aligned}
$$

If, then, we consider T as a function of σ_{0} and σ_{n}, we shall have the two equations

$$
x_{0}-\frac{\alpha_{0}}{\gamma_{0}} z_{0}=-\frac{\delta T}{\delta \sigma_{0}}, \quad x_{n+1}-\frac{\alpha_{n}}{\gamma_{n}} z_{n+1}=\frac{\delta T}{\delta \sigma_{n}}
$$

* [See p. 384.]
of which the one may be considered as belonging to the initial, and the other to the final ray; whether these final and initial rays, or portions of one bent path of light, be in vacuo or in any ordinary media. And so far all is rigorous.

Now, let the surfaces be all of revolution about the axis of z, and let the course of each ray be little distant from that axis; then we may make, approximately,

$$
\begin{array}{cc}
v_{i}=v_{i}^{(0)}+v_{i}^{(2)}+v_{i}^{(4)}, & z_{i}=z_{i}^{(0)}+z_{i}^{(2)}+z_{i}^{(4)} \\
T_{i}=T_{i}^{(0)}+T_{i}^{(2)}+T_{i}^{(4)}, & T=T^{(0)}+T^{(2)}+T^{(4)}
\end{array}
$$

neglecting terms small of the 6 th. dimension in T.

$$
\begin{aligned}
& T_{i}^{(0)}=z_{i}^{(0)}\left(v_{i}^{(0)}-v_{i-1}^{(0)}\right) ; \quad T_{i}^{(2)}=z_{i}^{(0)}\left(v_{i}^{(2)}-v_{i-1}^{(2)}\right)+z_{i}^{(2)}\left(v_{i}^{(0)}-v_{i-1}^{(0)}\right)+x_{i}\left(\sigma_{i}-\sigma_{i-1}\right) ; \\
& T_{i}^{(4)}=z_{i}^{(0)}\left(v_{i}^{(4)}-v_{i-1}^{(4)}\right)+z_{i}^{(2)}\left(v_{i}^{(2)}-v_{i-1}^{(2)}\right)+z_{i}^{(4)}\left(v_{i}^{(0)}-v_{i-1}^{(0)}\right) ;
\end{aligned}
$$

in which,

$$
v_{i}^{(0)}=\mu_{i} ; \quad v_{i}^{(2)}=-\frac{\sigma_{i}^{2}}{2 \mu_{i}} ; \quad v_{i}^{(4)}=-\frac{\sigma_{i}^{4}}{8 \mu_{i}^{3}} ;
$$

and we may write

$$
z_{i}^{(0)}=v_{i} ; \quad z_{i}^{(2)}=\frac{1}{2} r_{i} x_{i}^{2} ; \quad z_{i}^{(4)}=\frac{1}{4} s_{i} x_{i}^{4} .
$$

Considering T_{i} as an explicit function of $x_{i}, \sigma_{i}, \sigma_{i-1}$, we have the rigorous equations

$$
0=\frac{\delta T_{i}}{\delta x_{i}} ; \quad 0=\frac{\delta T_{i}}{\delta \sigma_{i}}+\frac{\delta T_{i+1}}{\delta \sigma_{i}}
$$

namely n of the 1 st. sort, and $n-1$ of the 2 nd., to eliminate the $2 n-1$ auxiliary or intermediate quantities $x_{1}, \ldots x_{n}, \sigma_{1}, \ldots \sigma_{n-1}$.
[15.] We have therefore $2 n-1$ approximate equations of the forms:

$$
0=\frac{\delta T_{i}^{(2)}}{\delta x_{i}} ; \quad 0=\frac{\delta\left(T_{i}^{(2)}+T_{i+1}^{(2)}\right)}{\delta \sigma_{i}}
$$

which are all linear with respect to the quantities x and σ, and determine, approximately, values for $x_{1}, \ldots x_{n}, \sigma_{1}, \ldots \sigma_{n-1}$, as linear functions of σ_{0} and σ_{n}; and if these values be substituted in $T_{1}^{(2)}+. .+T_{n}^{(2)}$, the result will evidently be $T^{(2)}$; as, still more evidently, $T_{1}^{(0)}+. .+T_{n}^{(0)}=T^{(0)}$. But, farther, since we have, still more nearly,

$$
0=\frac{\delta T_{i}^{(2)}}{\delta x_{i}}+\frac{\delta T_{i}^{(4)}}{\delta x_{i}} ; \quad 0=\frac{\delta}{\delta \sigma_{i}}\left(T_{\imath}^{(2)}+T_{i+1}^{(2)}+T_{i}^{(4)}+T_{i+1}^{(4)}\right)
$$

therefore the errors of the approximate values, above deduced, for $x_{1}, \ldots x_{n}, \sigma_{1}, \ldots \sigma_{n-1}$, are small of the 3rd. dimension; the error, therefore, produced in $T_{1}^{(2)}+. .+T_{n}^{(2)}$, by the substitution of those approximate values, is small of the 6th. dimension, because it depends only on the squares and products of those small errors; consequently the substitution of the correct values of $x_{1}, \ldots x_{n}$, $\sigma_{1}, \ldots \sigma_{n-1}$, in $T_{1}^{(2)}+\ldots+T_{n}^{(2)}$, would contribute nothing to $T^{(4)}$, though it would to $T^{(6)}$; and therefore we may write

$$
T^{(0)}=T_{1}^{(0)}+. .+T_{n}^{(0)} ; \quad T^{(2)}=T_{1}^{(2)}+. .+T_{n}^{(2)} ; \quad T^{(4)}=T_{1}^{(4)}+. .+T_{n}^{(4)}
$$

of which expressions, indeed, the 1st. may be considered as useless, but of which the two others are very important, and in which the approximate values of $x_{1}, . . \sigma_{n-1}$ are to be used, as determined by the equations at the beginning of this section.*

* [See Appendix, Note 24, p. 507.]

By [14.],

$$
\begin{aligned}
& T_{i}^{(2)}=\frac{1}{2} v_{i}\left(\mu_{i-1}^{-1} \sigma_{i-1}^{2}-\mu_{i}^{-1} \sigma_{i}^{2}\right)+\frac{1}{2}\left(\mu_{i}-\mu_{i-1}\right) r_{i} x_{i}^{2}+\left(\sigma_{i}-\sigma_{i-1}\right) x_{i} ; \\
& \because \frac{\delta T_{i}^{(2)}}{\delta x_{i}}=\sigma_{i}-\sigma_{i-1}+\left(\mu_{i}-\mu_{i-1}\right) r_{i} x_{i} ; \\
& \quad \frac{\delta T_{i}^{(2)}}{\delta \sigma_{i}}=x_{i}-v_{i} \mu_{i}^{-1} \sigma_{i} ; \quad \frac{\delta T_{i+1}^{(2)}}{\delta \sigma_{i}}=-x_{i+1}+v_{i+1} \mu_{i}^{-1} \sigma_{i} ;
\end{aligned}
$$

therefore the $2 n-1$ linear equations referred to above are of the forms:

$$
-r_{i} x_{i}=\frac{\sigma_{i}-\sigma_{i-1}}{\mu_{i}-\mu_{i-1}} ; \quad \frac{\sigma_{i}}{\mu_{i}}=\frac{x_{i+1}-x_{i}}{v_{i+1}-v_{i}} ;
$$

those of the 1st. form expressing, with an approximation sufficient for our purpose, the law of refraction; and those of the 2 nd. form expressing the law of rectilinearity. Under these forms they might have been deduced by more elementary considerations; thus the 1st. form, being equivalent to

$$
\frac{\alpha_{i}+r_{i} x_{i}}{\alpha_{i-1}+r_{i} x_{i}}=\frac{\mu_{i-1}}{\mu_{i}},
$$

is easily seen to give the law of the sines, to an accuracy of the 1st. dimension, or indeed of the 2nd., inclusive. But the foregoing analysis is important, as showing that after calculating $T^{(2)}$ with these approximate values, we need not employ more exact expressions in order to obtain $T^{(4)}$ to the required degree of accuracy, but may simply substitute the same 1st. approximate values in $T_{1}^{(4)}+. .+T_{n}^{(4)}$.

For a single refracting surface, eliminating x_{i}, we find

$$
2 T_{i}^{(2)}=v_{i}\left(\mu_{i-1}^{-1} \sigma_{i-1}^{2}-\mu_{i}^{-1} \sigma_{i}^{2}\right)-r_{i}^{-1}\left(\mu_{i}-\mu_{i-1}\right)^{-1}\left(\sigma_{i}-\sigma_{i-1}\right)^{2} ;
$$

or, more concisely,

$$
-2 T_{i}^{(2)}=v_{i} \Delta \frac{\sigma_{i-1}^{2}}{\mu_{i-1}}+r_{i}^{-1} \frac{\Delta \sigma_{i-1}^{2}}{\Delta \mu_{i-1}} .
$$

[16.] For two successive refractions, the linear relation between $\sigma_{i-1}, \sigma_{i}, \sigma_{i+1}$, may be obtained by adding the recent value of $T_{i}^{(2)}$ to that of $T_{i+1}^{(2)}$, and equating to 0 the differential of the sum, taken with respect to σ_{i}; which process gives

$$
0=\left(v_{i+1}-v_{i}\right) \mu_{i}^{-1} \sigma_{i}-r_{i}^{-1}\left(\mu_{i}-\mu_{i-1}\right)^{-1}\left(\sigma_{i}-\sigma_{i-1}\right)+r_{i+1}^{-1}\left(\mu_{i+1}-\mu_{i}\right)^{-1}\left(\sigma_{i+1}-\sigma_{i}\right) ;
$$

a result which may also easily be obtained by eliminating x_{i}, x_{i+1}, between the three equations

$$
\begin{gathered}
-r_{i} x_{i}=\left(\mu_{i}-\mu_{i-1}\right)^{-1}\left(\sigma_{i}-\sigma_{i-1}\right), \quad-r_{i+1} x_{i+1}=\left(\mu_{i+1}-\mu_{i}\right)^{-1}\left(\sigma_{i+1}-\sigma_{i}\right), \\
\mu_{i}^{-1} \sigma_{i}=\left(v_{i+1}-v_{i}\right)^{-1}\left(x_{i+1}-x_{i}\right) ;
\end{gathered}
$$

that is, between two equations of refraction, and one equation of rectilinearity.

For a single lens in a single medium, $\mu_{i+1}=\mu_{i-1}$, and if we make
then

$$
\begin{gathered}
R_{i}=r_{i}-r_{i+1}+\mu_{i}^{-1}\left(\mu_{i}-\mu_{i-1}\right) r_{i} r_{i+1}\left(v_{i+1}-v_{i}\right), \\
R_{i} \sigma_{i}=r_{i} \sigma_{i+1}-r_{i+1} \sigma_{i-1} ; \\
2 T_{i}^{(2)}+2 T_{i+1}^{(2)}-\mu_{i-1}^{-1}\left(v_{i} \sigma_{i-1}^{2}-v_{i+1} \sigma_{i+1}^{2}\right)-\left(\mu_{i}-\mu_{i-1}\right)^{-1}\left(r_{i+1}^{-1} \sigma_{i+1}^{2}-r_{i}^{-1} \sigma_{i-1}^{2}\right) \\
=\left\{\left(v_{i+1}-v_{i}\right) \mu_{i}^{-1}-\left(\mu_{i}-\mu_{i-1}\right)^{-1}\left(r_{i}^{-1}-r_{i+1}^{-1}\right)\right\} \sigma_{i}^{2} \\
+2\left(\mu_{i}-\mu_{i-1}\right)^{-1}\left\{r_{i}^{-1} \sigma_{i-1}-r_{i+1}^{-1} \sigma_{i+1}\right\} \sigma_{i} \\
=r_{i}^{-1} r_{i+1}^{-1}\left(\mu_{i}-\mu_{i-1}\right)^{-1}\left\{R_{i} \sigma_{i}^{2}+2\left(r_{i+1} \sigma_{i-1}-r_{i} \sigma_{i+1}\right) \sigma_{i}\right\} \\
=-r_{i}^{-1} r_{i+1}^{-1}\left(\mu_{i}-\mu_{i-1}\right)^{-1} R_{i}^{-1}\left(r_{i} \sigma_{i+1}-r_{i+1} \sigma_{i-1}\right)^{2} ; \\
\left(r_{i} \sigma_{i+1}^{2}-r_{i+1} \sigma_{i-1}^{2}\right)\left(r_{i}-r_{i+1}\right)-\left(r_{i} \sigma_{i+1}-r_{i+1} \sigma_{i-1}\right)^{2}=-r_{i} r_{i+1}\left(\sigma_{i+1}-\sigma_{i-1}\right)^{2} ; \\
\because 2\left(T_{i}^{(2)}+T_{i+1}^{(2)}\right)=\mu_{i-1}^{-1}\left(v_{i} \sigma_{i-1}^{2}-v_{i+1} \sigma_{i+1}^{2}\right)+\mu_{i}^{-1} R_{i}^{-1}\left(v_{i+1}-v_{i}\right)\left(r_{i} \sigma_{i+1}^{2}-r_{i+1} \sigma_{i-1}^{2}\right) \\
\quad-\left(\mu_{i}-\mu_{i-1}\right)^{-1} R_{i}^{-1}\left(\sigma_{i+1}-\sigma_{i-1}\right)^{2} . \quad \text { (Compare [22.].) }
\end{gathered}
$$

also
and

The equation of a ray incident on this lens may be put under the approximate form

$$
x_{i-1}=\alpha_{i-1}\left(z_{i-1}-v_{i}+\mu_{i}^{-1} \mu_{i-1} R_{i}^{-1} r_{i+1} \overline{v_{i+1}-v_{i}}\right)-\left(\mu_{i}-\mu_{i-1}\right)^{-1} R_{i}^{-1}\left(\sigma_{i+1}-\sigma_{i-1}\right)
$$

and the equation of the corresponding emergent ray is, in the same order of approximation,

$$
x_{i+2}=\alpha_{i+1}\left(z_{i+2}-v_{i+1}+\mu_{i}^{-1} \mu_{i+1} R_{i}^{-1} r_{i} \overline{v_{i+1}-v_{i}}\right)-\left(\mu_{i}-\mu_{i-1}\right)^{-1} R_{i}^{-1}\left(\sigma_{i+1}-\sigma_{i-1}\right) .
$$

Hence, if these two rays be parallel to each other, the 1st. cuts the axis of the lens in the focal centre

$$
z_{i-1}=v_{i}-\frac{\mu_{i-1} r_{i+1}}{\mu_{i} R_{i}}\left(v_{i+1}-v_{i}\right)
$$

and the 2 nd. cuts the axis in the other focal centre

$$
z_{i+2}=v_{i+1}-\frac{\mu_{i+1} r_{i}}{\mu_{i} R_{i}}\left(v_{i+1}-v_{i}\right)
$$

Also any incident ray has the same distance from the axis at the 1st. focal centre, as the corresponding emergent ray at the 2 nd. focal centre; namely at a distance

$$
=-\left(\mu_{i}-\mu_{i-1}\right)^{-1} R_{i}^{-1}\left(\sigma_{i+1}-\sigma_{i-1}\right) .
$$

Rays incident towards \&c. See [22.], [23.].
[17.] (Feb. 16th.) Defining $\alpha^{\prime}, \gamma^{\prime}$ to be sine and cosine of inclination of incident ray to axis of z; and $\alpha^{\prime \prime}, \gamma^{\prime \prime}$ sine and cosine of inclination of refracted ray to same axis; ν corresponding inclination of normal of refracting surface, at point of refraction; the sine of incidence will be, rigorously,
and that of refraction will be

$$
\begin{gathered}
\alpha^{\prime} \cos \nu-\gamma^{\prime} \sin \nu \\
\alpha^{\prime \prime} \cos \nu-\gamma^{\prime \prime} \sin \nu
\end{gathered}
$$

so that the fundamental law of refraction gives, rigorously,

$$
\mu^{\prime}\left(\alpha^{\prime} \cos \nu-\gamma^{\prime} \sin \nu\right)=\mu^{\prime \prime}\left(\alpha^{\prime \prime} \cos \nu-\gamma^{\prime \prime} \sin \nu\right),
$$

μ^{\prime} being the index of the 1 st. medium, and $\mu^{\prime \prime}$ that of the 2 nd. If then we make

$$
\mu^{\prime} \alpha^{\prime}=\sigma^{\prime}, \quad \mu^{\prime} \gamma^{\prime}=v^{\prime}, \quad \mu^{\prime \prime} \alpha^{\prime \prime}=\sigma^{\prime \prime}, \quad \mu^{\prime \prime} \gamma^{\prime \prime}=v^{\prime \prime},
$$

we have

$$
\left(\sigma^{\prime \prime}-\sigma^{\prime}\right) \cos \nu=\left(v^{\prime \prime}-v^{\prime}\right) \sin \nu
$$

or more concisely

$$
\Delta \sigma=\Delta v \tan \nu
$$

as an expression for the law of refraction. This gives

$$
\Delta \sigma \delta x+\Delta v \delta z=0,
$$

x, z being coordinates of incidence. Also, by rectilinearity of ray between any two successive refractions,

$$
\frac{\Delta x}{\alpha}=\frac{\Delta z}{\gamma}, \quad \because \frac{\Delta x}{\sigma}=\frac{\Delta z}{v} ;
$$

and because

$$
\mu^{2}=\sigma^{2}+v^{2}, \quad 0=\sigma \delta \sigma+v \delta v,
$$

the law of rectilinearity is expressed by the equation

$$
\Delta x \delta \sigma+\Delta z \delta v=0 .
$$

Hence, if we make

$$
T_{i}=x_{i} \Delta_{i} \sigma+z_{i} \Delta_{i} v
$$

x_{i}, z_{i} being coordinates of i th. point of incidence, or of refraction, and Δ_{i} the characteristic of the change there produced, so that, more fully,

$$
\Delta_{i} \sigma=\Delta \sigma_{i-1}=\sigma_{i}-\sigma_{i-1},
$$

if σ_{i} be the value of σ after the i th. refraction, we shall have, by the law of refraction,

$$
\delta T_{i}=x_{i} \Delta_{i} \delta \sigma+z_{i} \Delta_{i} \delta v ;
$$

and therefore, by the law of rectilinearity,

$$
\delta T_{i}=x_{i+1} \delta \sigma_{i}+z_{i+1} \delta v_{i}-x_{i-1} \delta \sigma_{i-1}-z_{i-1} \delta v_{i-1},
$$

x_{i-1}, z_{i-1} being the coordinates of any point on the i th. incident ray, and x_{i+1}, z_{i+1} being the coordinates of any point on the i th. refracted ray. If then we consider two successive refractions, we have (because $0=\Delta x_{i} \delta \sigma_{i}+\Delta z_{i} \delta v_{i}$)

$$
\delta\left(T_{i}+T_{i+1}\right)=x_{i+2} \delta \sigma_{i+1}+z_{i+2} \delta v_{i+1}-x_{i-1} \delta \sigma_{i-1}-z_{i-1} \delta v_{i-1}, \& c . ;
$$

and making $T=T_{1}+T_{2}+\ldots+T_{n}$, we have, for n successive refractions, the formula

$$
\delta T=x_{n+1} \delta \sigma_{n}+z_{n+1} \delta v_{n}-x_{0} \delta \sigma_{0}-z_{0} \delta v_{0} ;
$$

in which, by definition,

$$
T=x_{1}\left(\sigma_{1}-\sigma_{0}\right)+x_{2}\left(\sigma_{2}-\sigma_{1}\right)+. .+x_{n}\left(\sigma_{n}-\sigma_{n-1}\right)+z_{1}\left(v_{1}-v_{0}\right)+z_{2}\left(v_{2}-v_{1}\right)+. .+z_{n}\left(v_{n}-v_{n-1}\right)
$$

it is therefore immediately given as an explicit homogeneous function of the 2nd. dimension, of the $2 n$ coordinates of incidence, and the $2 n+2$ quantities σ, v; but the equations of the refracting curves give each z as a function of its own x; and the equations of the form $\sigma^{2}+v^{2}=\mu^{2}$, give, for each medium, v as a function of σ; thus T may be considered as a function of the $n x^{\prime}$ es, and the $n+1 \sigma$'s; but by the law of refraction, T is to be a maximum or minimum, or more generally to have a stationary value with respect to each of the x 'es; and by the law of rectilinearity, it is to be stationary also with respect to $\sigma_{1}, . . \sigma_{n-1}$; eliminating therefore these auxiliary quantities, it will become a function of σ_{0}, σ_{n}, and we shall have the two equations for initial and final rays:

$$
x_{0}-\frac{\alpha_{0}}{\gamma_{0}} z_{0}=-\frac{\delta T}{\delta \sigma_{0}} ; \quad x_{n+1}-\frac{\alpha_{n}}{\gamma_{n}} z_{n+1}=+\frac{\delta T}{\delta \sigma_{n}}
$$

And the elimination of each x, separately, can be effected by means of the equation of the corresponding refracting curve. For that equation gives

$$
z_{i}+x_{i} \tan \nu_{i}=f_{i}\left(\tan \nu_{i}\right) ; \quad T_{i}=\Delta_{i} v \cdot f_{i}\left(\frac{\Delta_{i} \sigma}{\Delta_{i} v}\right)
$$

and

$$
T=\Sigma_{(i) 1}^{n} \cdot \Delta_{i} v f_{i}\left(\frac{\Delta_{i} \sigma}{\Delta_{i} v}\right)
$$

rigorously.
[18.] For a refracting circle,

$$
x=-r^{-1} \sin \nu, \quad z=c-r^{-1} \cos \nu,
$$

c being ordinate of centre, and r^{-1} radius, positive when convex to incident light; therefore
and

$$
z+x \tan \nu=c-r^{-1} \sec \nu
$$

$$
f(\tan \nu)=c-r^{-1} \sqrt{1+(\tan \nu)^{2}}
$$

Hence, for any combination of n refracting circles, having their centres on one common axis, we have, rigorously,

$$
T=\Sigma_{(i) 1}^{n} c_{i} \Delta_{i} v-\Sigma_{(i) 1}^{n} r_{i}^{-1} \Delta_{i} v \sqrt{1+\left(\frac{\Delta_{i} \sigma}{\Delta_{i} v}\right)^{2}} ;
$$

the radical being positive. Developing the radical as far as the 4th. power of $\Delta_{i} \sigma$, which we shall suppose to be small, and denoting the ordinate of the i th. vertex by

$$
v_{i}=c_{i}-r_{i}^{-1}
$$

we have, nearly,

$$
T=\Sigma_{(i) 1}^{n}\left\{v_{i} \Delta_{i} v-\frac{1}{2} r_{i}^{-1} \Delta_{i} v^{-1} \Delta_{i} \sigma^{2}+\frac{1}{8} r_{i}^{-1} \Delta_{i} v^{-3} \Delta_{i} \sigma^{4}\right\} ;
$$

$\Delta_{i} v^{-1}, \Delta_{i} v^{-3}, \Delta_{i} \sigma^{2}, \Delta_{i} \sigma^{4}$, denoting $\left(\Delta_{i} v\right)^{-1},\left(\Delta_{i} v\right)^{-3},\left(\Delta_{i} \sigma\right)^{2},\left(\Delta_{i} \sigma\right)^{4}$. And because, in the same order of approximation,

$$
v=\mu-\frac{1}{2} \mu^{-1} \sigma^{2}-\frac{1}{8} \mu^{-3} \sigma^{4}
$$

we have, still in the same order of approximation, T being $=\Sigma_{(i) 1}^{n} T_{i}$,

$$
\begin{aligned}
& T_{i}=v_{i} \Delta_{i} \mu-\frac{1}{2} v_{i} \Delta_{i}\left(\frac{\sigma^{2}}{\mu}\right)-\frac{1}{8} v_{i} \Delta_{i}\left(\frac{\sigma^{4}}{\mu^{3}}\right)-\frac{1}{2} r_{i}^{-1}\left(\Delta_{i} \mu\right)^{-1}\left(\Delta_{i} \sigma\right)^{2} \\
&-\frac{1}{4} r_{i}^{-1}\left(\Delta_{i} \mu\right)^{-2}\left(\Delta_{i} \sigma\right)^{2} \Delta_{i}\left(\frac{\sigma^{2}}{\mu}\right)+\frac{1}{8} r_{i}^{-1}\left(\Delta_{i} \mu\right)^{-3}\left(\Delta_{i} \sigma\right)^{4}
\end{aligned}
$$

the parentheses being employed to make the notation more unambiguous. (Compare [2.].) We may conveniently distinguish these 6 terms of T_{i} as follows:

$$
\begin{gathered}
T_{i}=T_{i}^{(0)}+T_{i}^{\prime(2)}+T_{i}^{\prime \prime(2)}+T_{i}^{\prime(4)}+T_{i}^{\prime \prime \prime}(4)+T_{i}^{\prime \prime \prime}(4)=T_{i}^{(0)}+T_{i}^{(2)}+T_{i}^{(4)} \\
T_{i}^{(0)}=v_{i} \Delta_{i} \mu ; \quad T_{i}^{\prime(2)}=-\frac{1}{2} v_{i} \Delta_{i} \frac{\sigma^{2}}{\mu} ; \quad T_{i}^{\prime \prime(2)}=-\frac{1}{2} r_{i}^{-1}\left(\Delta_{i} \mu\right)^{-1}\left(\Delta_{i} \sigma\right)^{2} ; \\
T_{i}^{\prime(4)}=-\frac{1}{8} v_{i} \Delta_{i} \frac{\sigma^{4}}{\mu^{3}} ; \quad T_{i}^{\prime \prime(4)}=-\frac{1}{4} r_{i}^{-1}\left(\Delta_{i} \mu\right)^{-2}\left(\Delta_{i} \sigma\right)^{2} \Delta_{i} \frac{\sigma^{2}}{\mu} ; \quad T_{i}^{\prime \prime \prime}(4)=\frac{1}{8} r_{i}^{-1}\left(\Delta_{i} \mu\right)^{-3}\left(\Delta_{i} \sigma\right)^{4} .
\end{gathered}
$$

Also the $n-1$ intermediate σ 's are to be eliminated by the $n-1$ conditions of stationary value, which are of the form

$$
0=\frac{\delta\left(T_{i}+T_{i+1}\right)}{\delta \sigma_{i}}
$$

that is, sufficiently for the calculation of T, to the accuracy of the 4 th. dimension inclusive (by the properties of stationary values),

$$
\begin{aligned}
& 0=\frac{\delta T_{i}^{(2)}}{\delta \sigma_{i}}+\frac{\delta T_{i+1}^{(2)}}{\delta \sigma_{i}} ; \quad T_{i}^{(2)}=T_{i}^{\prime(2)}+T_{i}^{\prime \prime}(2) ; \quad T_{i}^{(4)}=T_{i}^{\prime}{ }_{i}^{(4)}+T_{i}^{\prime \prime \prime}(4)+T_{i}^{\prime \prime \prime}(4) \\
& T=T^{(0)}+T^{(2)}+T^{(4)} ; \quad T^{(0)}=\Sigma_{i} T_{i}^{(0)} ; \quad T^{(2)}=\Sigma_{i} T_{i}^{(2)} ; \quad T^{(4)}=\Sigma_{i} T_{i}^{(4)}
\end{aligned}
$$

Now,

$$
\begin{gathered}
\frac{\delta T_{i}^{\prime(2)}}{\delta \sigma_{i}}=-\frac{v_{i} \sigma_{i}}{\mu_{i}} ; \quad \frac{\delta T_{i+1}^{\prime(2)}}{\delta \sigma_{i}}=\frac{v_{i+1} \sigma_{i}}{\mu_{i}} ; \quad \because \frac{\delta}{\delta \sigma_{i}}\left(T_{i}^{\prime(2)}+T_{i+1}^{\prime(2)}\right)=\mu_{i}^{-1}\left(v_{i+1}-v_{i}\right) \sigma_{i} \\
\frac{\delta T^{\prime \prime}(2)}{\delta \sigma_{i}}=-r_{i}^{-1}\left(\Delta_{i} \mu\right)^{-1} \Delta_{i} \sigma ; \quad \frac{\delta T_{i+1}^{\prime \prime(2)}}{\delta \sigma_{i}}=r_{i+1}^{-1}\left(\Delta_{i+1} \mu\right)^{-1} \Delta_{i+1} \sigma
\end{gathered}
$$

therefore the equation connecting σ_{i} with σ_{i-1} and σ_{i+1} is the following;*

$$
0=\left\{\mu_{i}^{-1}\left(v_{i+1}-v_{i}\right)-r_{i}^{-1}\left(\Delta_{i} \mu\right)^{-1}-r_{i+1}^{-1}\left(\Delta_{i+1} \mu\right)^{-1}\right\} \sigma_{i}+r_{i}^{-1}\left(\Delta_{i} \mu\right)^{-1} \sigma_{i-1}+r_{i+1}^{-1}\left(\Delta_{i+1} \mu\right)^{-1} \sigma_{i+1}
$$

This equation in differences is of the form

$$
0=A_{i} \sigma_{i-1}+C_{i} \sigma_{i}+A_{i+1} \sigma_{i+1} ;
$$

* [See also beginning of [16.].]
and we have $n-1$ such, namely those corresponding to $i=1,2, \ldots n-1$. When the surfaces are all close together, then

$$
C_{i}=-A_{i}-A_{i+1}
$$

and the equation in differences becomes

$$
\begin{gathered}
A_{i}\left(\sigma_{i}-\sigma_{i-1}\right)=A_{i+1}\left(\sigma_{i+1}-\sigma_{i}\right)=C \\
\sigma_{1}-\sigma_{0}=C A_{1}^{-1}, \quad \sigma_{2}-\sigma_{1}=C A_{2}^{-1}, . . \sigma_{n}-\sigma_{n-1}=C A_{n}^{-1} \\
\because \sigma_{n}-\sigma_{0}=C \Sigma_{(i) 1}^{n} A_{i}^{-1}
\end{gathered}
$$

and finally

$$
\sigma_{i}=\sigma_{0}+\left(\sigma_{n}-\sigma_{0}\right) \frac{\sum_{(i) 1}{ }_{1}^{i} r_{i} \Delta_{i} \mu}{\sum_{(i)}^{n} r_{i} \Delta_{i} \mu}
$$

that is,

$$
\sigma_{i} \Sigma_{(i)}{ }_{1}^{n} r_{i} \Delta_{i} \mu=\sigma_{0} \Sigma_{(i) i+1}^{n} r_{i} \Delta_{i} \mu+\sigma_{n} \Sigma_{(i)}^{i} r_{i} \Delta_{i} \mu .
$$

[19.] [When the vertices of the refracting circles are distinct, we have]

$$
\left.\begin{array}{c}
\Delta\left(A_{i} \Delta_{i} \sigma\right)=-\mu_{i}^{-1} \sigma_{i} \Delta v_{i}=A_{i}^{\prime} ; \quad\left(\Delta_{i} \sigma=\sigma_{i}-\sigma_{i-1} ; \quad \Delta \phi_{i}=\phi_{i+1}-\phi_{i} ;\right) \quad A_{i}=r_{i}^{-1}\left(\Delta_{i} \mu\right)^{-1} \\
A_{2} \Delta_{2} \sigma-A_{1} \Delta_{1} \sigma=A_{1}^{\prime} \\
A_{3} \Delta_{3} \sigma-A_{2} \Delta_{2} \sigma=A_{2}^{\prime} \\
\& c .
\end{array}\right\} \because\left\{\begin{array}{c}
A_{3} \Delta_{3} \sigma-A_{1} \Delta_{1} \sigma=A_{1}^{\prime}+A_{2}^{\prime} \\
A_{4} \Delta_{4} \sigma-A_{1} \Delta_{1} \sigma=A_{1}^{\prime}+A_{2}^{\prime}+A_{3}^{\prime} \\
\& c .
\end{array}\right.
$$

If then we make $A_{i}^{\prime \prime}=\Sigma_{(i)}{ }_{1}^{i} A_{i}^{\prime}$, we have $n-1$ equations of the form

$$
A_{i+1} \Delta_{i+1} \sigma=A_{1} \Delta_{1} \sigma+A_{i}^{\prime \prime}
$$

or of the form

$$
\Delta_{i+1} \sigma=A_{i+1}^{-1}\left(A_{1} \Delta_{1} \sigma+A_{i}^{\prime \prime}\right)
$$

i being successively $=1,2, \ldots n-1$; we may also include with these the case $i=0$, by treating $A_{0}^{\prime \prime}$ as $=0$. Hence, by addition,

$$
\sigma_{n}-\sigma_{0}=\Sigma_{(i) 1}^{n} \cdot A_{i}^{-1}\left(A_{1} \Delta_{1} \sigma+A_{i-1}^{\prime \prime}\right)
$$

$$
\because A_{1} \Delta_{1} \sigma_{1}=\frac{\sigma_{n}-\sigma_{0}-\sum_{(i) 1}^{n} \cdot A_{i}^{-1} A_{i-1}^{\prime \prime}}{\sum_{(i) 1}^{n} \cdot A_{i}^{-1}} ; \quad \sigma_{i}-\sigma_{0}=A_{1} \Delta_{1} \sigma \cdot \Sigma_{(i) 1}^{i} A_{i}^{-1}+\Sigma_{(i) 1}^{i} \cdot A_{i}^{-1} A_{i-1}^{\prime \prime}
$$

and

$$
\left\{\begin{array}{l}
\left(\sigma_{i}-\sigma_{0}\right) \Sigma_{(i) 1}^{n} r_{i} \Delta_{i} \mu-\left(\sigma_{n}-\sigma_{0}\right) \Sigma_{(i) 1}^{i} r_{i} \Delta_{i} \mu \\
=\Sigma_{(i)}{ }_{1}^{n} r_{i} \Delta_{i} \mu \cdot \Sigma_{(i)}{ }_{1}^{i} r_{i} \Delta_{i} \mu A_{i-1}^{\prime \prime}-\Sigma_{(i) 1}^{i} r_{i} \Delta_{i} \mu \cdot \Sigma_{(i)}{ }_{1}^{n} r_{i} \Delta_{i} \mu A_{i-1}^{\prime \prime}
\end{array}\right.
$$

in which

$$
A_{i-1}^{\prime \prime}=-\Sigma_{(i) 1}^{i-1} \cdot \mu_{i}^{-1} \sigma_{i}\left(v_{i+1}-v_{i}\right) ; \quad A_{0}^{\prime \prime}=0 ; \quad \Sigma_{(i) 1}^{\& c .} .(\& c .) A_{i-1}^{\prime \prime}=\Sigma_{(i) 2}^{\text {\&c. }} .\left(\text { (\&c.) } A_{i-1}^{\prime \prime}\right.
$$

Thus, retaining the abridgments A_{i}, A_{i}^{\prime}, as defined above, and not neglecting any powers of the quantities $A_{i}{ }^{\prime}$, we have

$$
\begin{aligned}
& \sigma_{i} \Sigma_{(i) 1}^{n} A_{i}^{-1}=\sigma_{0} \Sigma_{(i) i+1}^{n} A_{i}^{-1}+\sigma_{n} \Sigma_{(i) 1}^{i} A_{i}^{-1} \\
& \quad+\Sigma_{(i) 1}^{n} A_{i}^{-1} \cdot \Sigma_{(i) 1}^{i} \cdot A_{i}^{-1} \Sigma_{(i) 1}^{i-1} A_{i}^{\prime}-\Sigma_{(i) 1}^{i} A_{i}^{-1} \cdot \Sigma_{(i) 1}^{n} \cdot A_{i}^{-1} \Sigma_{(i) 1}^{i-1} A_{i}^{\prime}
\end{aligned}
$$

or, making for abridgment

$$
\lambda_{i} \Sigma_{(i)}{ }_{1}^{n} A_{i}^{-1}=\Sigma_{(i)}{ }_{1}^{i} A_{i}^{-1},
$$

so that $\lambda_{0}=0, \lambda_{n}=1$, we have

$$
\sigma_{i}=\sigma_{0}+\lambda_{i}\left(\sigma_{n}-\sigma_{0}-\Sigma_{(i) 2} \cdot A_{i}^{-1} \Sigma_{(i) 1}^{i-1} A_{i}^{\prime}\right)+\Sigma_{(i) 2}{ }^{i} \cdot A_{i}^{-1} \Sigma_{(i) 1}{ }^{i-1} A_{i}{ }^{\prime} .
$$

For example,

$$
\sigma_{1}=\sigma_{0}+\lambda_{1}\left(\sigma_{n}-\sigma_{0}-\Sigma_{(i) 2}^{n} \cdot A_{i}^{-1} \Sigma_{(i) 1}^{i-1} A_{i}^{\prime}\right) ;
$$

and accordingly this agrees with $A_{1} \Delta_{1} \sigma$, above. Make for abridgment

$$
B_{i}=\Sigma_{(i) 1}{ }^{i} \cdot A_{i}^{-1} \Sigma_{(i) 1}^{i-1} A_{i}^{\prime} ;
$$

so that

$$
\begin{gathered}
B_{0}=0, \quad B_{1}=0, \quad B_{2}=A_{2}^{-1} A_{1}^{\prime}, \quad B_{3}-B_{2}=A_{3}^{-1}\left(A_{1}^{\prime}+A_{2}{ }^{\prime}\right), \\
B_{4}-B_{3}=A_{4}^{-1}\left(A_{1}^{\prime}+A_{2}^{\prime}+A_{3}^{\prime}\right), \& \mathrm{sc}, \\
B_{i}=A_{1}^{\prime}\left(A_{2}^{-1}+A_{3}^{-1}+. .+A_{i}^{-1}\right)+A_{2}^{\prime}\left(A_{3}^{-1}+. .+A_{i}^{-1}\right)+. .+A_{i-1}^{\prime} A_{i}^{-1} ;
\end{gathered}
$$

then

$$
\sigma_{i}=\sigma_{0}+\lambda_{i}\left(\sigma_{n}-\sigma_{0}-B_{n}\right)+B_{i} .
$$

To verify that this expression does in fact satisfy the equation in differences relative to σ, we may observe that it gives
in which

$$
\Delta_{i} \sigma=\sigma_{i}-\sigma_{i-1}=\left(\lambda_{i}-\lambda_{i-1}\right)\left(\sigma_{n}-\sigma_{0}-B_{n}\right)+B_{i}-B_{i-1} ;
$$

$$
\begin{gathered}
\grave{\lambda}_{i}-\lambda_{i-1}=A_{i}^{-1}\left(\sum_{(i) 1}^{n} A_{i}^{-1}\right)^{-1} ; \quad B_{i}-B_{i-1}=A_{i}^{-1} \Sigma_{(i) 1}^{i-1} A_{i}{ }^{\prime} ; \\
\because A_{i} \Delta_{i} \sigma=\left(\sigma_{n}-\sigma_{0}-B_{n}\right)\left(\sum_{(i) 1}^{n} A_{i}^{-1}\right)^{-1}+\sum_{(i) 1}^{i-1} A_{i}^{\prime}, \\
\because \Delta \cdot A_{i} \Delta_{i} \sigma=A_{i}{ }^{\prime}, \text { as above. }
\end{gathered}
$$

And if, in $A_{i}{ }^{\prime}$, we substitute for σ_{i} its first approximate value, namely $\sigma_{0}+\lambda_{i}\left(\sigma_{n}-\sigma_{0}\right)$, we shall obtain corresponding expressions for B_{i}, B_{n}, which will give for σ_{i} a more correct value, indeed the one which we are to employ, if we neglect the squares and products of the intervals between the successive refracting surfaces.
[20.] (Feb. 16, 1844.) If we make for abridgment

$$
a_{i}=r_{i}\left(\mu_{i}-\mu_{i-1}\right), \quad b_{i}=\left(v_{i+1}-v_{i}\right) \mu_{i}^{-1} \sigma_{i},
$$

the linear equation between $\sigma_{i-1}, \sigma_{i}, \sigma_{i+1}$, assigned near the beginning of [16.],* becomes

$$
0=a_{i+1}^{-1}\left(\sigma_{i+1}-\sigma_{i}\right)-a_{i}^{-1}\left(\sigma_{i}-\sigma_{i-1}\right)+b_{i} .
$$

Thus,

$$
\left\{\begin{array}{l}
0=a_{2}^{-1}\left(\sigma_{2}-\sigma_{1}\right)-a_{1}^{-1}\left(\sigma_{1}-\sigma_{0}\right)+b_{1} \\
0=a_{3}^{-1}\left(\sigma_{3}-\sigma_{2}\right)-a_{2}^{-1}\left(\sigma_{2}-\sigma_{1}\right)+b_{2}, \text { \&c. }
\end{array}\right.
$$

Hence

$$
\begin{gathered}
0=a_{3}^{-1}\left(\sigma_{3}-\sigma_{2}\right)-a_{1}^{-1}\left(\sigma_{1}-\sigma_{0}\right)+b_{1}+b_{2}, \text { \&c. } ; \\
*[\text { See also }[18 .] .]
\end{gathered}
$$

$$
\begin{aligned}
& \because\left\{\begin{array}{l}
\sigma_{1}-\sigma_{0}=a_{1} a_{1}^{-1}\left(\sigma_{1}-\sigma_{0}\right), \\
\sigma_{2}-\sigma_{1}=a_{2} a_{1}^{-1}\left(\sigma_{1}-\sigma_{0}\right)-a_{2} b_{1}, \\
\sigma_{3}-\sigma_{2}=a_{3} a_{1}^{-1}\left(\sigma_{1}-\sigma_{0}\right)-a_{3}\left(b_{1}+b_{2}\right), \& c .
\end{array}\right. \\
& \because\left\{\begin{array}{l}
\sigma_{2}-\sigma_{0}=a_{1}^{-1}\left(a_{1}+a_{2}\right)\left(\sigma_{1}-\sigma_{0}\right)-a_{2} b_{1}, \\
\sigma_{3}-\sigma_{0}=a_{1}^{-1}\left(a_{1}+a_{2}+a_{3}\right)\left(\sigma_{1}-\sigma_{0}\right)-a_{2} b_{1}-a_{3}\left(b_{1}+b_{2}\right), \& \mathrm{cc} .
\end{array}\right. \\
& \because\left\{\begin{array}{r}
\sigma_{n}-\sigma_{0}=a_{1}^{-1}\left(a_{1}+a_{2}+. .+a_{n}\right)\left(\sigma_{1}-\sigma_{0}\right) \\
-a_{2} b_{1}-a_{3}\left(b_{1}+b_{2}\right)-. .-a_{n}\left(b_{1}+b_{2}+. .+b_{n-1}\right) ;
\end{array}\right.
\end{aligned}
$$

let

$$
\lambda_{i}=\frac{a_{1}+a_{2}+. .+a_{i}}{a_{1}+a_{2}+. .+a_{n}}, \quad \lambda_{i}^{\prime}=a_{2} b_{1}+a_{3}\left(b_{1}+b_{2}\right)+. .+a_{i}\left(b_{1}+. .+b_{i-1}\right) ;
$$

then

$$
\sigma_{i}-\sigma_{0}=\lambda_{i}\left(\sigma_{n}-\sigma_{0}+\lambda_{n}^{\prime}\right)-\lambda_{i}^{\prime} ; \quad \lambda_{1}^{\prime}=0, \quad \lambda_{n}=1 .
$$

This equation is a rigorous result of the equation in differences relative to σ; but $\lambda_{i}{ }^{\prime}, \lambda_{n}{ }^{\prime}$ involve the intermediate σ^{\prime} 's, which are the quantities sought. (In [19.] B_{i} was written for what is here $-\lambda_{i}{ }^{\prime}$.) However they involve them only as multiplied by the successive intervals between the vertices, or surfaces; if then we neglect the squares and products of these intervals, we shall have

$$
b_{i}=\left(v_{i+1}-v_{i}\right) \mu_{i}^{-1}\left\{\sigma_{0}+\lambda_{i}\left(\sigma_{n}-\sigma_{0}\right)\right\},
$$

and thence may compute $\lambda_{i}^{\prime}, \lambda_{n}^{\prime}$, and ultimately σ_{i}.
Make for abridgment

$$
\left(v_{i+1}-v_{i}\right) \mu_{i}^{-1}=d_{i},
$$

(since we do not employ the differential d;) then

$$
b_{j}=d_{j} \sigma_{j}=d_{j}\left\{\sigma_{0}+\lambda_{j}\left(\sigma_{n}-\sigma_{0}\right)\right\} ;
$$

and the coefficient of d_{j} in σ_{i} is $\sigma_{0}+\lambda_{j}\left(\sigma_{n}-\sigma_{0}\right)$ mu'siplied by the coefficient of b_{j} in $\lambda_{i} \lambda_{n}{ }^{\prime}-\lambda_{i}{ }^{\prime}$; which last coefficient is

$$
\lambda_{i}\left(a_{j+1}+a_{j+2}+. .+a_{n}\right)-\left(a_{j+1}+a_{j+2}+. .+a_{i}\right) .
$$

This coefficient vanishes, unless $j<n$; and its last part vanishes, unless $j<i$. When multiplied by $a_{1}+. .+a_{n}$, it becomes

$$
\begin{aligned}
& =\left(a_{1}+. .+a_{j}\right)\left(a_{i+1}+. .+a_{n}\right), \\
& =\left(a_{1}+. .+a_{i}\right)\left(a_{j+1}+. .+a_{n}\right),
\end{aligned}
$$

if $j \leqq i$; but
if $j \geqq i$. (When $j<i$, we employ here the principle that

$$
\begin{gathered}
(A+B)(B+C)-(A+B+C) B=A C \\
\left.A=a_{1}+. .+a_{j} ; \quad B=a_{j+1}+. .+a_{i} ; \quad C=a_{i+1}+. .+a_{n} .\right)
\end{gathered}
$$

[21.] Since $T^{(2)}=\Sigma T_{i}^{(2)}$ is homogeneous of the second dimension,

$$
\begin{aligned}
& 2 T^{(2)}=\sigma_{0} \frac{\delta T^{(2)}}{\delta \sigma_{0}}+\sigma_{n} \frac{\delta T^{(2)}}{\delta \sigma_{n}}=\sigma_{0} \frac{\delta T_{1}^{(2)}}{\delta \sigma_{0}}+\sigma_{n} \frac{\delta T_{n}^{(2)}}{\delta \sigma_{n}} ; \\
& \left(0=\frac{\delta T^{(2)}}{\delta \sigma_{1}}=\frac{\delta T^{(2)}}{\delta \sigma_{2}}=. .=\frac{\delta T^{(2)}}{\delta \sigma_{n-1}} ;\right) \\
& T_{1}^{(2)}=T_{1}^{\prime \prime}{ }_{1}^{(2)}+T_{1}^{\prime \prime \prime}{ }_{1}{ }^{(2)}, \quad T_{n}^{(2)}=T_{n}^{\prime(2)}+T_{n}^{\prime \prime(2)} ; \\
& \frac{\delta T^{\prime}(2)}{\delta \sigma_{0}}=v_{1} \mu_{0}^{-1} \sigma_{0}, \quad \frac{\delta T^{\prime}(2)}{\delta \sigma_{n}}=-v_{n} \mu_{n}^{-1} \sigma_{n} ; \\
& \frac{\delta T^{\prime \prime}(2)}{\delta \sigma_{0}}=r_{1}^{-1}\left(\Delta_{1} \mu\right)^{-1} \Delta_{1} \sigma ; \frac{\delta T^{\prime \prime}(2)}{\delta \sigma_{n}}=-r_{n}^{-1}\left(\Delta_{n} \mu\right)^{-1} \Delta_{n} \sigma ; \\
& \Delta_{1} \sigma=\sigma_{1}-\sigma_{0}=\lambda_{1}\left(\sigma_{n}-\sigma_{0}-B_{n}\right) ; \quad \Delta_{n} \sigma=\sigma_{n}-\sigma_{n-1}=\left(1-\lambda_{n-1}\right)\left(\sigma_{n}-\sigma_{0}\right)+\lambda_{n-1} B_{n}-B_{n-1} ; \\
& \lambda_{1}=r_{1} \Delta_{1} \mu \cdot\left(\sum_{(i) 1}^{n} r_{i} \Delta_{i} \mu\right)^{-1} ; \quad 1-\lambda_{n-1}=r_{n} \Delta_{n} \mu \cdot\left(\sum_{(i)}{ }_{1}^{n} r_{i} \Delta_{i} \mu\right)^{-1} ; \\
& B_{n}-B_{n-1}=r_{n} \Delta_{n} \mu \cdot \Sigma_{(i) 1}^{n-1} A_{i}{ }^{\prime} ; \\
& \because \frac{\delta T_{i \prime \prime}^{(2)}}{\delta \sigma_{0}}=\frac{\sigma_{n}-\sigma_{0}-B_{n}}{\sum_{(i) 1}^{n_{i}} r_{i} \Delta_{i} \mu} ; \quad \frac{\delta T_{n}^{\prime \prime \prime}{ }_{n}^{(2)}}{\delta \sigma_{n}}=-\frac{\sigma_{n}-\sigma_{0}-B_{n}}{\sum_{(i)}{ }^{n} r_{i} \Delta_{i} \mu}-\Sigma_{(i) 1{ }^{n}{ }^{n-1} A_{i}^{\prime}} \text {; } \\
& \because 2 T^{(2)}=v_{1} \mu_{0}^{-1} \sigma_{0}^{2}-v_{n} \mu_{n}^{-1} \sigma_{n}^{2}-\frac{\left(\sigma_{n}-\sigma_{0}\right)\left(\sigma_{n}-\sigma_{0}-B_{n}\right)}{\sum_{(i) 1}^{n} r_{i} \Delta_{i} \mu}-\sigma_{n} \Sigma_{(i) 1}^{n-1} A_{i}{ }^{\prime} ;
\end{aligned}
$$

now*
and this equation is rigorous, whatever may be the number of the refracting curves, and the magnitudes of the intervals between them. But because

$$
A_{i}^{\prime}=-\mu_{i}^{-1} \sigma_{i} \Delta v_{i}, \quad B_{n}=\Sigma_{(i) 2}^{n} \cdot r_{i} \Delta_{i} \mu \Sigma_{(i) 1}^{i-1} A_{i}^{\prime},
$$

the expression just given for $2 T^{(2)}$ involves, explicitly, the $n-1$ intermediate σ 's, though only as multiplied by the $n-1$ corresponding intervals Δv_{i}. If, however, we neglect these intervals, we find, for any combination of refracting surfaces close together,

$$
2 T^{(2)}=v\left(\mu_{0}^{-1} \sigma_{0}^{2}-\mu_{n}^{-1} \sigma_{n}^{2}\right)-\frac{\left(\sigma_{n}-\sigma_{0}\right)^{2}}{\sum_{(i)} r_{i} r_{i} \Delta_{i} \mu}
$$

so that the approximate equations of initial and final rays are respectively

$$
x_{0}=\alpha_{0}\left(z_{0}-v\right)-\frac{\sigma_{n}-\sigma_{0}}{\sum_{(\hat{2})}^{n} r_{i} \Delta_{i} \mu} ; \quad x_{n+1}=\alpha_{n}\left(z_{n+1}-v\right)-\frac{\sigma_{n}-\sigma_{0}}{\sum_{(i) 1}^{n} n_{i} \Delta_{i} \mu} .
$$

If these two rays pass through the common vertex v, then $\sigma_{n}=\sigma_{0}$; and in fact the law of refraction shows easily that in this case $\sigma=\mu \alpha$ is not changed at all. This last result must hold

* [See [18.].]
good, even when higher powers of the σ 's are taken into account, provided that the intervals between the surfaces still vanish.

For a combination of two refracting surfaces, not necessarily close together, we have $n=2$,
also

$$
\Sigma_{(i) 1}^{n-1} A_{i}^{\prime}=A_{1}^{\prime}=-\mu_{1}^{-1} \sigma_{1} \Delta v_{1} ; \quad B_{n}=r_{2} \Delta_{2} \mu \cdot A_{1}^{\prime}\left(=B_{2}\right)
$$

$$
\sigma_{1}=\sigma_{0}+\lambda_{1}\left(\sigma_{2}-\sigma_{0}-B_{2}\right), \quad \lambda_{1}=\frac{r_{1} \Delta_{1} \mu}{r_{1} \Delta_{1} \mu+r_{2} \Delta_{2} \mu}
$$

$$
\left\{r_{1} \Delta_{1} \mu+r_{2} \Delta_{2} \mu\left(1-\mu_{1}^{-1} \Delta v_{1} \cdot r_{1} \Delta_{1} \mu\right)\right\} \sigma_{1}=\sigma_{2} r_{1} \Delta_{1} \mu+\sigma_{0} r_{2} \Delta_{2} \mu
$$

that is, (compare [18.]),

$$
0=\left(\sigma_{2}-\sigma_{1}\right)\left(r_{2} \Delta_{2} \mu\right)^{-1}-\left(\sigma_{1}-\sigma_{0}\right)\left(r_{1} \Delta_{1} \mu\right)^{-1}+\mu_{1}^{-1} \sigma_{1} \Delta v_{1}
$$

which is in fact (since $0,1,2$ may here be changed to $i-1, i, i+1$, the two surfaces being arbitrary) the old equation in differences between any three successive σ 's, deduced as a particular case from its own general integral. And since

$$
\frac{r_{2} \Delta_{2} \mu \cdot\left(\sigma_{2}-\sigma_{0}\right)}{r_{1} \Delta_{1} \mu+r_{2} \Delta_{2} \mu}-\sigma_{2}=-\frac{\sigma_{2} r_{1} \Delta_{1} \mu+\sigma_{0} r_{2} \Delta_{2} \mu}{r_{1} \Delta_{1} \mu+r_{2} \Delta_{2} \mu}=-\left\{1-\frac{\mu_{1}^{-1} r_{1} r_{2} \Delta v_{1} \Delta_{1} \mu \Delta_{2} \mu}{r_{1} \Delta_{1} \mu+r_{2} \Delta_{2} \mu}\right\} \sigma_{1}
$$

the additional term introduced into $2 T^{(2)}$, by \dot{B}_{2} and $A_{1}{ }^{\prime}$, for a combination of two surfaces, is
that is,

$$
+\mu_{1}^{-1} \Delta v_{1} \cdot\left\{1-\frac{\mu_{1}^{-1} \Delta v_{1} \cdot r_{1} \Delta_{1} \mu \cdot r_{2} \Delta_{2} \mu}{r_{1} \Delta_{1} \mu+r_{2} \Delta_{2} \mu}\right\} \sigma_{1}^{2}
$$

$$
\frac{\mu_{1}^{-1} \Delta v_{1} \cdot\left(\sigma_{2} r_{1} \Delta_{1} \mu+\sigma_{0} r_{2} \Delta_{2} \mu\right)^{2}}{\left(r_{1} \Delta_{1} \mu+r_{2} \Delta_{2} \mu\right)\left\{r_{1} \Delta_{1} \mu+r_{2} \Delta_{2} \mu\left(1-\mu_{1}^{-1} \Delta v_{1}, r_{1} \Delta_{1} \mu\right)\right\}}
$$

But

$$
\left(\rho_{1} \sigma_{2}+\rho_{2} \sigma_{0}\right)^{2}+\rho_{1} \rho_{2}\left(\sigma_{2}-\sigma_{0}\right)^{2}=\left(\rho_{1}+\rho_{2}\right)\left(\rho_{1} \sigma_{2}^{2}+\rho_{2} \sigma_{0}^{2}\right)
$$

therefore, for any combination of two refracting surfaces,

$$
2 T^{(2)}=v_{1} \mu_{0}^{-1} \sigma_{0}^{2}-v_{2} \mu_{2}^{-1} \sigma_{2}^{2}-\frac{\left(\sigma_{2}-\sigma_{0}\right)^{2}-\mu_{1}^{-1} \Delta v_{1} \cdot\left(\sigma_{2}^{2} r_{1} \Delta_{1} \mu+\sigma_{0}^{2} r_{2} \Delta_{2} \mu\right)}{r_{1} \Delta_{1} \mu+r_{2} \Delta_{2} \mu-\mu_{1}^{-1} \Delta v_{1} \cdot r_{1} \Delta_{1} \mu \cdot r_{2} \Delta_{2} \mu}
$$

[22.] By foot of [15.], the form of $T^{(2)}$ is such that, for any combination of two successive refracting surfaces, (considered as 1 st. and 2 nd . in order,)

$$
\begin{aligned}
&-2 T^{(2)}+v_{1} \mu_{0}^{-1} \sigma_{0}^{2}-v_{2} \mu_{2}^{-1} \sigma_{2}^{2}=-\left(v_{2}-v_{1}\right) \mu_{1}^{-1} \sigma_{1}^{2}+r_{1}^{-1}\left(\mu_{1}-\mu_{0}\right)^{-1}\left(\sigma_{1}-\sigma_{0}\right)^{2} \\
&+r_{2}^{-1}\left(\mu_{2}-\mu_{1}\right)^{-1}\left(\sigma_{2}-\sigma_{1}\right)^{2} \\
&=\left\{\left(r_{1} \Delta_{1} \mu\right)^{-1}+\left(r_{2} \Delta_{2} \mu\right)^{-1}-\mu_{1}^{-1} \Delta v_{1}\right\} \sigma_{1}^{2}-2\left\{\sigma_{2}\left(r_{2} \Delta_{2} \mu\right)^{-1}+\sigma_{0}\left(r_{1} \Delta_{1} \mu\right)^{-1}\right\} \sigma_{1} \\
&+\sigma_{0}^{2}\left(r_{1} \Delta_{1} \mu\right)^{-1}+\sigma_{2}^{2}\left(r_{2} \Delta_{2} \mu\right)^{-1}
\end{aligned}
$$

therefore, eliminating σ_{1} by the condition of stationary value, we find

$$
\begin{aligned}
\{- & \left.2 T^{(2)}+v_{1} \mu_{0}^{-1} \sigma_{0}^{2}-v_{2} \mu_{2}^{-1} \sigma_{2}^{2}\right\}\left\{\left(r_{1} \Delta_{1} \mu\right)^{-1}+\left(r_{2} \Delta_{2} \mu\right)^{-1}-\mu_{1}^{-1} \Delta v_{1}\right\} \\
& =\left\{\left(r_{1} \Delta_{1} \mu\right)^{-1}+\left(r_{2} \Delta_{2} \mu\right)^{-1}-\mu_{1}^{-1} \Delta v_{1}\right\}\left\{\left(r_{1} \Delta_{1} \mu\right)^{-1} \sigma_{0}^{2}+\left(r_{2} \Delta_{2} \mu\right)^{-1} \sigma_{2}^{2}\right\}-\left\{\left(r_{1} \Delta_{1} \mu\right)^{-1} \sigma_{0}+\left(r_{2} \Delta_{2} \mu\right)^{-1} \sigma_{2}\right\}^{2} \\
& =\left(r_{1} \Delta_{1} \mu\right)^{-1}\left(r_{2} \Delta_{2} \mu\right)^{-1}\left(\sigma_{2}-\sigma_{0}\right)^{2}-\mu_{1}^{-1} \Delta v_{1}\left\{\left(r_{1} \Delta_{1} \mu\right)^{-1} \sigma_{0}^{2}+\left(r_{2} \Delta_{2} \mu\right)^{-1} \sigma_{2}^{2}\right\}
\end{aligned}
$$

a result which entirely agrees with that obtained at the foot of the preceding section, by a more complicated but more general process, of which the one in the present section may serve as a verification.

Particularising farther, let $\Delta_{2} \mu=-\Delta_{1} \mu$, and therefore $\mu_{2}=\mu_{0}$; we get the case of a single lens in any medium, and have, for it, after multiplying both sides by $r_{1} r_{2} \Delta_{1} \mu$, the equation

$$
\begin{aligned}
& \left\{r_{1}-r_{2}+\mu_{1}^{-1}\left(\mu_{1}-\mu_{0}\right) r_{1} r_{2}\left(v_{2}-v_{1}\right)\right\}\left\{2 T^{(2)}-\mu_{0}^{-1} v_{1} \sigma_{0}^{2}+\mu_{0}^{-1} v_{2} \sigma_{2}^{2}\right\} \\
& \quad=-\left(\mu_{1}-\mu_{0}\right)^{-1}\left(\sigma_{2}-\sigma_{0}\right)^{2}+\mu_{1}^{-1}\left(v_{2}-v_{1}\right)\left(r_{1} \sigma_{2}^{2}-r_{2} \sigma_{0}^{2}\right)
\end{aligned}
$$

agreeing with [16.]. If, in this equation, we change $\mu_{0}, \mu_{1}, \sigma_{0}, \sigma_{2}, v_{2}-v_{1}$, to $1, \mu, \alpha_{0}, \alpha_{2}, t$, we arrive at the same result as if, in the expression at the foot of [4.], we make $\beta_{0}=0, \beta_{2}=0$.

Resuming the general combination of any two refracting surfaces, and making, for abridgment, as in [19.],

$$
A_{1}=\left(r_{1} \Delta_{1} \mu\right)^{-1}, \quad A_{2}=\left(r_{2} \Delta_{2} \mu\right)^{-1}
$$

and
we have the expression*

$$
t=\text { thickness }=\Delta v_{1}=v_{2}-v_{1}
$$

$$
T^{(2)}=\frac{1}{2} v_{1} \mu_{0}^{-1} \sigma_{0}^{2}-\frac{1}{2} v_{2} \mu_{2}^{-1} \sigma_{2}^{2}-\frac{A_{1} A_{2}\left(\sigma_{2}-\sigma_{0}\right)^{2}-\mu_{1}^{-1} t\left(A_{1} \sigma_{0}^{2}+A_{2} \sigma_{2}^{2}\right)}{2\left(A_{1}+A_{2}-\mu_{1}^{-1} t\right)}
$$

which gives, for the initial and final rays, the approximate equations:

$$
\begin{aligned}
& x_{0}=\alpha_{0}\left(z_{0}-v_{1}-\frac{\mu_{0} \mu_{1}^{-1} t A_{1}}{A_{1}+A_{2}-\mu_{1}^{-1} t}\right)-\frac{A_{1} A_{2}\left(\sigma_{2}-\sigma_{0}\right)}{A_{1}+A_{2}-\mu_{1}^{-1} t} \\
& x_{3}=\alpha_{2}\left(z_{3}-v_{2}+\frac{\mu_{2} \mu_{1}^{-1} t A_{2}}{A_{1}+A_{2}-\mu_{1}^{-1} t}\right)-\frac{A_{1} A_{2}\left(\sigma_{2}-\sigma_{0}\right)}{A_{1}+A_{2}-\mu_{1}^{-1} t}
\end{aligned}
$$

Hence if we make for abridgment (compare [6.], [8.])

$$
F^{\prime}=v_{1}+\frac{\mu_{0} \mu_{1}^{-1} t A_{1}}{A_{1}+A_{2}-\mu_{1}^{-1} t} ; \quad F^{\prime \prime}=v_{2}-\frac{\mu_{2} \mu_{1}^{-1} t A_{2}}{A_{1}+A_{2}-\mu_{1}^{-1} t}
$$

the points $F^{\prime}, F^{\prime \prime}$, on the axis, may be called the two focal centres of the combination; in this sense, among others, that if the final direction be the same as would have been produced by a plate, then this incident ray crosses the axis in $F^{\prime \prime}$, and the final in $F^{\prime \prime} . \dagger$

[^5][23.] If we also make, for abridgment,
$$
F=\frac{A_{1} A_{2}}{A_{1}+A_{2}-\mu_{1}^{-1} t}
$$
then parallel initial rays have for their final focus
$$
x_{3}=F \sigma_{0}, \quad z_{3}=F^{\prime \prime}+\mu_{2} F ;
$$
and parallel final rays have for their initial focus
$$
x_{0}=-F \sigma_{2}, \quad z_{0}=F^{\prime}-\mu_{0} F
$$
(Compare [24.].)
Suppose then that an instrument is formed by enclosing the three successive media, on the one hand within a (sufficiently large) cylinder coaxal with the two refracting surfaces of revolution; and on the other hand within two planes, sufficiently distant from those surfaces, and perpendicular to the common axis : and let this instrument be exposed, in vacuo, directly to a planet, so as to form in each of its two reverse positions an image within the third medium, reckoning from the planet. These two images will have equal dimensions; for σ_{0} in the first position will be equal to the angular semi-diameter of the planet, and so will σ_{2} in the second position (neglecting signs); the images will also be both inverted, if F be positive, or both erect, if F be negative; and we may call F the focal length of the instrument, and therefore, in a certain sense, the focal length of the combination also, formed by the three media and the two curved refracting surfaces. Or we may state the theorem thus: an instrument of revolution, in vacuo, bounded by plane surfaces externally, and containing within itself any three successive media, separated from each other by any two curved surfaces, coaxal with the instrument itself, will have its focal length $=F$, in each of its two opposite positions; (because a plane refracting surface does not alter the magnitude of an image parallel to itself;) in such a manner that in each position it will form an image of the planet with a radius $=F \times$ angular semi-diameter of planet; and this image will be inverted or erect, according as F is $>$ or <0.
[24.] This expression* is of the form
$$
2 T^{(2)}=F^{\prime \prime} \mu_{0}^{-1} \sigma_{0}^{2}-F^{\prime \prime} \mu_{2}^{-1} \sigma_{2}^{2}-F^{\prime}\left(\sigma_{2}-\sigma_{0}\right)^{2}
$$
(Combination of any two coaxal refracting surfaces.)
and the equations of the initial and final rays are, approximately,
\[

$$
\begin{aligned}
& x_{0}=\alpha_{0}\left(z_{0}-F^{\prime}\right)-F\left(\sigma_{2}-\sigma_{0}\right) \\
& x_{3}=\alpha_{2}\left(z_{3}-F^{\prime \prime}\right)-F\left(\sigma_{2}-\sigma_{0}\right)
\end{aligned}
$$
\]

These two equations will give only one relation between the initial and final directions, if z_{0}, z_{3} are connected by the equation

$$
\left(z_{0}-F^{\prime}+\mu_{0} F^{\prime}\right)\left(z_{3}-F^{\prime \prime}-\mu_{2} F^{\prime}\right)+\mu_{0} \mu_{2} F^{2}=0
$$

and then they give

$$
\frac{x_{3}}{x_{0}}=\frac{\mu_{0} F^{\prime}}{z_{0}-F^{\prime \prime}+\mu_{0} F}=\frac{F^{\prime \prime}+\mu_{2} F-z_{3}}{\mu_{2} F} ; \quad \because \frac{\mu_{2}}{z_{3}-F^{\prime \prime}}=\frac{\mu_{0}}{z_{0}-F^{\prime}}+\frac{1}{F}
$$

* [This refers to the expression obtained in [22.].]

Under the conditions expressed upon this last line, the point x_{3}, z_{3} is the image of the point x_{0}, z_{0}; that is, rays having the latter for their initial, have the former for their final focus. When the initial focus is an infinitely distant point, then
and the image is

$$
\frac{\mu_{0} x_{0}}{z_{0}-F^{\prime}+\mu_{0} F^{\prime}}=\sigma_{0}
$$

$x_{3}=F \sigma_{0}, \quad z_{3}=F^{\prime \prime}+\mu_{2} F$.
In like manner, when the final focus is infinitely distant,
and the initial focus is

$$
\frac{\mu_{2} x_{3}}{F^{\prime \prime}+\mu_{2} F-z_{3}}=-\sigma_{2}
$$

$$
\begin{equation*}
x_{0}=-F \sigma_{2}, \quad z_{0}=F^{\prime}-\mu_{0} F \tag{23.}
\end{equation*}
$$

The image of x_{0}, F^{\prime} is $x_{0}, F^{\prime \prime}$; hence, or more simply from the equations of the rays, the ordinate (perpendicular to the axis) of the initial ray at the first focal centre F^{\prime}, is the same as the corresponding ordinate of the final ray at the second focal centre $F^{\prime \prime}$;* this common ordinate being equal to $-F\left(\sigma_{2}-\sigma_{0}\right)$. It vanishes when $\sigma_{2}=\sigma_{0}$, that is, when the final direction is the same as it would have been, if the ray with the given initial direction had passed through the same media, but through a plate perpendicular to the axis. (Compare foot of [22.].) This plate must in general be thus perpendicular; because, by [17.], the condition $\Delta_{2} \sigma+\Delta_{1} \sigma=0$, gives, (to the accuracy of the first dimension, \dagger

$$
\nu_{2} \Delta_{2} \mu+\nu_{1} \Delta_{1} \mu=0
$$

therefore unless

$$
\Delta_{2} \mu+\Delta_{1} \mu=\mu_{2}-\mu_{0}=0
$$

that is, unless the 1st. and 3rd. media have the same index, we cannot have $\nu_{2}=\nu_{1}$, except when each $=0$. On the contrary,

$$
\frac{\nu_{2}}{\nu_{1}}=\frac{\mu_{1}-\mu_{0}}{\mu_{1}-\mu_{2}}
$$

an equation which determines a certain set of prisms, such that if any one of them enclosed the second medium, we should have $\sigma_{2}=\sigma_{0}$. Reciprocally, if the initial ray be directed to the first focal centre, $\sigma_{2}=\sigma_{0}$, and the recent ratio between ν_{2} and ν_{1} must hold good. As a verification, since (by beginning of [18.])

$$
x_{1}=-r_{1}^{-1} \nu_{1}, \quad x_{2}=-r_{2}^{-1} \nu_{2}
$$

we ought, by the present section, to find (when $\sigma_{2}=\sigma_{0}$),

$$
\left(\frac{x_{2}}{x_{1}}=\right) \frac{r_{1}\left(\mu_{1}-\mu_{0}\right)}{r_{2}\left(\mu_{1}-\mu_{2}\right)}=\left(-\frac{A_{2}}{A_{1}}=\right) \frac{\mu_{0}}{\mu_{2}} \cdot \frac{v_{2}-F^{\prime \prime}}{v_{1}-F^{\prime \prime}}
$$

[^6]which accordingly is true (compare foot of [22.]); for by foot of [21.], and top of present section,
\[

$$
\begin{gathered}
\mu_{0}^{-1}\left(v_{1}-F^{\prime}\right)=\frac{F t}{\mu_{1}} r_{2}\left(\mu_{1}-\mu_{2}\right) ; \quad \mu_{2}^{-1}\left(v_{2}-F^{\prime \prime}\right)=\frac{F t}{\mu_{1}} r_{1}\left(\mu_{1}-\mu_{0}\right) \\
F^{-1}=r_{1} \Delta_{1} \mu+r_{2} \Delta_{2} \mu-\frac{t}{\mu_{1}} r_{1} \Delta_{1} \mu \cdot r_{2} \Delta_{2} \mu
\end{gathered}
$$
\]

When initial ray passes through first focal centre (and consequently final ray through second), we have

$$
\frac{x_{2}}{-x_{1}}=\frac{r_{1} \Delta_{1} \mu}{r_{2} \Delta_{2} \mu}
$$

therefore the ordinate of intersection of intermediate ray with axis, is

$$
v_{2}-\frac{r_{1} \Delta_{1} \mu \cdot\left(v_{2}-v_{1}\right)}{r_{1} \Delta_{1} \mu+r_{2} \Delta_{2} \mu}=\frac{v_{1} r_{1} \Delta_{1} \mu+v_{2} r_{2} \Delta_{2} \mu}{r_{1} \Delta_{1} \mu+r_{2} \Delta_{2} \mu}
$$

Hence, when $\sigma_{2}=\sigma_{0}$, we must have

$$
\frac{t \mu_{1}^{-1} \sigma_{1} r_{1} \Delta_{1} \mu}{r_{1} \Delta_{1} \mu+r_{2} \Delta_{2} \mu}=x_{2}=\mu_{2}^{-1} \sigma_{2}\left(v_{2}-F^{\prime \prime}\right)
$$

therefore

$$
\frac{\sigma_{1}}{\sigma_{2}}=\frac{\sigma_{1}}{\sigma_{0}}=F\left(r_{1} \Delta_{1} \mu+r_{2} \Delta_{2} \mu\right)
$$

which accordingly agrees with the general linear relation, in [21.], between $\sigma_{0}, \sigma_{1}, \sigma_{2}$, since that relation may be thus written:

$$
\sigma_{1}=F\left(\sigma_{2} r_{1} \Delta_{1} \mu+\sigma_{0} r_{2} \Delta_{2} \mu\right)
$$

And this last may be considered as a form for the general equation in differences, or linear equation, between any three successive σ 's.
[25.] In general, by [21.], if we suppose all the intervals Δv_{i} to vanish except one, namely Δv_{j}, we shall have $A_{i}^{\prime}=0$, unless $i=j$; therefore

$$
\begin{gathered}
\Sigma_{(i) 1}^{n-1} A_{i}^{\prime}=A_{j}^{\prime}=-\mu_{j}^{-1} \sigma_{j} \Delta v_{j} \\
B_{n}=A_{j}^{\prime} \Sigma_{(i) j+1}^{n} r_{i} \Delta_{i} \mu=A_{j}^{\prime}\left(1-\lambda_{j}\right) \Sigma_{(i) 1}^{n} r_{i} \Delta_{i} \mu
\end{gathered}
$$

therefore the part introduced by Δv_{j}, in $2 T^{(2)}$, is rigorously

$$
\begin{aligned}
& =\mu_{j}^{-1} \sigma_{j} \Delta v_{j}\left\{\sigma_{n}-\left(1-\lambda_{j}\right)\left(\sigma_{n}-\sigma_{0}\right)\right\} \\
& =\mu_{j}^{-1} \sigma_{j} \Delta v_{j}\left\{\sigma_{0}+\lambda_{j}\left(\sigma_{n}-\sigma_{0}\right)\right\}
\end{aligned}
$$

if, then, we neglect the square of Δv_{j}, this part becomes*

$$
\mu_{j}^{-1} \sigma_{j}^{2} \Delta v_{j}=\mu_{j}^{-1} \sigma_{j}^{2}\left(v_{j+1}-v_{j}\right)
$$

Adding the $n-1$ such terms (for $j=1,2, . . n-1$) to $\mu_{0}^{-1} \sigma_{0}^{2} v_{1}-\mu_{n}^{-1} \sigma_{n}^{2} v_{n}$, we get

$$
v_{1}\left(\mu_{0}^{-1} \sigma_{0}^{2}-\mu_{1}^{-1} \sigma_{1}^{2}\right)+v_{2}\left(\mu_{1}^{-1} \sigma_{1}^{2}-\mu_{2}^{-1} \sigma_{2}^{2}\right)+. .+v_{n}\left(\mu_{n-1}^{-1} \sigma_{n-1}^{2}-\mu_{n}^{-1} \sigma_{n}^{2}\right)
$$

* [Since, by [19.] or [20.], $\lambda_{j}\left(\sigma_{n}-\sigma_{0}\right)$ is approximately equal to $\sigma_{j}-\sigma_{0}$.]
that is,

$$
-\Sigma_{(i)}{ }_{1}^{n} v_{i} \Delta_{i}\left(\frac{\sigma^{2}}{\mu}\right)
$$

neglecting therefore only the squares and products of the intervals between the surfaces, we have, generally,

$$
T^{(2)}=-\frac{1}{2} \sum_{(i)}{ }_{1}^{n} v_{i} \Delta_{i} \frac{\sigma^{2}}{\mu}-\frac{\left(\sigma_{n}-\sigma_{0}\right)^{2}}{2 \sum_{(i)}^{n}{ }_{1}^{n} r_{i} \Delta_{i} \mu}
$$

(See next section.)
in which we are to make, for the present order of approximation,

$$
\sigma_{i} \Sigma_{(i) 1}^{n} r_{i} \Delta_{i} \mu=\sigma_{0} \Sigma_{(i) i+1}^{n} r_{i} \Delta_{i} \mu+\sigma_{n} \Sigma_{(i) 1}{ }_{1}^{i} r_{i} \Delta_{i} \mu \text {. (See foot of [18.].) }
$$

Hence parallel direct incident rays are brought to a final focus z_{n+1}, such that (in the present order of approximation) (last medium being a vacuum)

$$
\left(z_{n+1}-v_{n}\right)^{-1}=\Sigma_{(i) 1}^{n} r_{i} \Delta_{i} \mu+\Sigma_{(i)}{ }_{1}^{n-1} \mu_{i}^{-1} \Delta v_{i}\left(\Sigma_{(i) 1}^{i} r_{i} \Delta_{i} \mu\right)^{2} .
$$

For example, if there be two infinitely thin lenses, near each other, in vacuo; then

$$
\left(z_{5}-v_{4}\right)^{-1}=p_{1}+p_{2}+p_{1}^{2} \Delta v_{2}
$$

Δv_{2} being the interval between the two lenses, and p_{1}, p_{2} their powers;

$$
p_{1}=\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right), \quad p_{2}=\left(\mu_{3}-1\right)\left(r_{3}-r_{4}\right)
$$

In fact, here, the convergence after emerging from the first lens is p_{1}; therefore immediately before entering the second lens, it is $\left(p_{1}^{-1}-\Delta v_{2}\right)^{-1}=p_{1}+p_{1}^{2} \Delta v_{2}$; to which the second lens adds the convergence p_{2}. In like manner, if there be l lenses, and an interval $=\lambda$ after the k th; this interval adds $\lambda\left(p_{1}+. .+p_{k}\right)^{2}$ to the final convergence by my formula, because

$$
\Sigma_{(i) 1}^{2 k} r_{i} \Delta_{i} \mu=p_{1}+. .+p_{k} ;
$$

and accordingly the interval λ adds $\lambda\left(p_{1}+. .+p_{k}\right)^{2}$ after emerging from the k th lens. If we call $\Sigma_{(i) 1}^{i} r_{i} \Delta_{i} \mu$ the power of the system of the i first refractors, and denote it by F_{i}^{-1}, then

$$
\left(z_{n+1}-v_{n}\right)^{-1}=F_{n}+\Sigma_{(i) 1}^{n-1} \mu_{i}^{-1} F_{i}^{-2} \Delta v_{i}
$$

a formula which increases the propriety of regarding F_{i} as the focal length of the system of i surfaces. (See [23.].)
[26.] (Feb. 17th, 1844.) The method, in the preceding section, of deducing the expression

$$
T^{(2)}=-\frac{1}{2} \Sigma_{(i) 1}^{n} v_{i} \Delta_{i} \frac{\sigma^{2}}{\mu}-\frac{1}{2}\left(\Sigma_{(i) 1}^{n} r_{i} \Delta_{i} \mu\right)^{-1}\left(\sigma_{n}-\sigma_{0}\right)^{2}
$$

in which only the squares and products of the intervals Δv_{i} are neglected, from that given in [21.], namely

$$
T^{(2)}=\frac{1}{2} v_{1} \frac{\sigma_{0}^{2}}{\mu_{0}}-\frac{1}{2} v_{n} \frac{\sigma_{n}^{2}}{\mu_{n}}-\frac{1}{2}\left(\sum_{(i) 1}^{n} r_{i} \Delta_{i} \mu\right)^{-1}\left(\sigma_{n}-\sigma_{0}\right)\left(\sigma_{n}-\sigma_{0}-B_{n}\right)-\frac{1}{2} \sigma_{n} \Sigma_{(i) 1}^{n-1} A_{i}^{\prime} ;
$$

which latter holds good, whatever may be the magnitudes of those intervals between the successive surfaces, and in which we had put for abridgment
while

$$
A_{i}^{\prime}=-\mu_{i}^{-1} \sigma_{i} \Delta v_{i}, \quad B_{i}=\Sigma_{(i) 1} \cdot r_{i} \Delta_{i} \mu \Sigma_{(i) 1}^{i-1} A_{i}^{\prime},
$$

$$
\begin{aligned}
& \sigma_{i}=\sigma_{0}+B_{i}+\lambda_{i}\left(\sigma_{n}-\sigma_{0}-B_{n}\right) \\
& \lambda_{i}=\left(\Sigma_{(i) 1}^{n} r_{i} \Delta_{i} \mu\right)^{-1} \Sigma_{(i) 1}^{i} r_{i} \Delta_{i} \mu
\end{aligned}
$$

is perhaps not inelegant in itself, and satisfactory as a rather simple result of a long and somewhat subtle analysis. But, having thus found the expression at the top of the present section, I now see that it might have been obtained in a more elementary way, as follows. By [18.],

$$
T^{(2)}=\Sigma_{(i) 1}^{n} T_{i}^{(2)} ; \quad T_{i}^{(2)}=T_{i}^{\prime}(2)+T_{i}^{\prime \prime}(2) ; \quad T_{i}^{\prime}(2)=-\frac{1}{2} v_{i} \Delta_{i} \frac{\sigma^{2}}{\mu} ; \quad T_{i}^{\prime \prime}(2)=-\frac{1}{2}\left(r_{i} \Delta_{i} \mu\right)^{-1}\left(\Delta_{i} \sigma\right)^{2}
$$

and $\sigma_{1}, \ldots \sigma_{n-1}$ are to be eliminated by the $n-1$ conditions of stationary value, which are of the forms

$$
0=\frac{\delta}{\delta \sigma_{i}} \Sigma_{(i) 1}^{n}\left(T_{i}^{\prime(2)}+T_{i}^{\prime \prime}(2)\right)
$$

But, because

$$
\Sigma_{(i) 1}^{n} T_{i}^{\prime(2)}=\frac{1}{2} v_{1} \frac{\sigma_{0}^{2}}{\mu_{0}}-\frac{1}{2} v_{n} \frac{\sigma_{n}^{2}}{\mu_{n}}+\frac{1}{2} \Sigma_{(i) 1}^{n-1} \frac{\sigma_{i}^{2}}{\mu_{i}} \Delta v_{i}
$$

therefore

$$
\frac{\delta}{\delta \sigma_{i}} \Sigma_{(i) 1}^{n} T_{i}^{\prime(2)}=\frac{\sigma_{i}}{\mu_{i}} \Delta v_{i}
$$

while

$$
\frac{\delta}{\delta \sigma_{i}} \Sigma_{(i) 1}^{n} T_{i}^{\prime \prime}(2)=\Delta \cdot\left(r_{i} \Delta_{i} \mu\right)^{-1} \Delta_{i} \sigma
$$

and thus arose the equation in differences relative to σ, already employed, in [19.], \&c., namely

$$
0=\Delta \cdot\left(r_{i} \Delta_{i} \mu\right)^{-1} \Delta_{i} \sigma+\mu_{i}^{-1} \sigma_{i} \Delta v_{i}
$$

all, so far, being rigorous, that is, such that no powers of the intervals are neglected. If, however, we now neglect the squares and products of those intervals, it is evident that, in calculating $\Sigma T_{i}^{\prime(2)}$, we may employ, for $\sigma_{1}, \ldots \sigma_{n-1}$, the approximate values furnished by altogether neglecting those intervals ; because each of these intermediate σ 's enters only as multiplied by one or other of these intervals. And although the intervals Δv_{i} do not enter explicitly into $T^{\prime \prime \prime}(2)$, yet, because the first approximate values of the intermediate σ 's are precisely those which render this sum a stationary value, it follows that the employment of more correct expressions for the σ 's would only add terms involving the squares and products of the Δv 's. We may, therefore, not only make

$$
T^{(2)}=T^{\prime(2)}+T^{\prime \prime(2)} ; \quad T^{\prime(2)}=\Sigma_{(i) 1}^{n} T_{i}^{\prime(2)} ; \quad T^{\prime \prime}(2)=\Sigma_{(i) 1}^{n} T_{i}^{\prime \prime}(2) ;
$$

but may calculate each of these two latter sums, in the present order of approximation, by employing for the intermediate σ 's the values furnished by the equation

$$
0=\Delta \cdot\left(r_{i} \Delta_{i} \mu\right)^{-1} \Delta_{i} \sigma
$$

which gives

$$
\sigma_{i}-\sigma_{0}=\lambda_{i}\left(\sigma_{n}-\sigma_{0}\right)
$$

therefore

$$
\Delta_{i} \sigma=\frac{r_{i} \Delta_{i} \mu \cdot\left(\sigma_{n}-\sigma_{0}\right)}{\sum_{(i) 1}^{n} r_{i} \Delta_{i} \mu} ; \quad T_{i}^{\prime \prime,(2)}=-\frac{1}{2} r_{i} \Delta_{i} \mu \cdot\left(\sum_{(i) 1}^{n} r_{i} \Delta_{i} \mu\right)^{-2}\left(\sigma_{n}-\sigma_{0}\right)^{2}
$$

therefore

$$
T^{\prime \prime}(2)=\Sigma_{(i) 1}^{n} T_{i}^{\prime \prime}(2)=-\frac{1}{2}\left(\Sigma_{(i) 1}^{n} r_{i} \Delta_{i} \mu\right)^{-1}\left(\sigma_{n}-\sigma_{0}\right)^{2} ;
$$

and therefore, finally, $T^{(2)}$ has the form quoted at the top of the present section.
[27.] (Feb. 17, 1844.) By [18.],

$$
T^{(4)}=T^{\prime(4)}+T^{\prime \prime(4)}+T^{\prime \prime \prime}(4)
$$

in which

$$
\begin{gathered}
T^{\prime(4)}=\Sigma_{(i) 1} T_{i}^{\prime(4)} ; \quad T^{\prime \prime(4)}=\Sigma_{(i) 1}^{n} T_{i}^{\prime \prime(4)} ; \quad T^{\prime \prime \prime}(4)=\Sigma_{(i) 1}^{n} T_{i}^{\prime \prime \prime}(4) \\
T_{i}^{\prime(4)}=-\frac{1}{8} v_{i} \Delta_{i} \frac{\sigma^{4}}{\mu^{3}} ; \quad T_{i}^{\prime \prime(4)}=-\frac{1}{4} r_{i}^{-1}\left(\frac{\Delta_{i} \sigma}{\Delta_{i} \mu}\right)^{2} \Delta_{i} \frac{\sigma^{2}}{\mu} ; \quad T^{\prime \prime \prime}(4)=\frac{1}{8} r_{i}^{-1} \frac{\left(\Delta_{i} \sigma\right)^{4}}{\left(\Delta_{i} \mu\right)^{3}} ;
\end{gathered}
$$

this last equation being relative to spheric surfaces. If the refracting surfaces be of revolution (round the axis of z), but not necessarily spheric, then we may write, (see end of [17.],)

$$
\begin{gathered}
z_{i}=v_{i}+\frac{1}{2} r_{i} x_{i}^{2}+\frac{1}{4} s_{i} x_{i}^{4}, \quad \text { neglecting } x_{i}^{6} ; \\
\tan \nu_{i}=-\frac{d z_{i}}{d x_{i}}=-r_{i} x_{i}-s_{i} x_{i}^{3}, \quad z_{i}+x_{i} \tan \nu_{i}=v_{i}-\frac{1}{2} r_{i} x_{i}^{2}-\frac{3}{4} s_{i} x_{i}^{4}=f_{i}\left(\tan \nu_{i}\right), \\
\frac{1}{2} r_{i}^{-1} \tan \nu_{i}^{2}=\frac{1}{2} r_{i} x_{i}^{2}+s_{i} x_{i}^{4}, \quad f_{i}=v_{i}-\frac{1}{2} r_{i}^{-1} \tan \nu_{i}^{2}+\frac{1}{4} s_{i} r_{i}^{-4} \tan \nu_{i}^{4} \\
T_{i}=\Delta_{i} v \cdot f_{i}\left(\frac{\Delta_{i} \sigma}{\Delta_{i} v}\right)=v_{i} \Delta_{i} v-\frac{1}{2} r_{i}^{-1}\left(\Delta_{i} v\right)^{-1}\left(\Delta_{i} \sigma\right)^{2}+\frac{1}{4} s_{i} r_{i}^{-4}\left(\Delta_{i} v\right)^{-3}\left(\Delta_{i} \sigma\right)^{4} ;
\end{gathered}
$$

and finally, by the same kind of analysis as that in [18.],

$$
T_{i}^{\prime \prime \prime(4)}=\frac{1}{4} s_{i} r_{i}^{-4}\left(\Delta_{i} \mu\right)^{-3}\left(\Delta_{i} \sigma\right)^{4} . \quad \text { For a sphere, } s_{i}=\frac{1}{2} r_{i}^{3}
$$

The expression for $T_{i}^{\prime(4)}$ gives

$$
T^{\prime(4)}=\frac{1}{8} v_{1} \mu_{0}^{-3} \sigma_{0}^{4}-\frac{1}{8} v_{n} \mu_{n}^{-3} \sigma_{n}^{4}+\frac{1}{8} \Sigma_{(i) 1}^{n-1} \mu_{i}^{-3} \sigma_{i}^{4} \Delta v_{i}
$$

if then we neglect the squares and products of the intervals Δv_{i}, we may calculate $T^{\prime(4)}$ by employing for $\sigma_{1}, \ldots \sigma_{n-1}$ the approximate expression

This expression gives

$$
\sigma_{i}=\sigma_{0}+\lambda_{i}\left(\sigma_{n}-\sigma_{0}\right)
$$

therefore, if we neglect Δv_{i},

$$
T_{i}^{\prime \prime \prime}(4)=\frac{1}{4} s_{i} \Delta_{i} \mu \cdot\left(\sum_{(i) 1}^{n} r_{i} \Delta_{i} \mu\right)^{-4}\left(\sigma_{n}-\sigma_{0}\right)^{4} ;
$$

and, denoting by F or F_{n} the focal length of the combination, (see foot of [25.],) so that

$$
F=F_{n}=\left(\Sigma_{(i) 1} r_{i}^{n} \Delta_{i} \mu\right)^{-1}
$$

we find

$$
T^{\prime \prime \prime}(4)=\frac{1}{4} F^{4}\left(\sum_{(i) 1}^{n} s_{i} \Delta_{i} \mu\right)\left(\sigma_{n}-\sigma_{0}\right)^{4}
$$

Supposing still the intervals to vanish, we have in like manner,

$$
T_{i}^{\prime \prime(4)}=-\frac{1}{4} r_{i}\left(\sigma_{n}-\sigma_{0}\right)^{2} F^{2} \Delta_{i} \frac{\sigma^{2}}{\mu}
$$

and therefore

$$
T^{\prime \prime(4)}=\frac{1}{4} F^{2}\left(\sigma_{n}-\sigma_{0}\right)^{2}\left\{\Sigma_{(i) 1}^{n-1} \frac{\sigma_{i}^{2}}{\mu_{i}} \Delta r_{i}+\frac{\sigma_{0}^{2}}{\mu_{0}} r_{1}-\frac{\sigma_{n}^{2}}{\mu_{n}} r_{n}\right\}
$$

Also, $\sigma_{i}=\sigma_{0}+F F_{i}^{-1}\left(\sigma_{n}-\sigma_{0}\right)$; for $\lambda_{i}=F F_{i}^{-1}$, if we write $F_{i}=\left(\sum_{(i) 1}{ }_{1} r_{i} \Delta_{i} \mu\right)^{-1}$, according to the notation proposed at the foot of [25.]. Finally, if we still neglect the intervals between the surfaces, we have

$$
T^{\prime(4)}=\frac{1}{8} v_{1} \frac{\sigma_{0}^{4}}{\mu_{0}^{3}}-\frac{1}{8} v_{n} \frac{\sigma_{n}^{4}}{\mu_{n}^{3}} ;
$$

and thus we have all the elements for calculating the aberrations of the instrument, so far as they depend on $T^{(4)}$, (in the diametral plane of $x z$,) by means of the following equations of the initial and final rays :

$$
\begin{aligned}
& x_{0}=\alpha_{0}\left(1+\frac{\alpha_{0}^{2}}{2}\right)\left(z_{0}-v_{1}\right)-\frac{\delta}{\delta \sigma_{0}}\left(T^{\prime \prime(2)}+T^{\prime \prime \prime}(4)+T^{\prime \prime \prime}(4)\right) ; \\
& x_{n+1}=\alpha_{n}\left(1+\frac{\alpha_{n}^{2}}{2}\right)\left(z_{n+1}-v_{n}\right)+\frac{\delta}{\delta \sigma_{n}}\left(T^{\prime \prime}(2)+T^{\prime \prime(4)}+T^{\prime \prime \prime}(4)\right) ;
\end{aligned}
$$

in which (to recapitulate here all that is necessary for the present purpose), FOR ANY COMBINATION of refracting surfaces placed close together,

$$
\begin{gathered}
T^{\prime \prime(2)}+T^{\prime \prime \prime(4)}+T^{\prime \prime \prime}(4)=-\frac{1}{2} F_{n}\left(\sigma_{n}-\sigma_{0}\right)^{2}-\frac{1}{4} F_{n}^{2}\left(\sigma_{n}-\sigma_{0}\right)^{2} \sum_{(i) 1}^{n} r_{i} \Delta_{i} \frac{\sigma^{2}}{\mu}+\frac{1}{4} F_{n}^{4}\left(\sigma_{n}-\sigma_{0}\right)^{4} \sum_{(i) 1}^{n} s_{i} \Delta_{i} \mu \\
\sigma_{i}=\sigma_{0}+F_{n} F_{i}^{-1}\left(\sigma_{n}-\sigma_{0}\right) ; \quad F_{i}^{-1}=\Sigma_{(i) 1}^{i} r_{i} \Delta_{i} \mu ; \text { and for spheres, } s_{i}=\frac{1}{2} r_{i}^{3}
\end{gathered}
$$

[28.] As one of the most important applications of the formulæ at the foot of the preceding section, let us consider the case of direct parallel incident rays, and determine the longitudinal aberrations of the final rays corresponding. In this case,

$$
\begin{gathered}
\sigma_{0}=0 ; \quad \sigma_{i}=F_{n} F_{i}^{-1} \sigma_{n} ; \quad T^{\prime \prime}(2)=-\frac{1}{2} F_{n} \sigma_{n}^{2} \\
\frac{\delta}{\delta \sigma_{n}} T^{\prime \prime(2)}=-F_{n} \sigma_{n}=-\mu_{n} F_{n} \alpha_{n} ; \quad \frac{1}{2} \mu_{n} F_{n} \alpha_{n}^{3}=\frac{1}{2} \mu_{n}^{-2} F_{n} \sigma_{n}^{3}=\frac{\delta}{\delta \sigma_{n}} \cdot \frac{1}{8} \mu_{n}^{-2} F_{n} \sigma_{n}^{4}
\end{gathered}
$$

and the equation of the final ray may be put under the form

$$
x_{n+1}-\alpha_{n}\left(1+\frac{1}{2} \alpha_{n}^{2}\right)\left(z_{n+1}-v_{n}-\mu_{n} F_{n}\right)=\frac{\delta}{\delta \sigma_{n}}\left(\frac{1}{8} \mu_{n}^{-2} F_{n} \sigma_{n}^{4}+T^{\prime \prime(4)}+T^{\prime \prime \prime}(4)\right)
$$

in which,

$$
\begin{aligned}
& T^{\prime \prime(4)}=-\frac{1}{4} F_{n}^{2} \sigma_{n}^{2} \Sigma_{(i)}{ }_{1}^{n} r_{i} \Delta_{i} \frac{\sigma^{2}}{\mu}=\frac{1}{4} F_{n}^{4} \sigma_{n}^{4}\left\{\Sigma_{(i)}{ }_{1}^{n-1} \mu_{i}^{-1} F_{i}^{-2} \Delta r_{i}-\mu_{n}^{-1} F_{n}^{-2} r_{n}\right\} \\
& T^{\prime \prime \prime}(4)=\frac{1}{4} F_{n}^{4} \sigma_{n}^{4} \Sigma_{(i) 1}^{n} s_{i} \Delta_{i} \mu
\end{aligned}
$$

also

$$
\frac{\delta}{\delta \sigma_{n}} \cdot \frac{1}{4} \sigma_{n}^{4}=\sigma_{n}^{3}=\mu_{n}^{3} \alpha_{n}^{3}
$$

the equation of the final ray will therefore be

$$
x_{n+1}=\alpha_{n} \gamma_{n}^{-1}\left(z_{n+1}-v_{n}-\mu_{n} F_{n}-L_{n} \alpha_{n}^{2}\right)
$$

if we make for abridgment

$$
L_{n}=-\mu_{n}^{3} F_{n}^{4}\left\{\frac{1}{2} \mu_{n}^{-2} F_{n}^{-3}-\mu_{n}^{-1} F_{n}^{-2} r_{n}+\Sigma_{(i)}{ }_{1}^{n-1} \mu_{i}^{-1} F_{i}^{-2} \Delta r_{i}+\Sigma_{(i)}{ }_{1}^{n} s_{i} \Delta_{i} \mu\right\} ;
$$

this last is therefore a general expression for the coefficient of Longitudinal aberration for any combination of refracting surfaces of revolution close together (but not necessarily in vacuo), and for direct parallel incident rays.

Thus, for two surfaces, close together,
in which

$$
\begin{aligned}
L_{2}= & -\mu_{2}^{3} F_{2}^{4}\left\{\frac{1}{2} \mu_{2}^{-2}\left(r_{1} \Delta_{1} \mu+r_{2} \Delta_{2} \mu\right)^{3}-\mu_{2}^{-1} r_{2}\left(r_{1} \Delta_{1} \mu+r_{2} \Delta_{2} \mu\right)^{2}\right. \\
& \left.+\mu_{1}^{-1}\left(r_{1} \Delta_{1} \mu\right)^{2}\left(r_{2}-r_{1}\right)+s_{1} \Delta_{1} \mu+s_{2} \Delta_{2} \mu\right\}
\end{aligned}
$$

$$
\Delta_{1} \mu=\mu_{1}-\mu_{0}, \quad \Delta_{2} \mu=\mu_{2}-\mu_{1}, \quad F_{2}^{-1}=r_{1} \Delta_{1} \mu+r_{2} \Delta_{2} \mu
$$

For a single infinitely thin lens, in any medium, $\mu_{2}=\mu_{0}, \Delta_{2} \mu=-\Delta_{1} \mu$,

$$
\begin{aligned}
L_{2}=-\mu_{0}^{3}\left(\mu_{1}-\mu_{0}\right)^{-3}\left(r_{1}-r_{2}\right)^{-3} & \left\{\frac{1}{2} \mu_{0}^{-2}\left(\mu_{1}-\mu_{0}\right)^{2}\left(r_{1}-r_{2}\right)^{2}-\mu_{0}^{-1}\left(\mu_{1}-\mu_{0}\right) r_{2}\left(r_{1}-r_{2}\right)\right. \\
& \left.-\mu_{1}^{-1}\left(\mu_{1}-\mu_{0}\right) r_{1}^{2}+\frac{s_{1}-s_{2}}{r_{1}-r_{2}}\right\}
\end{aligned}
$$

If the lens be spheric, and if we make $\mu=\mu_{0}^{-1} \mu_{1}=$ relative index of lens, then [putting $\mu_{0}=1$,]

$$
L_{2}=-\frac{1}{2} F_{2}^{3}\left\{(\mu-1)^{2}\left(r_{1}-r_{2}\right)^{2}-2(\mu-1) r_{2}\left(r_{1}-r_{2}\right)-2\left(1-\mu^{-1}\right) r_{1}^{2}+r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right\}
$$

If the power be given, and the aberration a minimum, then $d L_{2}=0, d r_{1}=d r_{2}$, therefore

$$
0=-2(\mu-1)\left(r_{1}-r_{2}\right)-4\left(1-\mu^{-1}\right) r_{1}+3\left(r_{1}+r_{2}\right)=(2 \mu+1) r_{2}+\left(1-2 \mu+4 \mu^{-1}\right) r_{1}
$$

therefore

$$
\frac{r_{1}}{r_{2}}=\frac{2 \mu+1}{2 \mu-1-4 \mu^{-1}}
$$

If $\mu=\frac{3}{2}$, then $2 \mu+1=4,2 \mu-1-4 \mu^{-1}=2-\frac{8}{3}=-\frac{2}{3}, r_{1}=-6 r_{2}$; thus for a glass lens of best form (index $\frac{3}{2}$), both surfaces must be convex or both concave, outwards; and the second radius $=6$ times the first. The best form would be convexoplane, or concavoplane, that is, $r_{2}=0$, if

$$
2 \mu^{2}-\mu=4, \quad \mu=\frac{1+\sqrt{33}}{4}=1,686 \ldots
$$

All these results respecting a single lens are well known, and have often been otherwise deduced.
For a combination of two thin lenses close to gether in vacuo,

$$
\begin{aligned}
& F_{4}^{-1}=\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right)+\left(\mu_{3}-1\right)\left(r_{3}-r_{4}\right) ; \\
&-F_{4}^{-4} L_{4}=\frac{1}{2} F_{4}^{-3}-F_{4}^{-2} r_{4}+F_{3}^{-2} \mu_{3}^{-1}\left(r_{4}-r_{3}\right)+F_{2}^{-2}\left(r_{3}-r_{2}\right)+F_{1}^{-2} \mu_{1}^{-1}\left(r_{2}-r_{1}\right) \\
& \quad+\left(\mu_{1}-1\right)\left(s_{1}-s_{2}\right)+\left(\mu_{3}-1\right)\left(s_{3}-s_{2}\right) ;
\end{aligned} \quad \begin{aligned}
& F_{1}^{-1}=\left(\mu_{1}-1\right) r_{1} ; \quad F_{2}^{-1}=\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right) ; \quad F_{3}^{-1}=\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right)+\left(\mu_{3}-1\right) r_{3} .
\end{aligned}
$$

Accordingly, if, in the expression near foot of [12.] for the coefficient of $\epsilon^{\prime \prime}$ in

$$
\frac{4 F^{-4} T^{(4)}}{\epsilon^{\prime \prime}-2 \epsilon_{1}^{\prime}+\epsilon^{\prime}}
$$

we change μ_{2} to μ_{3}, and then add $\frac{1}{2} F_{4}^{-3}\left(=\frac{1}{2} F^{-3}\right.$,) we get the expression just now given, for

$$
-F^{-4} L_{4}=F^{-4}\left(4 Q+\frac{1}{2} F^{\prime}\right)
$$

We may therefore proceed to transform $-4 F^{-4} L_{4}$, as is done in equation (A), in [13.].
[29.] For any combination of refracting surfaces of revolution, round the common axis (of z), and close together, we have, by [27.],

$$
\begin{aligned}
& 4 F^{F^{-4}}\left(\sigma_{n}-\sigma_{0}\right)^{-2} T^{\prime \prime(4)}+F^{-2}\left\{\frac{\sigma_{n}^{2}}{\mu_{n}} r_{n}-\frac{\sigma_{0}^{2}}{\mu_{0}} r_{1}\right\}=\Sigma_{(i) 1}^{n-1} \cdot \mu_{i}^{-1}\left\{F^{-1} \sigma_{0}+F_{i}^{-1}\left(\sigma_{n}-\sigma_{0}\right)\right\}^{2} \Delta r_{i} \\
& \quad=\left(\sigma_{n}-\sigma_{0}\right)^{2} \Sigma_{(i) 1}^{n-1} \mu_{i}^{-1} F_{i}^{-2} \Delta r_{i}+2 \sigma_{0}\left(\sigma_{n}-\sigma_{0}\right) F^{-1} \Sigma_{(i) 1}^{n-1} \mu_{i}^{-1} F_{i}^{-1} \Delta r_{i}+\sigma_{0}^{2} F^{-2} \Sigma_{(i) 1}^{n-1} \cdot \mu_{i}^{-1} \Delta r_{i}
\end{aligned}
$$

(if then we denote this expression by $A \sigma_{n}^{2}+2 B \sigma_{0} \sigma_{n}+C \sigma_{0}^{2}$, we have

$$
\left.A+B=F^{-1} \Sigma_{(i) 1}^{n-1} \mu_{i}^{-1} F_{i}^{-1} \Delta r_{i} ;\right)
$$

and if we neglect σ_{0}^{2}, we shall have

$$
\begin{aligned}
& 4 F^{-4} T^{\prime \prime}(4)=-F^{-2} \mu_{n}^{-1} r_{n}\left(\sigma_{n}^{4}-2 \sigma_{n}^{3} \sigma_{0}\right)+A\left(\sigma_{n}^{4}-4 \sigma_{n}^{3} \sigma_{0}\right)+2(A+B) \sigma_{n}^{3} \sigma_{0} \\
& \quad=\left(\sum_{(i) 1}^{n-1} \mu_{i}^{-1} F_{i}^{-2} \Delta r_{i}-\mu_{n}^{-1} F^{-2} r_{n}\right)\left(\sigma_{n}^{4}-4 \sigma_{n}^{3} \sigma_{0}\right)+2 F^{-1}\left(\sum_{(i) 1}^{n-1} \mu_{i}^{-1} F_{i}^{-1} \Delta r_{i}-\mu_{n}^{-1} F^{-1} r_{n}\right) \sigma_{n}^{3} \sigma_{0}
\end{aligned}
$$

Therefore, making for simplicity $v_{n}=0$, or placing the origin at the common vertex, we have $T^{\prime(4)}=0$; also

$$
\begin{gathered}
4 F^{-4} T^{\prime \prime \prime}(4)=\left(\sigma_{n}^{4}-4 \sigma_{n}^{3} \sigma_{0}\right) \Sigma_{(i) 1}^{n} s_{i} \Delta_{i} \mu \\
T^{\prime \prime(2)}=-\frac{1}{2} F\left(\sigma_{n}^{2}-2 \sigma_{n} \sigma_{0}\right) ; \quad \frac{\delta}{\delta \sigma_{n}} T^{\prime \prime(2)}=-F^{\prime}\left(\sigma_{n}-\sigma_{0}\right)=-\mu_{n} F \alpha_{n}+F \sigma_{0} \\
\frac{1}{2} \alpha_{n}^{3} \mu_{n} F=\frac{1}{2} \mu_{n}^{-2} \sigma_{n}^{3} F=\frac{1}{4} F^{4} \frac{\delta}{\delta \sigma_{n}}\left(\frac{1}{2} \mu_{n}^{-2} F^{-3} \sigma_{n}^{4}\right) ; \quad \sigma_{n}^{4}=\left(\sigma_{n}^{4}-4 \sigma_{n}^{3} \sigma_{0}\right)+4 \sigma_{n}^{3} \sigma_{0}
\end{gathered}
$$

therefore the approximate equation for the final ray may be thus written:
in which

$$
\begin{aligned}
x_{n+1}-F \sigma_{0}-\alpha_{n} \gamma_{n}^{-1}\left(z_{n+1}-\mu_{n} F^{\prime}\right) & =\frac{1}{4} F^{4} \frac{\delta}{\delta \sigma_{n}}\left\{M\left(\sigma_{n}^{4}-4 \sigma_{n}^{3} \sigma_{0}\right)+2 F^{-1} N \sigma_{n}^{3} \sigma_{0}\right\} \\
& =F^{4}\left\{M\left(\sigma_{n}^{3}-3 \sigma_{n}^{2} \sigma_{0}\right)+\frac{3}{2} F^{-1} N \sigma_{n}^{2} \sigma_{0}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& M=\frac{1}{2} \mu_{n}^{-2} F^{-3}+\Sigma_{(i) 1}^{n-1} \mu_{i}^{-1} F_{i}^{-2} \Delta r_{i}-\mu_{n}^{-1} F^{-2} r_{n}+\Sigma_{(i) 1}^{n} s_{i} \Delta_{i} \mu \\
& N=\mu_{n}^{-2} F^{-2}+\Sigma_{(i) 1}^{n-1} \mu_{i}^{-1} F_{i}^{-1} \Delta r_{i}-\mu_{n}^{-1} F^{-1} r_{n}
\end{aligned}
$$

If $\sigma_{0}=0$, then $x_{n+1}=0$ when $z_{n+1}=\mu_{n} F-\mu_{n}^{3} F^{4} M \alpha_{n}^{2}$; so that $\mu_{n} F$ is the ordinate of the final focus, corresponding to parallel central direct incident rays, and $L_{n} \alpha_{n}^{2}$ is the aberration for marginal rays, if $L_{n}=-\mu_{n}^{3} F^{4} M$; a result which agrees with the expression in last section, for the coefficient of longitudinal aberration. It is essential to the goodness of an object glass, that this coefficient L_{n} and therefore that M should (at least nearly) vanish; but even after making $M=0$, if the coefficient N do not also vanish, and if the parallel incident rays be oblique, we shall have, neglecting the square of that obliquity, the following equation for a final ray:

$$
x_{n+1}-F \sigma_{0}-\alpha_{n} \gamma_{n}^{-1}\left(z_{n+1}-\mu_{n} F^{\prime}\right)=\frac{3}{2} F^{3} N \sigma_{n}^{2} \sigma_{0}
$$

and consequently, when $z_{n+1}=\mu_{n} F$, we shall have

$$
x_{n+1}=F \sigma_{0}+\frac{3}{2} F^{3} N \sigma_{n}^{2} \sigma_{0}
$$

To make the aberrations vanish, for parallel oblique incident rays (in diametral plane), we are therefore to combine the two conditions:

$$
M=0 ; \quad N=0
$$

M and N having the values assigned above. The first condition has been deduced by other writers; the second has been added by myself, as that required for oblique aplanaticity.*
[30.] For a combination of two infinitely thin lenses, close together, in vacuo, by preceding section,

$$
\begin{aligned}
N= & F^{-2}+\mu_{1}^{-1} F_{1}^{-1} \Delta r_{1}+F_{2}^{-1} \Delta r_{2}+\mu_{3}^{-1} F_{3}^{-1} \Delta r_{3}-F^{-1} r_{4} \\
= & \left\{\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right)+\left(\mu_{3}-1\right)\left(r_{3}-r_{4}\right)\right\}^{2}+\left(1-\mu_{1}^{-1}\right) r_{1}\left(r_{2}-r_{1}\right)+\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right)\left(r_{3}-r_{2}\right) \\
& +\mu_{3}^{-1}\left\{\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right)+\left(\mu_{3}-1\right) r_{3}\right\}\left(r_{4}-r_{3}\right)-\left\{\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right)+\left(\mu_{3}-1\right)\left(r_{3}-r_{4}\right)\right\} r_{4} ;
\end{aligned}
$$

and if we equate this to 0 , we obtain the same condition as if, near the foot of [12.], we change μ_{2} to μ_{3} : and therefore are conducted to the equation (B) of [13.].

In general if n be an even number, and if we consider a combination of $\frac{n}{2}$ infinitely thin lenses close together in vacuo, we shall have $\mu_{0}=\mu_{2}=\mu_{4}=\& c .=1 ; \mu_{1}, \mu_{3}, .$. will be the indices of the successive lenses, which we shall suppose to be given; and if the powers of those lenses be also given, or the differences $\Delta r_{1}, \Delta r_{3}, \ldots$ on which those powers depend, we shall know $F_{2}, F_{4}, \ldots F$;

* [These are L. Seidel's first two conditions (Astr. Nach. $43(1856), 317)$ for the case of a thin system, but otherwise more general, since Hamilton's surfaces are not necessarily spheres. Hamilton's "condition for oblique aplanaticity" is the same as what Seidel called "Fraunhofer's condition," on account of its satisfaction by Fraunhofer's heliometer objective at Königsberg.]
therefore each of the terms of the form $\mu_{i}^{-1} F_{i}^{-2} \Delta r_{i}$, in M, is either a known linear function of two successive curvatures, a posterior and an anterior, namely when i is even, or else a known quadratic function of an anterior curvature, namely when i is odd: F_{i}^{-2} being $=\left(F_{i-1}^{-1}+r_{i} \Delta_{i} \mu\right)^{2}$. Also, if the surfaces be spheric, each successive pair of terms of the form $s_{i} \Delta_{i} \mu$ gives a sum, such as*

$$
\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right)\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right), \quad\left(\mu_{3}-1\right)\left(r_{3}-r_{4}\right)\left(r_{3}^{2}+r_{3} r_{4}+r_{4}^{2}\right), \& c .
$$

which is a known quadratic function of two successive curvatures, anterior and posterior, of a single lens; therefore on the whole, for any combination of thin spheric lenses close together in vacuo, with given indices and powers, M (in preceding section) is a known quadratic function of the curvatures of all the surfaces, or simply of the $\frac{n}{2}$ anterior curvatures, r_{1}, r_{3}, \&c.; or (if we prefer to put it so) of the $\frac{n}{2}$ sums of curvatures, anterior and posterior, for each lens separately, namely $r_{1}+r_{2}, r_{3}+r_{4}$, \&c.: while N (in the same section) is a known linear function of the same $\frac{n}{2}$ sought quantities. This is the principle of my calculation, referred to in [13.], for a THIN double achromatic object glass; I determine the two sought sums $r_{1}+r_{2}$ and $r_{3}+r_{4}$, by the two equations, quadratic and linear, $M=0, N=0$. For a thin triple object glass, we should have one quadratic and one linear equation between three such disposable sums, and might in general introduce some other condition. (But see next section, for the dependence of the third coefficient 0 , on the indices and powers of the lenses.)
[31.] With the recent meanings of M, N, we have, for any combination of refracting surfaces of revolution close together at the origin, \dagger

$$
\begin{aligned}
4 F^{-4}\left(\sigma_{n}-\right. & \left.\sigma_{0}\right)^{-2} T^{(4)}=F^{-2}\left(\mu_{0}^{-1} \sigma_{0}^{2} r_{1}-\mu_{n}^{-1} \sigma_{n}^{2} r_{n}+\sigma_{0}^{2} \Sigma_{(2) 1}^{n-1} \mu_{i}^{-1} \Delta r_{i}\right) \\
& +\left(M-\frac{1}{2} \mu_{n}^{-2} F^{-3}+\mu_{n}^{-1} F^{-2} r_{n}\right)\left(\sigma_{n}-\sigma_{0}\right)^{2}+2 F^{-1}\left(N-\mu_{n}^{-2} F^{-2}+\mu_{n}^{-1} F^{-1} r_{n}\right) \sigma_{0}\left(\sigma_{n}-\sigma_{0}\right) \\
& =\left(M-\frac{1}{2} \mu_{n}^{-2} F^{-3}\right)\left(\sigma_{n}-\sigma_{0}\right)^{2}+2 F^{-1}\left(N-\mu_{n}^{-2} F^{-2}\right) \sigma_{0}\left(\sigma_{n}-\sigma_{0}\right)-F^{-2} \sigma_{0}^{2} \Sigma_{(i) 1}^{n} r_{i} \Delta_{i} \frac{1}{\mu} ;
\end{aligned}
$$

because

$$
\left(\sigma_{n}-\sigma_{0}\right)^{2}+2 \sigma_{0}\left(\sigma_{n}-\sigma_{0}\right)-\sigma_{n}^{2}=-\sigma_{0}^{2},
$$

and

$$
\mu_{0}^{-1} r_{1}-\mu_{n}^{-1} r_{n}+\Sigma_{(i) 1}^{n-1} \mu_{i}^{-1} \Delta r_{i}=-\Sigma_{(i) 1}^{n} r_{i} \Delta_{i} \frac{1}{\mu} .
$$

Also

$$
-\frac{1}{2}\left(\sigma_{n}-\sigma_{0}\right)^{2}-2 \sigma_{0}\left(\sigma_{n}-\sigma_{0}\right)=-\frac{1}{2} \sigma_{n}^{2}-\sigma_{0} \sigma_{n}+\frac{3}{2} \sigma_{0}^{2}=-\frac{1}{2}\left(\sigma_{n}+\sigma_{0}\right)^{2}+2 \sigma_{0}^{2} ;
$$

therefore if we make

$$
O=2 \mu_{n}^{-2} F^{-1}-\Sigma \sum_{(i)}{ }_{1}^{n} r_{i} \Delta_{i} \frac{1}{\mu},
$$

we shall have

$$
4 F^{-4}\left(\sigma_{n}-\sigma_{0}\right)^{-2} T^{(4)}=M\left(\sigma_{n}-\sigma_{0}\right)^{2}+2 F^{-1} N \sigma_{0}\left(\sigma_{n}-\sigma_{0}\right)+F^{-2} O \sigma_{0}^{2}-\frac{1}{2} \mu_{n}^{-2} F^{-3}\left(\sigma_{n}+\sigma_{0}\right)^{2} ;
$$

* [Omitting a numerical factor, $\frac{1}{2}$.]
+ [See top of [29.].]
and therefore*

$$
\begin{aligned}
T^{(2)}+T^{(4)}=-\frac{1}{2} F\left(\sigma_{n}-\sigma_{0}\right)^{2}+\frac{1}{4} F^{4} M\left(\sigma_{n}-\sigma_{0}\right)^{4}+\frac{1}{2} F^{3} N \sigma_{0}\left(\sigma_{n}-\sigma_{0}\right)^{3} & +\frac{1}{4} F^{2} O \sigma_{0}^{2}\left(\sigma_{n}-\sigma_{0}\right)^{2} \\
& -\frac{1}{8} \mu_{n}^{-2} F\left(\sigma_{n}^{2}-\sigma_{0}^{2}\right)^{2}
\end{aligned}
$$

The equations of the initial and final rays may be put under the forms:

$$
x_{0}-\frac{\sigma_{0}}{\mu_{0}}\left(1+\frac{1}{2} \frac{\sigma_{0}^{2}}{\mu_{0}^{2}}\right) z_{0}=-\frac{\delta\left(T^{(2)}+T^{(4)}\right)}{\delta \sigma_{0}} ; \quad x_{n+1}-\frac{\sigma_{n}}{\mu_{n}}\left(1+\frac{1}{2}\left(\frac{\sigma_{n}}{\mu_{n}}\right)^{2}\right) z_{n+1}=\frac{\delta\left(T^{(2)}+T^{(4)}\right)}{\delta \sigma_{n}} ;
$$

and consequently the equation of the final ray is, without neglecting any power of σ_{0}, \dagger

$$
\begin{aligned}
x_{n+1}=F \sigma_{0}\left(1-\frac{1}{2} F O \sigma_{0}^{2}\right)+\frac{\sigma_{n}}{v_{n}}\left(z_{n+1}-\mu_{n} F+\frac{1}{2} \mu_{n}^{-1} F\right. & \left.F \sigma_{0}^{2}+\frac{1}{2} \mu_{n} F^{2} O \sigma_{0}^{2}\right) \\
& +F^{4} M\left(\sigma_{n}-\sigma_{0}\right)^{3}+\frac{3}{2} F^{3} N \sigma_{0}\left(\sigma_{n}-\sigma_{0}\right)^{2}
\end{aligned}
$$

so that, in the present order of approximation, oblique parallel indiametral incident rays are all refracted to one common focus, namely

$$
X_{n+1}=F \sigma_{0}\left(1-\frac{1}{2} F O \sigma_{0}^{2}\right), \quad Z_{n+1}=\mu_{n} F\left(1-\frac{1}{2} F O \sigma_{0}^{2}\right)\left(1-\frac{1}{2} \mu_{n}^{-2} \sigma_{0}^{2}\right),
$$

when the two conditions $M=0, N=0$, are satisfied. \ddagger
We may also remark that if the final medium be the same as the initial, so that $\mu_{n}=\mu_{0}$, then

$$
\mu_{n}\left(1-\frac{1}{2} \mu_{n}^{-2} \sigma_{0}^{2}\right)=v_{0},
$$

and

$$
\frac{1}{\alpha_{0}} X_{n+1}=\frac{1}{\gamma_{0}} Z_{n+1}=\mu_{n} F\left(1-\frac{1}{2} F O \sigma_{0}^{2}\right)=\text { distance of focus from origin; }
$$

the direction of this distance being the same as that of the incident rays. In fact, the ray incident on the first vertex, that is, at the origin, emerges without any change, if $\mu_{n}=\mu_{0}$; but it undergoes a change of direction if μ_{n} be different from μ_{0}, because then the equation $\sigma_{n}=\sigma_{0}$ gives $\alpha_{n}=\mu_{n}^{-1} \sigma_{0}$. In this last, which is the more general case, we have $\alpha_{n}=\mu_{n}^{-1} \mu_{0} \alpha_{0}$;

$$
\frac{1}{\alpha_{n}} X_{n+1}=\frac{1}{\gamma_{n}} Z_{n+1}=\mu_{n} F\left(1-\frac{1}{2} F O \sigma_{0}^{2}\right)=\text { distance of focus from centre of lens ; }
$$

also

$$
\frac{1}{2} F O \sigma_{0}^{2}=\frac{1}{2} \mu_{n}^{2} F O \alpha_{2}^{n}=\alpha_{2}^{n}\left(1-\frac{1}{2} \mu_{n}^{2} F \Sigma_{(i)}{ }_{1}^{n} r_{i} \Delta_{i} \frac{1}{\mu}\right) .
$$

* [To obtain $T^{(2)}$, we put $v_{i}=0$ in the expression at the beginning of [26.].]
+ [Except, of course, powers higher than the fourth in T?]
\ddagger [This point is the primary focus. It is seen from the identical relations of p. 456 that it is impossible to correct a thin system simultaneously for spherical aberration, coma and astigmatism. Thus Hamilton's system is astigmatic, and the condition for flatness in the locus of the primary focus, namely,

$$
F O=-\mu_{n}^{-2}, \text { or } \Sigma_{(0) 1} r_{i} \lambda_{i} \Delta_{i}\left(\mu^{-1}\right)=3 \mu_{n}^{-2} F^{-1} \text {, }
$$

differs from Petzval's condition, $\Sigma_{(0)}{ }_{1}^{n} r_{i} \Delta_{i}\left(\mu^{-1}\right)=0$, which is only applicable to a system corrected for astigmatism. Petzval's condition was published, without proof, in 1843 (ef. J. P. C. Southall, Geometrical Optics (1913), p. 439).]

For a thin double lens in vacuo,

$$
O=\left(2+\frac{1}{\mu_{1}}\right)\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right)+\left(2+\frac{1}{\mu_{3}}\right)\left(\mu_{3}-1\right)\left(r_{3}-r_{4}\right)
$$

therefore the curvature of locus of focus is

$$
F^{-1}+O=\left(3+\frac{1}{\mu_{1}}\right)\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right)+\left(3+\frac{1}{\mu_{3}}\right)\left(\mu_{3}-1\right)\left(r_{3}-r_{4}\right)
$$

and the concavity of this locus is turned towards the object glass. If \boldsymbol{w} be dispersion ratio, so that

$$
\left(\mu_{3}-1\right)\left(r_{3}-r_{4}\right)=-\sigma\left(\mu_{1}-1\right)\left(r_{1}-r_{2}\right),
$$

then, focal length multiplied by curvature of locus of focus

$$
=1+F O=(1-\varpi)^{-1}\left\{3+\mu_{1}^{-1}-\left(3+\mu_{3}^{-1}\right) \varpi\right\}=3+\frac{1}{\mu},
$$

if

$$
\mu^{-1}=\frac{\mu_{1}^{-1}-\mu_{3}^{-1} \varpi}{1-\varpi},
$$

that is, if

$$
\mu^{-1}=\mu_{1}^{-1}+\frac{\varpi}{1-\sigma}\left(\mu_{1}^{-1}-\mu_{3}^{-1}\right) .
$$

Thus radius of curvature of locus of focus, for indiametral rays, originally parallel, is focal length

$$
\div 3+\mu_{1}^{-1}+\frac{\varpi}{1-\varpi}\left(\mu_{1}^{-1}-\mu_{3}^{-1}\right) .
$$

[32.] Herschel's second condition of aplanaticity.

(Feb. 21st. 1844). By the preceding section, for any combination of coaxal refracting surfaces of revolution placed close together at the origin, the equations of the initial and final rays may be thus written:

$$
\begin{gathered}
x_{0}=\frac{\sigma_{0}}{\mu_{0}}\left(1+\frac{\sigma_{0}^{2}}{2 \mu_{0}^{2}}\right) z_{0}-F\left(\sigma_{n}-\sigma_{0}\right)-\frac{\delta T^{(4)}}{\delta \sigma_{0}} ; \\
x_{n+1}=\frac{\sigma_{n}}{\mu_{n}}\left(1+\frac{\sigma_{n}^{2}}{2 \mu_{n}^{2}}\right) z_{n+1}-F\left(\sigma_{n}-\sigma_{0}\right)+\frac{\delta T^{(4)}}{\delta \sigma_{n}} ;
\end{gathered}
$$

and therefore the abscissa ($x_{1}=x_{2}=. .=x_{n}$) of incidence is nearly

$$
x=-F\left(\sigma_{n}-\sigma_{0}\right) .
$$

Adopting as an abridgment this last expression, and supposing that a ray from $0, z_{0}$ is refracted to $0, z_{n+1}$, we have

$$
\begin{gathered}
\frac{\mu_{0}}{z_{0}}=\frac{\sigma_{0}\left(1+\frac{1}{2} \mu_{0}^{-2} \sigma_{0}^{2}\right)}{-x+\frac{\delta T^{(4)}}{\delta \sigma_{0}}}=-\sigma_{0} x^{-1}-\frac{1}{2} \mu_{0}^{-2} \sigma_{0}^{3} x^{-1}-x^{-2} \sigma_{0} \frac{\delta T^{(4)}}{\delta \sigma_{0}} \\
\frac{\mu_{n}}{z_{n+1}}=\frac{\sigma_{n}\left(1+\frac{1}{2} \mu_{n}^{-2} \sigma_{n}^{2}\right)}{-x-\frac{\delta T^{(4)}}{\delta \sigma_{n}}}=-\sigma_{n} x^{-1}-\frac{1}{2} \mu_{n}^{-2} \sigma_{n}^{3} x^{-1}+x^{-2} \sigma_{n} \frac{\delta T^{(4)}}{\delta \sigma_{n}}
\end{gathered}
$$

also

$$
\sigma_{n} \frac{\delta T^{(4)}}{\delta \sigma_{n}}+\sigma_{0} \frac{\delta T^{(4)}}{\delta \sigma_{0}}=4 T^{(4)} ; \quad-\left(\sigma_{n}-\sigma_{0}\right) x^{-1}=F^{-1}
$$

therefore

$$
\frac{\mu_{n}}{z_{n+1}}-\frac{\mu_{0}}{z_{0}}-\frac{1}{F}=\frac{\mu_{n}^{-2} \sigma_{n}^{3}-\mu_{0}^{-2} \sigma_{0}^{3}}{2 F^{\prime}\left(\sigma_{n}-\sigma_{0}\right)}+4 F^{-2}\left(\sigma_{n}-\sigma_{0}\right)^{-2} T^{(4)}
$$

Also

$$
\sigma_{n}^{3}-\left(\mu_{n} \mu_{0}^{-1}\right)^{2} \sigma_{0}^{3}-\left(\sigma_{n}^{2}-\sigma_{0}^{2}\right)\left(\sigma_{n}+\sigma_{0}\right)=-\sigma_{0} \sigma_{n}^{2}+\sigma_{0}^{2} \sigma_{n}+\left(1-\mu_{n}^{2} \mu_{0}^{-2}\right) \sigma_{0}^{3}
$$

if then we neglect $\left(\frac{\sigma_{0}}{\sigma_{n}}\right)^{2}$, or $\left(\frac{z_{n+1}}{z_{0}}\right)^{2}$, we have

$$
\frac{\mu_{n}}{z_{n+1}}-\frac{\mu_{0}}{z_{0}}-\frac{1}{F}=M F^{2}\left(\sigma_{n}^{2}-2 \sigma_{0} \sigma_{n}\right)+2 N F \sigma_{0} \sigma_{n}-\frac{1}{2} \mu_{n}^{-2} F^{-1} \sigma_{0} \sigma_{n}
$$

in which we may make $\sigma_{0}=\sigma_{n} \frac{\mu_{0}}{\mu_{n}} \frac{z_{n+1}}{z_{0}}$; * thus the conditions requisite in order that z_{n+1} may be independent of σ_{n}, when we neglect σ_{n}^{4} and $\sigma_{n}^{2} z_{0}^{-2}$, are

$$
M=0, \quad N=\frac{1}{4} \mu_{n}^{-2} F^{-2}
$$

these therefore must agree with those which Herschel has proposed, for the construction of an aplanatic object glass, applicable to terrestrial objects. Accordingly they agree with those which I deduced from Herschel's formulæ, in my calculation of Jan. 2nd, 1844.

A somewhat easier though less elegant analysis would be the following. Our object is to eliminate σ_{0} between the equations of the initial and final rays, after making in those equations, that is, in the two first of the present section, $x_{0}=0, x_{n+1}=0$, and neglecting z_{0}^{-2}. We may therefore substitute for σ_{0}, in the second equation, its value derived from the first, namely

$$
\sigma_{0}=\mu_{0} F z_{0}^{-1} \sigma_{n}+\mu_{0} z_{0}^{-1} \frac{\delta T^{(4)}}{\delta \sigma_{0}}
$$

σ_{0} being treated as $=0$ in the last term, or $T^{(4)}$ confined to the part proportional to $\sigma_{0} \sigma_{n}^{3}$. In this manner we find, by the second equation,

$$
\mu_{n}^{-1} z_{n+1}=F\left(1-\mu_{0} F z_{0}^{-1}\right)\left(1-\frac{1}{2} \mu_{n}^{-2} \sigma_{n}^{2}\right)-\frac{\delta T^{(4)}}{\sigma_{n} \delta \sigma_{n}}-\mu_{0} F z_{0}^{-1} \frac{\delta T^{(4)}}{\sigma_{n} \delta \sigma_{0}}
$$

σ_{0} being treated as $=\mu_{0} F z_{0}^{-1} \sigma_{n}$ in $\frac{\delta T^{(4)}}{\sigma_{n} \delta \sigma_{n}}$. Make then for abridgment, (see [10.],)

$$
T^{(4)}=Q \sigma_{n}^{4}+Q, \sigma_{n}^{3} \sigma_{0}+\left(Q^{\prime}+Q_{\prime \prime}\right) \sigma_{n}^{2} \sigma_{0}^{2}+Q_{1}^{\prime} \sigma_{n} \sigma_{0}^{3}+Q^{\prime \prime} \sigma_{0}^{4}
$$

and we shall have, in the present order of approximation,

$$
z_{n+1}=\mu_{n} F\left(1-\mu_{0} F z_{0}^{-1}\right)-\mu_{n}\left(4 Q+\frac{1}{2} \mu_{n}^{-2} F\right) \sigma_{n}^{2}-\mu_{n}\left(4 Q_{1}-\frac{1}{2} \mu_{n}^{-2} F\right) \mu_{0} F z_{0}^{-1} \sigma_{n}^{2}
$$

* [This is given by the equations of the rays to the first approximation; we have corrected an obvious error in the formula, which (in the MS.) lacks the factor σ_{n}, and has a minus sign.]
+ [In the last term we have inserted σ_{n}, which is lacking in the MS.]

To destroy the aberration for direct parallel incident rays, we are to make $4 Q+\frac{1}{2} \mu_{n}^{-2} F=0$, (compare [12.],) that is, by preceding section, $M=0$; and to destroy also the aberration for rays proceeding from a distant point on the axis, we are to employ the condition $4 Q_{1}-\frac{1}{2} \mu_{n}^{-2} F=0$, that is, $N=\frac{1}{4} \mu_{n}^{-2} F^{-2}$, as above. Herschel's second condition is always incompatible with mine.*
[33.] Summary of Calculations for deducing (A) and (B).
With respect to my own form of a thin double object glass, the chief calculations are the following.

$$
T_{i}=r_{i}^{-1} \Delta_{i} v \cdot\left\{1-\sqrt{1+\left(\frac{\Delta_{i} \sigma}{\Delta_{i} v}\right)^{2}}\right\}, \text { rigorously; } \dagger
$$

therefore approximately,

$$
T_{i}=T_{i}^{(2)}+T_{i}^{\prime \prime \prime}(4)+T_{i}^{\prime \prime \prime}(4)
$$

in which

$$
\begin{aligned}
& \left.\left(v=\mu-\frac{\sigma^{2}}{2 \mu},\right) \quad\left(T_{i}^{(2)}+T_{i}^{\prime \prime(}\right)=-\frac{\left(\Delta_{i} \sigma\right)^{2}}{2 r_{i} \Delta_{i} v},\right) \\
& T_{i}^{(2)}=-\frac{\left(\Delta_{i} \sigma\right)^{2}}{2 r_{i} \Delta_{i} \mu}, \quad T^{\prime \prime}{ }_{i}^{(4)}=-\frac{r_{i}^{-1}}{4}\left(\frac{\Delta_{i} \sigma}{\Delta_{i} \mu}\right)^{2} \Delta_{i} \frac{\sigma^{2}}{\mu}, \\
& T^{\prime \prime \prime}{ }_{i}^{(4)}=\frac{1}{8} r_{i}^{-1}\left(\Delta_{i} \mu\right)^{-3}\left(\Delta_{i} \sigma\right)^{4} ; \quad T=T^{(2)}+T^{\prime \prime}(4)+T^{\prime \prime \prime}{ }^{(4)} ; \\
& T^{(2)}=\Sigma_{(i) 1}^{n} T_{i}^{(2)} ; \quad T^{\prime \prime}(4)=\Sigma_{(i) 1}^{n} T_{i}^{\prime \prime(4)} ; \quad T^{\prime \prime \prime}(4)=\Sigma_{(i) 1}^{n} T^{\prime \prime \prime}{ }_{i}^{(4)} ; \\
& 0=\frac{\delta}{\delta \sigma_{i}}\left(T_{i}^{(2)}+T_{i+1}^{(2)}\right)=-\frac{\Delta_{i} \sigma}{r_{i} \Delta_{i} \mu}+\frac{\Delta_{i+1} \sigma}{r_{i+1} \Delta_{i+1} \mu}, \quad \because \Delta_{i} \sigma=C r_{i} \Delta_{i} \mu, \\
& C=F\left(\sigma_{n}-\sigma_{0}\right), \quad F^{-1}=\Sigma \sum_{(i) 1}^{n} r_{i} \Delta_{i} \mu ; \quad T_{i}^{(2)}=-\frac{1}{2} F^{2} r_{i} \Delta_{i} \mu\left(\sigma_{n}-\sigma_{0}\right)^{2}, \\
& T^{(2)}=-\frac{1}{2} F\left(\sigma_{n}-\sigma_{0}\right)^{2} ; \quad T_{i}^{\prime \prime(4)}=-\frac{1}{4} r_{i} F^{2}\left(\sigma_{n}-\sigma_{0}\right)^{2} \Delta_{i} \frac{\sigma^{2}}{\mu} ; \quad T_{i}^{\prime \prime \prime}(4)=\frac{1}{8} r_{i}^{3} \Delta_{i} \mu F^{4}\left(\sigma_{n}-\sigma_{0}\right)^{4} ; \\
& F^{-1} \sigma_{i}=F^{-1} \sigma_{0}+F_{i}^{-1}\left(\sigma_{n}-\sigma_{0}\right) \text {, if } F_{i}^{-1}=\Sigma_{(i) 1} r_{i} r_{i} \Delta_{i} \mu ; \\
& \Sigma_{(i) 1}{ }_{1}^{n} r_{i} \Delta_{i} \phi=r_{n} \phi_{n}-r_{1} \phi_{0}-\Sigma_{(i) 1}^{n-1} \phi_{i} \Delta r_{i} ; \\
& T^{\prime \prime \prime}(4)=\frac{1}{4} F^{4}\left(\sigma_{n}-\sigma_{0}\right)^{2}\left\{-F^{-2} r_{n} \frac{\sigma_{n}^{2}}{\mu_{n}}+F^{-2} r_{1} \frac{\sigma_{0}^{2}}{\mu_{0}}+\Sigma_{(i) 1}^{n-1} \mu_{i}^{-1}\left(F^{-1} \sigma_{0}+F_{i}^{-1} \overline{\sigma_{n}-\sigma_{0}}\right)^{2} \Delta r_{i}\right\} ; \\
& T^{(4)}=Q \sigma_{n}^{4}+Q_{1} \sigma_{n}^{3} \sigma_{0}+\left(Q^{\prime}+Q_{\prime \prime}\right) \sigma_{n}^{2} \sigma_{0}^{2}+Q_{1}^{\prime} \sigma_{n} \sigma_{0}^{3}+Q^{\prime \prime} \sigma_{0}^{4} ; \\
& x_{n+1}=\mu_{n}^{-1} \sigma_{n}\left(1+\frac{1}{2} \mu_{n}^{-2} \sigma_{n}^{2}\right) z_{n+1}-F\left(\sigma_{n}-\sigma_{0}\right)+\frac{\delta T^{(4)}}{\delta \sigma_{n}} \\
& =F \sigma_{0}+Q_{,}^{\prime} \sigma_{0}^{3}+\mu_{n}^{-1} \sigma_{n}\left(1+\frac{1}{2} \mu_{n}^{-2} \sigma_{n}^{2}\right)\left(z_{n+1}-\mu_{n} F+2 \mu_{n} \overline{Q^{\prime}+Q_{\prime \prime}} \sigma_{0}^{2}\right) \\
& +\left(4 Q+\frac{1}{2} \mu_{n}^{-2} F^{\prime}\right) \sigma_{n}^{3}+3 Q, \sigma_{0} \sigma_{n}^{2} ;
\end{aligned}
$$

[^7]\[

$$
\begin{gathered}
4 Q+\frac{1}{2} \mu_{n}^{-2} F=0, \quad Q_{1}=0 ; \quad \because \text { neglecting }{ }^{*} \sigma_{0}^{2} \\
4 T^{(4)} F^{-4}\left(\sigma_{n}-\sigma_{0}\right)^{-2}=-\frac{1}{2} \mu_{n}^{-2} F^{-3} \sigma_{n}\left(\sigma_{n}+2 \sigma_{0}\right) \\
= \\
-F^{-2} r_{n} \mu_{n}^{-1} \sigma_{n}^{2}+\Sigma_{(i) 1}^{n-1} \mu_{i}^{-1} F_{i}^{-2} \Delta r_{i} \sigma_{n}\left(\sigma_{n}-2 \sigma_{0}\right) \\
\\
=2 F^{-1} \Sigma_{(i) 1}^{n-1} \mu_{i}^{-1} F_{i}^{-1} \Delta r_{i} \sigma_{n} \sigma_{0}+\frac{1}{2} \sigma_{n}\left(\sigma_{n}-2 \sigma_{0}\right) \Sigma_{(i) 1} r_{i}^{3} \Delta_{i} \mu \\
= \\
-\frac{1}{2} \mu_{n}^{-2} F^{-3} \sigma_{n}\left(\sigma_{n}-2 \sigma_{0}\right)-2 \mu_{n}^{-2} F^{-3} \sigma_{n} \sigma_{0} ; \\
0=\frac{1}{2} \mu_{n}^{-2} F^{-3}+\Sigma_{(i) 1}^{n-1} \mu_{i}^{-1} F_{i}^{-2} \Delta r_{i}+\frac{1}{2} \Sigma_{(i) 1}^{n} r_{i}^{3} \Delta_{i} \mu-\mu_{n}^{-1} r_{n} F^{-2} ; \dagger \\
0=\mu_{n}^{-2} F^{-2}+\Sigma_{(i) 1}^{n-1} \mu_{i}^{-1} F_{i}^{-1} \Delta r_{i}-\mu_{n}^{-1} r_{n} F^{-1} .
\end{gathered}
$$
\]

So far, we have made no supposition respecting the five \ddagger indices, but have only supposed the four surfaces to be spheric, and close together; we might even extend the two resulting equations to any system of four coaxal surfaces of revolution, close together, by changing, in the first equation, $\frac{1}{2} \Sigma_{(i) 1}{ }^{n} r_{i}^{3} \Delta_{i} \mu$ to $\Sigma_{(i) 1}{ }^{n} s_{i} \Delta_{i} \mu$. But if we now suppose $n=4, \mu_{0}=\mu_{2}=\mu_{4}=1, \mu_{1}=\mu^{\prime}$, $\mu_{3}=\mu^{\prime \prime}, F^{-1}=p, F_{2}^{-1}=p^{\prime}, p-p^{\prime}=p^{\prime \prime},\left(\mu^{\prime}, \mu^{\prime \prime}\right.$ the indices, and $p^{\prime}, p^{\prime \prime}$ the powers of the two component lenses,) then

$$
\begin{gathered}
r_{1}-r_{2}=\frac{p^{\prime}}{\mu^{\prime}-1}, \quad r_{3}-r_{4}=\frac{p^{\prime \prime}}{\mu^{\prime \prime}-1} ; \\
\mu_{1}^{-1} F_{1}^{-2} \Delta r_{1}=-\frac{\left(\mu^{\prime}-1\right)}{\mu^{\prime}} p^{\prime} r_{1}^{2}, \quad \mu_{2}^{-1} F_{2}^{-2} \Delta r_{2}=p^{\prime 2}\left(r_{3}-r_{2}\right) \\
\mu_{3}^{-1} F_{3}^{-2} \Delta r_{3}=-\frac{p^{\prime \prime}}{\mu^{\prime \prime}\left(\mu^{\prime \prime}-1\right)}\left\{p^{\prime}+\left(\mu^{\prime \prime}-1\right) r_{3}\right\}^{2} \\
\mu_{1}^{-1} F_{1}^{-1} \Delta r_{1}=-\frac{p^{\prime} r_{1}}{\mu^{\prime}} ; \quad \mu_{2}^{-1} F_{2}^{-1} \Delta r_{2}=p^{\prime}\left(r_{3}-r_{2}\right) ; \quad \mu_{3}^{-1} F_{3}^{-1} \Delta r_{3}=-\frac{p^{\prime \prime}}{\mu^{\prime \prime}\left(\mu^{\prime \prime}-1\right)}\left\{p^{\prime}+\left(\mu^{\prime \prime}-1\right) r_{3}\right\}
\end{gathered}
$$ and the two conditions become:

$$
\begin{align*}
& \begin{array}{c}
0=\frac{1}{2}\left(p^{\prime}+p^{\prime \prime}\right)^{3}+\frac{1}{2} p^{\prime}\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right)+\frac{1}{2} p^{\prime \prime}\left(r_{3}^{2}+r_{3} r_{4}+r_{4}^{2}\right)-\frac{\mu^{\prime}-1}{\mu^{\prime}} p^{\prime} r_{1}^{2} \\
\quad+p^{\prime 2}\left(r_{3}-r_{2}\right)-\frac{\mu^{\prime \prime}-1}{\mu^{\prime \prime}-1} p^{\prime \prime} \\
\left\{p^{\prime}+\left(\mu^{\prime \prime}-1\right) r_{3}\right\}^{2}-p^{2} r_{4} \\
0=\left(p^{\prime}+p^{\prime \prime}\right)^{2}-\frac{p^{\prime} r_{1}}{\mu^{\prime}}+p^{\prime}\left(r_{3}-r_{2}\right)-\frac{p^{\prime \prime}}{\mu^{\prime \prime}\left(\mu^{\prime \prime}-1\right)}\left\{p^{\prime}+\left(\mu^{\prime \prime}-1\right) r_{3}\right\}-p r_{4}
\end{array},
\end{align*}
$$

* [The defect of astigmatism depends on σ_{0}^{2} (see [48.] or p. 378), and does not occur when σ_{0}^{2} is neglected.]
+ [These formulæ for the correction of spherical aberration and coma, for any infinitely thin system of spherical refracting surfaces, possess the advantage of involving only the fundamental data of the instrument (curvatures and indices). In this, although otherwise less complete and general, they possess an advantage over the conditions of L. Seidel (Astr. Nach. 43 (1856)). The forms of Seidel's conditions for a thin system will be found in J. P. C. Southall's Geometrical Optics (1913), p. 470, where there follow interesting historical references to other general methods. Although Hamilton's argument here appears to apply only to rays in one diametral plane (for which of course the phenomenon of coma, geometrically described in No. XIX, does not present itself), Hamilton gives later, in [46.], the extension of the argument. The essential fact underlying the step from two to three dimensions is that, when we put $\tau=0, \tau^{\prime}=0$ in the general expression for $T^{(4)}$, the coefficients Q, Q, (unlike $Q^{\prime}, Q_{1 \prime}$) remain still the coefficients of distinct terms, and may therefore be evaluated by the consideration of indiametral rays alone.]
\ddagger [In the foregoing argument there is no numerical limit to the number of surfaces involved.]
in which, $p=p^{\prime}+p^{\prime \prime}$; and

$$
r_{1}-r_{2}=\frac{p^{\prime}}{\mu^{\prime}-1}, \quad r_{3}-r_{4}=\frac{p^{\prime \prime}}{\mu^{\prime \prime}-1}
$$

Hence (A) and (B) of [13.].
[34.] Development of the equations (A) and (B).
In fact, if we make
we have

$$
\begin{gathered}
4\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right) p^{\prime}=3\left(r_{1}+r_{2}\right)^{2} p^{\prime}+\frac{m^{\prime 2} p^{\prime 3}}{\left(1-m^{\prime}\right)^{2}} ; \\
4 p^{\prime \prime}\left(r_{3}^{2}+r_{3} r_{4}+r_{4}^{2}\right)=3\left(r_{3}+r_{4}\right)^{2} p^{\prime \prime}+\frac{m^{\prime 2} p^{\prime \prime 3}}{\left(1-m^{\prime \prime}\right)^{2}} ; \\
-8\left(1-m^{\prime}\right) p^{\prime} r_{1}^{2}=-2\left(1-m^{\prime}\right) p^{\prime}\left(r_{1}+r_{2}\right)^{2}-4 m^{\prime} p^{\prime 2}\left(r_{1}+r_{2}\right)-\frac{2 m^{\prime 2} p^{\prime 3}}{1-m^{\prime}} ; \\
8 p^{\prime 2}\left(r_{3}-r_{2}\right)=4 p^{\prime 2}\left(-\left(r_{1}+r_{2}\right)+r_{3}+r_{4}+\frac{m^{\prime} p^{\prime}}{1-m^{\prime}}+\frac{m^{\prime \prime} p^{\prime \prime}}{1-m^{\prime \prime}}\right) ; \\
-\frac{8 p^{\prime \prime}}{1-m^{\prime \prime}}\left\{m^{\prime \prime} p^{\prime}+\left(1-m^{\prime \prime}\right) r_{3}\right\}^{2}=-\frac{2 p^{\prime \prime}}{1-m^{\prime \prime}}\left\{\left(1-m^{\prime \prime}\right)\left(r_{3}+r_{4}\right)+m^{\prime \prime}\left(2 p^{\prime}+p^{\prime \prime}\right)\right\}^{2} \\
=-2\left(1-m^{\prime \prime}\right) p^{\prime \prime}\left(r_{3}+r_{4}\right)^{2}-4 m^{\prime \prime} p^{\prime \prime}\left(2 p^{\prime}+p^{\prime \prime}\right)\left(r_{3}+r_{4}\right)-\frac{2 m^{\prime \prime 2} p^{\prime \prime}}{1-m^{\prime \prime}}\left(2 p^{\prime}+p^{\prime \prime}\right)^{2} ; \\
-8 p^{2} r_{4}=-4\left(p^{\prime}+p^{\prime \prime}\right)^{2}\left(r_{3}+r_{4}-\frac{m^{\prime \prime} p^{\prime \prime}}{1-m^{\prime \prime}}\right) ;
\end{gathered}
$$

in the sum of which 6 terms and of $4\left(p^{\prime}+p^{\prime \prime}\right)^{3}$, the coefficient of $\left(r_{1}+r_{2}\right)^{2}$ is
that of $\left(r_{3}+r_{4}\right)^{2}$,

$$
\begin{gathered}
3 p^{\prime}-2\left(1-m^{\prime}\right) p^{\prime}=\left(2 m^{\prime}+1\right) p^{\prime} \\
3 p^{\prime \prime}-2\left(1-m^{\prime \prime}\right) p^{\prime \prime}=\left(2 m^{\prime \prime}+1\right) p^{\prime \prime} \\
-4 m^{\prime} p^{\prime 2}-4 p^{\prime 2}=-4\left(m^{\prime}+1\right) p^{\prime 2}
\end{gathered}
$$

of $r_{1}+r_{2}$,
of $r_{3}+r_{4}$,
of $p^{\prime 3}$,

$$
4 p^{\prime 2}-4 m^{\prime \prime} p^{\prime \prime}\left(2 p^{\prime}+p^{\prime \prime}\right)-4\left(p^{\prime}+p^{\prime \prime}\right)^{2}=-4\left(m^{\prime \prime}+1\right) p^{\prime \prime}\left(p^{\prime \prime}+2 p^{\prime}\right)
$$

$$
\frac{m^{\prime 2}}{\left(1-m^{\prime}\right)^{2}}-\frac{2 m^{\prime 2}}{1-m^{\prime}}+\frac{4 m^{\prime}}{1-m^{\prime}}+4
$$

of $p^{\prime \prime 3}$,

$$
=\frac{m^{\prime 2}-2\left(1-m^{\prime}\right) m^{\prime 2}+4 m^{\prime}\left(1-m^{\prime}\right)+4\left(1-m^{\prime}\right)^{2}}{\left(1-m^{\prime}\right)^{2}}=\frac{4-4 m^{\prime}-m^{\prime 2}+2 m^{\prime 3}}{\left(1-m^{\prime}\right)^{2}} ;
$$

$$
\frac{m^{\prime \prime 2}}{\left(1-m^{\prime \prime}\right)^{2}}-\frac{2 m^{\prime \prime 2}}{1-n^{\prime \prime}}+\frac{4 m^{\prime \prime}}{1-m^{\prime \prime}}+4=\frac{4-4 m^{\prime \prime}-m^{\prime \prime 2}+2 m^{\prime \prime 3}}{\left(1-m^{\prime \prime}\right)^{2}}
$$

and the remaining terms are

$$
\begin{aligned}
& \frac{4 m^{\prime \prime} p^{\prime 2} p^{\prime \prime}}{1-m^{\prime \prime}}-\frac{8 m^{\prime \prime 2} p^{\prime} p^{\prime \prime}\left(p^{\prime}+p^{\prime \prime}\right)}{1-m^{\prime \prime}}+\frac{4 m^{\prime \prime} p^{\prime} p^{\prime \prime}\left(p^{\prime}+2 p^{\prime \prime}\right)}{1-m^{\prime \prime}}+12 p^{\prime} p^{\prime \prime}\left(p^{\prime}+p^{\prime \prime}\right) \\
&=\left(8 m^{\prime \prime}+12\right) p^{\prime} p^{\prime \prime}\left(p^{\prime}+p^{\prime \prime}\right) ;
\end{aligned}
$$

so that the equation (1), of last section, when multiplied by 4 , becomes, (halving all the recent results),

$$
\begin{align*}
0= & \left(m^{\prime}+\frac{1}{2}\right) p^{\prime}\left(r_{1}+r_{2}\right)^{2}+\left(m^{\prime \prime}+\frac{1}{2}\right) p^{\prime \prime}\left(r_{3}+r_{4}\right)^{2}-2\left(m^{\prime \prime}+1\right) p^{\prime \prime}\left(p^{\prime}+p^{\prime \prime}\right)\left(r_{3}+r_{4}\right) \\
& -2 p^{\prime}\left\{\left(m^{\prime}+1\right) p^{\prime}\left(r_{1}+r_{2}\right)+\left(m^{\prime \prime}+1\right) p^{\prime \prime}\left(r_{3}+r_{4}\right)\right\} \\
& +\frac{4-4 m^{\prime}-m^{\prime 2}+2 m^{\prime 3}}{2\left(1-m^{\prime}\right)^{2}} p^{\prime 3}+\frac{4-4 m^{\prime \prime}-m^{\prime \prime 2}+2 m^{\prime / 3}}{2\left(1-m^{\prime \prime}\right)^{2}} p^{\prime 3} \tag{A}\\
& +2\left(2 m^{\prime \prime}+3\right) p^{\prime} p^{\prime \prime}\left(p^{\prime}+p^{\prime \prime}\right):
\end{align*}
$$

which differs from the equation (A) of [13.], only by the substitution of $m^{\prime}, m^{\prime \prime}, p^{\prime}, p^{\prime \prime}$, for $m_{1}, m_{2}, p_{1}, p_{2}$, that is, for the reciprocals of the indices, and for the powers, of the two lenses; $r_{1}, r_{2}, r_{3}, r_{4}$, being still the curvatures* of the four successive spheric surfaces, positive when convex to the incident light.

Again, if, in the double of the second member of equation (2) of last section, we change $\mu^{\prime}, \mu^{\prime \prime}$, to $m^{\prime-1}, m^{\prime \prime-1}$, and $2 r_{1}, 2 r_{2}, 2 r_{3}, 2 r_{4}$ to their values at the top of the present section, we find that the coefficient of $r_{1}+r_{2}$ is $-m^{\prime} p^{\prime}-p^{\prime}$; of $r_{3}+r_{4}, p^{\prime}-m^{\prime \prime} p^{\prime \prime}-\left(p^{\prime}+p^{\prime \prime}\right)=-\left(m^{\prime \prime}+1\right) p^{\prime \prime}$; and the remaining terms are
$2\left(p^{\prime}+p^{\prime \prime}\right)^{2}-\frac{m^{\prime 2} p^{\prime 2}}{1-m^{\prime}}+\frac{m^{\prime} p^{\prime 2}}{1-m^{\prime}}+\frac{m^{\prime \prime} p^{\prime} p^{\prime \prime}}{1-m^{\prime \prime}}-\frac{m^{\prime \prime 2} p^{\prime \prime}\left(p^{\prime \prime}+2 p^{\prime}\right)}{1-m^{\prime \prime}}+\frac{m^{\prime \prime}\left(p^{\prime \prime}+p^{\prime}\right) p^{\prime \prime}}{1-m^{\prime \prime}}$ $=\left(2+m^{\prime}\right) p^{\prime 2}+\left(2+m^{\prime \prime}\right)\left(p^{\prime 2}+2 p^{\prime} p^{\prime \prime}\right)=\left(m^{\prime}-m^{\prime \prime}\right) p^{\prime 2}+\left(2+m^{\prime \prime}\right)\left(p^{\prime}+p^{\prime \prime}\right)^{2} ;$
therefore (2) gives

$$
\begin{equation*}
\left(m^{\prime}+1\right) p^{\prime}\left(r_{1}+r_{2}\right)+\left(m^{\prime \prime}+1\right) p^{\prime \prime}\left(r_{3}+r_{4}\right)=\left(m^{\prime}-m^{\prime \prime}\right) p^{\prime 2}+\left(m^{\prime \prime}+2\right)\left(p^{\prime}+p^{\prime \prime}\right)^{2} \tag{B}
\end{equation*}
$$

Equation (B) gives the value of the second line of equation (A); it also gives $\left(r_{1}+r_{2}\right)^{2}$ as a quadratic function of $r_{3}+r_{4}$; and thus it enables us easily to transform (A) into an ordinary quadratic equation relative to $r_{3}+r_{4}$, after solving which, we can find $r_{1}+r_{2}$, and thus $r_{1}, r_{2}, r_{3}, r_{4}$, because

$$
r_{1}-r_{2}=\frac{m^{\prime} p^{\prime}}{1-m^{\prime}} ; \quad r_{3}-r_{4}=\frac{m^{\prime \prime} p^{\prime \prime}}{1-m^{\prime \prime}} .
$$

[35.] Comparison with Herschel.

My equations (A) and (B) (are intended to) serve for the construction of a thin double object glass, of which the aberrations in the diametral plane shall vanish, for oblique parallel incident rays, if the square of the obliquity of those rays be neglected. Herschel aimed to construct one of which the aberrations should vanish, for rays incident from a distant point in the axis, when the square of the nearness of that point is neglected. By the theory given in [32.], my formulæ will be adapted to this latter problem, by merely changing $2 p^{2}$ to $\frac{3}{2} p^{2}$, that is, by subtracting half * [That is, reciprocals of the radii.]
the square of the power of the double lens from the second member of the equation (B) of [34.], without making any change in the equation (A). But as Herschel assigns equations between the two anterior curvatures, r_{1} and r_{3}, we must, for the purpose of comparison, change r_{2} to $r_{1}-\frac{m^{\prime} p^{\prime}}{1-m^{\prime}}$, and r_{4} to $r_{3}-\frac{m^{\prime \prime} p^{\prime \prime}}{1-m^{\prime \prime}}$; and then $\left(r_{1}+r_{2}\right)^{2}$ becomes

$$
4 r_{1}^{2}-\frac{4 m^{\prime} p^{\prime} r_{1}}{1-m^{\prime}}+\frac{m^{\prime 2} p^{\prime 2}}{\left.\left(1-m^{\prime}\right)^{\prime}\right)^{2}}
$$

and $\left(r_{3}+r_{4}\right)^{2}$ becomes

$$
4 r_{3}^{2}-\frac{4 m^{\prime \prime} p^{\prime \prime} r_{3}}{1-m^{\prime \prime}}+\frac{m^{\prime \prime 2} p^{\prime \prime 2}}{\left(1-m^{\prime \prime}\right)^{2}}
$$

consequently, in (A) thus altered (as to its form), the coefficient of r_{1}^{2} is $2\left(2 m^{\prime}+1\right) p^{\prime}$; of r_{3}^{2}, $2\left(2 m^{\prime \prime}+1\right) p^{\prime \prime}$; of r_{1},

$$
-\frac{2 m^{\prime}\left(2 m^{\prime}+1\right) p^{\prime 2}}{1-m^{\prime}}-4\left(1+m^{\prime}\right) p^{\prime 2}=-\frac{2\left(m^{\prime}+2\right) p^{\prime 2}}{1-m^{\prime}}
$$

of r_{3},

$$
-\frac{2 m^{\prime \prime}\left(2 m^{\prime \prime}+1\right) p^{\prime \prime 2}}{1-m^{\prime \prime}}-4\left(m^{\prime \prime}+1\right) p^{\prime \prime}\left(p^{\prime \prime}+2 p^{\prime}\right)=-\frac{2\left(m^{\prime \prime}+2\right) p^{\prime \prime 2}}{1-m^{\prime \prime}}-8\left(m^{\prime \prime}+1\right) p^{\prime} p^{\prime \prime} ;
$$

of $p^{\prime 3}$,

$$
\begin{aligned}
& \frac{m^{\prime 2}\left(m^{\prime}+\frac{1}{2}\right)}{\left(1-m^{\prime}\right)^{2}}+\frac{2 m^{\prime}\left(m^{\prime}+1\right)}{1-m^{\prime}}+\frac{4-4 m^{\prime}-m^{\prime 2}+2 m^{\prime 3}}{2\left(1-m^{\prime}\right)^{2}} \\
& \quad=\frac{1}{2}\left(1-m^{\prime}\right)^{-2}\left\{m^{\prime 2}\left(2 m^{\prime}+1\right)+4 m^{\prime}\left(1-m^{\prime 2}\right)+4-4 m^{\prime}-m^{\prime 2}+2 m^{\prime 3}\right\} \\
& \quad=\frac{2}{\left(1-m^{\prime}\right)^{2}}
\end{aligned}
$$

of $p^{\prime \prime 3}$,

$$
\frac{m^{\prime \prime 2}\left(m^{\prime \prime}+\frac{1}{2}\right)}{\left(1-m^{\prime \prime}\right)^{2}}+\frac{2 m^{\prime \prime}\left(m^{\prime \prime}+1\right)}{1-m^{\prime \prime}}+\frac{4-4 m^{\prime \prime}-m^{\prime \prime 2}+2 m^{\prime \prime 3}}{2\left(1-m^{\prime \prime}\right)^{2}}=\frac{2}{\left(1-m^{\prime \prime}\right)^{2}} ;
$$

of $p^{\prime 2} p^{\prime \prime}, 2\left(2 m^{\prime \prime}+3\right)$; and of $p^{\prime} p^{\prime \prime 2}$,

$$
\frac{4 m^{\prime \prime}\left(m^{\prime \prime}+1\right)}{1-m^{\prime \prime}}+2\left(2 m^{\prime \prime}+3\right)=\frac{2\left(m^{\prime \prime}+3\right)}{1-m^{\prime \prime}}
$$

the equation (A) becomes therefore, after being halved,

$$
\begin{align*}
0= & \left(2 m^{\prime}+1\right) p^{\prime} r_{1}^{2}+\left(2 m^{\prime \prime}+1\right) p^{\prime \prime} r_{3}^{2}-\frac{\left(m^{\prime}+2\right) p^{\prime 2} r_{1}}{1-m^{\prime}}-\frac{\left(m^{\prime \prime}+2\right) p^{\prime \prime 2} r_{3}}{1-m^{\prime \prime}} \\
& -4\left(m^{\prime \prime}+1\right) p^{\prime} p^{\prime \prime} r_{3}+\frac{p^{\prime 3}}{\left(1-m^{\prime}\right)^{2}}+\frac{p^{\prime \prime 3}}{\left(1-m^{\prime \prime}\right)^{2}}+\left(2 m^{\prime \prime}+3\right) p^{\prime 2} p^{\prime \prime}+\frac{\left(m^{\prime \prime}+3\right) p^{\prime} p^{\prime 2}}{1-m^{\prime \prime}}
\end{align*}
$$

which accordingly agrees with Herschel's equation (v), Light, art. 313, if we adapt that equation to our present notation, by changing the symbols $L^{\prime}, L^{\prime \prime}, \mu^{\prime}, \mu^{\prime \prime}, R^{\prime}, R^{\prime \prime \prime}$, to $p^{\prime}, p^{\prime \prime}, m^{\prime-1}, m^{\prime \prime-1}, r_{1}$, r_{3}, after taking care to read the last term of (v) as $\frac{2+3 \mu^{\prime \prime}}{\mu^{\prime \prime}} L^{\prime 2} L^{\prime \prime}$, as was remarked to Mr. Phillips in my letter of Jan. 3d. 1844 ; see p. 385 [of present volume]. In fact, it is easy to assure ourselves by mental calculations, that with this correction of the press, the equation (v) is a
consequence of the earlier equation (u), on the same page 391, of Light. And I must own that the equation $\left(A^{\prime}\right)$, in the present section, is of a somewhat simpler form than the equation (A) in the preceding section. With respect to Herschel's other equation, it must be deduced from (B), by changing $2\left(p^{\prime}+p^{\prime \prime}\right)^{2}$ to $\frac{3}{2}\left(p^{\prime}+p^{\prime \prime}\right)^{2}$, as mentioned above; doubling therefore, for simplicity, and transposing, we get for coefficient of $p^{\prime 2}$,

$$
-\frac{2 m^{\prime}\left(m^{\prime}+1\right)}{1-m^{\prime}}-\left(3+2 m^{\prime}\right)=-\frac{3+m^{\prime}}{1-m^{\prime}} ;
$$

of $p^{\prime \prime 2},-\frac{3+m^{\prime \prime}}{1-m^{\prime \prime}}$; and of $2 p^{\prime} p^{\prime \prime},-\left(3+2 m^{\prime \prime}\right)$; that is, we obtain the equation

$$
0=4\left(m^{\prime}+1\right) p^{\prime} r_{1}+4\left(m^{\prime \prime}+1\right) p^{\prime \prime} r_{3}-\frac{3+m^{\prime}}{1-m^{\prime}} p^{\prime 2}-\frac{3+m^{\prime \prime}}{1-m^{\prime \prime}} p^{\prime \prime 2}-2\left(3+2 m^{\prime \prime}\right) p^{\prime} p^{\prime \prime}
$$

which accordingly agrees with Herschel's formula (f), art. 469; or with my (B), by changing first member to $\left(p^{\prime}+p^{\prime \prime}\right)^{2}$. (See p. 385 [of present volume].)
[36.] Deduction of $\left(\mathrm{A}^{\prime}\right)$ and $\left(\mathrm{B}^{\prime}\right)$ from (1) and (2) of [33.].
In [33.], I have given a summary of all the calculations required for deducing the two equations, quadratic and linear, between the curvatures of a thin double spheric lens in vacuo, which will render it aplanatic for parallel incident indiametral rays of small obliquity: namely those marked (1) and (2), near the foot of the section just referred to. In [34.], I gave the calculations required for transforming these equations into the two marked (A) and (B), between $r_{1}+r_{2}$ and $r_{3}+r_{4}$; and in [35.], eliminated r_{2} and r_{4}. It would however have been simpler to have begun by performing this last elimination. Equation (1) being put under the form:

$$
\begin{gathered}
0=\left(p^{\prime}+p^{\prime \prime}\right)^{3}+p^{\prime}\left(r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}\right)+p^{\prime \prime} \cdot\left(r_{3}^{2}+r_{3} r_{4}+r_{4}^{2}\right)-2\left(1-m^{\prime}\right) p^{\prime} r_{1}^{2}+2 p^{\prime 2}\left(r_{3}-r_{2}\right) \\
-\frac{2 p^{\prime \prime}}{1-m^{\prime \prime}}\left\{m^{\prime \prime} p^{\prime}+\left(1-m^{\prime \prime}\right) r_{3}\right\}^{2}-2\left(p^{\prime}+p^{\prime \prime}\right)^{2} r_{4},
\end{gathered}
$$

(under which form it results very easily from the analysis of [33.], if we change r_{2} and r_{4} to their values in the preceding section, namely

$$
r_{2}=r_{1}-\frac{m^{\prime} p^{\prime}}{1-m^{\prime}}, \quad r_{4}=r_{3}-\frac{m^{\prime \prime} p^{\prime \prime}}{1-m^{\prime \prime}}
$$

we find, for the coefficient of r_{1}^{2},

$$
3 p^{\prime}-2\left(1-m^{\prime}\right) p^{\prime}=\left(1+2 m^{\prime}\right) p^{\prime} ;
$$

of r_{3}^{2},

$$
3 p^{\prime \prime}-2\left(1-m^{\prime \prime}\right) p^{\prime \prime}=\left(1+2 m^{\prime \prime}\right) p^{\prime \prime}
$$

of r_{1},

$$
-\frac{3 m^{\prime} p^{\prime 2}}{1-m^{\prime}}-2 p^{\prime 2}=-\frac{2+m^{\prime}}{1-m^{\prime}} p^{\prime 2}
$$

of r_{3},

$$
-\frac{3 m^{\prime \prime} p^{\prime \prime 2}}{1-m^{\prime \prime}}+2 p^{\prime 2}-4 m^{\prime \prime} p^{\prime} p^{\prime \prime}-2\left(p^{\prime}+p^{\prime \prime}\right)^{2}=-\frac{2+m^{\prime \prime}}{1-m^{\prime \prime}} p^{\prime 2}-4\left(1+m^{\prime \prime}\right) p^{\prime} p^{\prime \prime} ;
$$

of $p^{\prime 3}$,

$$
1+\left(\frac{m^{\prime}}{1-m^{\prime}}\right)^{2}+\frac{2 m^{\prime}}{1-m^{\prime}}=\left(1+\frac{m^{\prime}}{1-m^{\prime}}\right)^{2}=\left(1-m^{\prime}\right)^{-2}
$$

of $p^{\prime \prime 3}$,

$$
1+\left(\frac{m^{\prime \prime}}{1-m^{\prime \prime}}\right)^{2}+\frac{2 m^{\prime \prime}}{1-m^{\prime \prime}}=\left(1-m^{\prime \prime}\right)^{-2}
$$

$$
5^{6-2}
$$

of $p^{\prime 2} p^{\prime \prime}$,

$$
3-\frac{2 m^{\prime \prime 2}}{1-m^{\prime \prime}}+\frac{2 m^{\prime \prime}}{1-m^{\prime \prime}}=3+2 m^{\prime \prime}
$$

and of $p^{\prime} p^{\prime \prime 2}$,

$$
3+\frac{4 m^{\prime \prime}}{1-m^{\prime \prime}}=\frac{3+m^{\prime \prime}}{1-m^{\prime \prime}}
$$

the equation (A^{\prime}), in the preceding section, is therefore thus deduced, with great ease, from the equation (1) of [33.].

In like manner if we substitute for r_{2}, r_{4}, their values in the equation [namely, (2) of [33.], with the signs changed,]

$$
0=m^{\prime} p^{\prime} r_{1}+p^{\prime}\left(r_{2}-r_{3}\right)+\frac{m^{\prime \prime} p^{\prime \prime}}{1-m^{\prime \prime}}\left\{m^{\prime \prime} p^{\prime}+\left(1-m^{\prime \prime}\right) r_{3}\right\}+\left(p^{\prime}+p^{\prime \prime}\right) r_{4}-\left(p^{\prime}+p^{\prime \prime}\right)^{2}
$$

we find for the coefficient of $r_{1},\left(m^{\prime}+1\right) p^{\prime}$; of $r_{3},\left(m^{\prime \prime}+1\right) p^{\prime \prime}$; of $p^{\prime 2}$,

$$
-\frac{m^{\prime}}{1-m^{\prime}}-1=-\frac{1}{1-m^{\prime}}
$$

of $p^{\prime \prime 2}$,

$$
-\frac{m^{\prime \prime}}{1-m^{\prime \prime}}-1=-\frac{1}{1-m^{\prime \prime}} ;
$$

and of $p^{\prime} p^{\prime \prime}$,

$$
\frac{m^{\prime \prime 2}}{1-m^{\prime \prime}}-\frac{m^{\prime \prime}}{1-m^{\prime \prime}}-2=-\left(2+m^{\prime \prime}\right)
$$

therefore my condition (2) may be put under the form :

$$
\left(m^{\prime}+1\right) p^{\prime} r_{1}+\left(m^{\prime \prime}+1\right) p^{\prime \prime} r_{3}=\frac{p^{\prime 2}}{1-m^{\prime}}+\frac{p^{\prime 2}}{1-m^{\prime \prime}}+\left(m^{\prime \prime}+2\right) p^{\prime} p^{\prime \prime}
$$

Accordingly this last equation might be obtained from Herschel's formula (f), or from the equivalent formula at the foot of the preceding section, by changing the first member from 0 to $\left(p^{\prime}+p^{\prime \prime}\right)^{2}$, that is, to the square of the power of the compound lens, and reducing. But it seems to be convenient, as a summary of what is most necessary in the way of calculation for my purpose, to annex this section to [33.]; and that we may have both equations in one view, I shall here copy the other :

$$
\begin{align*}
0= & \left(2 m^{\prime}+1\right) p^{\prime} r_{1}^{2}+\left(2 m^{\prime \prime}+1\right) p^{\prime \prime} r_{3}^{2} \\
& -\frac{m^{\prime}+2}{1-m^{\prime}} p^{\prime 2} r_{1}-\frac{m^{\prime \prime}+2}{1-m^{\prime \prime}} p^{\prime \prime 2} r_{3}-4\left(m^{\prime \prime}+1\right) p^{\prime} p^{\prime \prime} r_{3} \\
& +\frac{p^{\prime 3}}{\left(1-m^{\prime}\right)^{2}}+\frac{p^{\prime 3}}{\left(1-m^{\prime \prime}\right)^{2}}+\frac{m^{\prime \prime}+3}{1-m^{\prime \prime}} p^{\prime \prime 2} p^{\prime}+\left(2 m^{\prime \prime}+3\right) p^{\prime 2} p^{\prime \prime}
\end{align*}
$$

[37.] Focal Lengths and Aberrations of a System of Refracting Surfaces of Revolution, close together at the origin.
(Feb. 22d, 1844.) By [32.],

$$
\frac{1}{x^{2}}\left(\frac{\mu_{n}}{z_{n+1}}-\frac{\mu_{0}}{z_{0}}-\frac{1}{F}\right)=\frac{1}{2} \frac{\mu_{n}}{z_{n+1}^{3}}-\frac{1}{2} \frac{\mu_{0}}{z_{0}^{3}}+4 F^{-4}\left(\sigma_{n}-\sigma_{0}\right)^{-4} T^{(4)} ;
$$

and by [33.], making, by [32.],

$$
\frac{\sigma_{n}}{\sigma_{n}-\sigma_{0}}=\frac{\mu_{n} F}{z_{n+1}}, \quad \frac{\sigma_{0}}{\sigma_{n}-\sigma_{0}}=\frac{\mu_{0} F}{z_{0}}, \quad\left(\text { for central rays, } \frac{\mu_{n} F}{z_{n+1}}-\frac{\mu_{0} F}{z_{0}}=1,\right)
$$

we have

$$
4 F^{-4}\left(\sigma_{n}-\sigma_{0}\right)^{-4} T^{\prime \prime(4)}=-\frac{\mu_{n} r_{n}}{z_{n+1}^{2}}+\frac{\mu_{0} r_{1}}{z_{0}^{2}}+\Sigma_{(i) 1}^{n-1} \mu_{i}^{-1}\left(\frac{\mu_{0}}{z_{0}}+F_{i}^{-1}\right)^{2} \Delta r_{i} ;
$$

$$
4 F^{-4}\left(\sigma_{n}-\sigma_{0}\right)^{-4} T^{\prime \prime \prime}(4)=\sum_{(i)} s_{i}^{n} \Delta_{i} \mu,=\frac{1}{2} \Sigma_{(i) 1}^{n} r_{i}^{3} \Delta_{i} \mu \text {, if surfaces be spheric ; }
$$

therefore, the equation determining the focal lengths and aberrations of the system is

$$
\frac{\mu_{n}}{z_{n+1}}-\frac{\mu_{0}}{z_{0}}-\frac{1}{F}=x^{2}\left\{\frac{1}{2} \frac{\mu_{n}}{z_{n+1}^{s}}-\frac{1}{2} \frac{\mu_{0}}{z_{0}^{3}}-\frac{\mu_{n} r_{n}}{z_{n+1}^{2}}+\frac{\mu_{0} r_{1}}{z_{0}^{2}}+\Sigma_{(i) 1}^{n-1} \mu_{i}^{-1}\left(\frac{\mu_{0}}{z_{0}}+F_{i}^{-1}\right)^{2} \Delta r_{i}+\Sigma_{(i) 1}^{n} s_{i} \Delta_{i} \mu\right\} ;
$$

in which $\mu_{0}, . . \mu_{i}, . . \mu_{n}$ are the indices of the $n+1$ successive media $; r_{1}, . . r_{n}$ are the curvatures of the n successive surfaces; $s_{1}, . . s_{n}$ the a-parabolicities, or the coefficients of $\left(\frac{x^{2}+y^{2}}{2}\right)^{2}$ in the developments of the z^{\prime} s $; \Delta_{i} \mu=\mu_{i}-\mu_{i-1}, F_{i}^{-1}=\sum_{(i)}{ }_{1}^{i} r_{i} \Delta_{i} \mu, F=F_{n} ; \Delta r_{i}=r_{i+1}-r_{i} ; x$ is the semi-aperture, or the common coordinate, perpendicular to the axis, of all the near points of incidence or refraction; z_{0} is the ordinate of intersection of the initial ray with the common axis of revolution, and z_{n+1} is the ordinate of the intersection of the final ray with that axis.

In the second member of the formula, we may change $\frac{\mu_{n}}{z_{n+1}}$ to $\frac{\mu_{0}}{z_{0}}+\frac{1}{F}$; and then that member takes the form

$$
\left(\lambda_{0}+\mu_{0} \lambda_{1} z_{0}^{-1}+\mu_{0}^{2} \lambda_{2} z_{0}^{-2}+\mu_{0}^{3} \lambda_{3} z_{0}^{-3}\right) x^{2} ;
$$

in which the coefficients have the values:

$$
\left\{\begin{array}{l}
\lambda_{0}=\frac{1}{2} \mu_{n}^{-2} F^{-3}-\mu_{n}^{-1} F^{-2} r_{n}+\Sigma_{((2) 1}^{n-1} \mu_{i}^{-1} F_{i}^{-2} \Delta r_{i}+\Sigma_{(i) 1}{ }^{n} s_{i} \Delta_{i} \mu ; \\
\lambda_{1}=\frac{3}{2} \mu_{n}^{-2} F^{-2}-2 \mu_{n}^{-1} F^{-1} r_{n}+2 \Sigma_{(2) 1}^{n-1} \mu_{i}^{-1} F_{i}^{-1} \Delta r_{i} ; \\
\lambda_{2}=\frac{3}{2} \mu_{n}^{-2} F^{-1}-\mu_{n}^{-1} r_{n}+\mu_{0}^{-1} r_{1}+\Sigma_{(i) 1}^{n-1} \mu_{i}^{-1} \Delta r_{i}=\frac{3}{2} \mu_{n}^{-2} F^{-1}-\Sigma_{(i) 1}^{n} r_{i} \Delta_{i}\left(\mu^{-1}\right) ; \\
\lambda_{3}=\frac{1}{2}\left(\mu_{n}^{-2}-\mu_{0}^{-2}\right) .
\end{array}\right.
$$

Comparing these expressions with the definitions given in [29.], [31.], of M, N, O, we have the relations

$$
\lambda_{0}=M ; \quad \lambda_{1}=2 N-\frac{1}{2} \mu_{n}^{-2} F^{-2} ; \quad \lambda_{2}=0-\frac{1}{2} \mu_{n}^{-2} F^{-1} .
$$

In this manner therefore we might find again that the conditions for the construction of Herschel's object glass, being $\lambda_{0}=0, \lambda_{1}=0$, are

$$
M=0, \quad N=\frac{1}{4} \mu_{n}^{-2} F^{-2},
$$

as in [32.]. (Mine are $M=0, N=0$, by [29.].)
[38.] For a single surface, $n=1, F^{-1}=r_{1}\left(\mu_{1}-\mu_{0}\right)$,

$$
\left\{\begin{array}{l}
\lambda_{0}=\frac{1}{2} \mu_{1}^{-2}\left(\mu_{1}-\mu_{0}\right)^{3} r_{1}^{3}-\mu_{1}^{-1}\left(\mu_{1}-\mu_{0}\right)^{2} r_{1}^{3}+\left(\mu_{1}-\mu_{0}\right) s_{1} ; \\
\lambda_{1}=\frac{3}{2} \mu_{1}^{-2}\left(\mu_{1}-\mu_{0}\right)^{2} r_{1}^{2}-2 \mu_{1}^{-1}\left(\mu_{1}-\mu_{0}\right) r_{1}^{2} ; \\
\lambda_{2}=\frac{3}{2} \mu_{1}^{-2}\left(\mu_{1}-\mu_{0}\right) r_{1}+\mu_{1}^{-1} \mu_{0}^{-1}\left(\mu_{1}-\mu_{0}\right) r_{1} ; \\
\lambda_{3}=\frac{1}{2}\left(\mu_{1}^{-2}-\mu_{0}^{-2}\right)
\end{array}\right.
$$

that is,

$$
\begin{gathered}
2 \mu_{1}^{2}\left(\mu_{1}-\mu_{0}\right)^{-1} r_{1}^{-3} \lambda_{0}=\left(\mu_{1}-\mu_{0}\right)^{2}-2 \mu_{1}\left(\mu_{1}-\mu_{0}\right)+2 \mu_{1}^{2} r_{1}^{-3} s_{1}=\mu_{0}^{2}, \text { for a sphere } ; \\
2 \mu_{1}^{2} \mu_{0}\left(\mu_{1}-\mu_{0}\right)^{-1} r_{1}^{-2} \lambda_{1}=3 \mu_{0}\left(\mu_{1}-\mu_{0}\right)-4 \mu_{0} \mu_{1}=-\mu_{0}\left(\mu_{1}+3 \mu_{0}\right) ; \\
2 \mu_{1}^{2} \mu_{0}^{2}\left(\mu_{1}-\mu_{0}\right)^{-1} r_{1}^{-1} \lambda_{2}=3 \mu_{0}^{2}+2 \mu_{0} \mu_{1}=\mu_{0}\left(2 \mu_{1}+3 \mu_{0}\right) ; \\
2 \mu_{1}^{2} \mu_{0}^{3}\left(\mu_{1}-\mu_{0}\right)^{-1} \lambda_{3}=-\mu_{0}\left(\mu_{1}+\mu_{0}\right) ;
\end{gathered}
$$

also

$$
\mu_{0}^{2}\left(r_{1}-z_{0}^{-1}\right)^{3}-\mu_{0} \mu_{1} z_{0}^{-1}\left(r_{1}-z_{0}^{-1}\right)^{2}=\mu_{0}\left(r_{1}-z_{0}^{-1}\right)^{2}\left\{-\left(\mu_{1}+\mu_{0}\right) z_{0}^{-1}+\mu_{0} r_{1}\right\} ;
$$

therefore the formula for a refraction at a single spheric surface is

$$
\frac{\mu_{1}}{z_{2}}-\frac{\mu_{0}}{z_{0}}-\left(\mu_{1}-\mu_{0}\right) r_{1}=\frac{\mu_{0}\left(\mu_{1}-\mu_{0}\right)}{\mu_{1}^{2}}\left(r_{1}-z_{0}^{-1}\right)^{2}\left\{-\left(\mu_{1}+\mu_{0}\right) z_{0}^{-1}+\mu_{0} r_{1}\right\} \frac{x^{2}}{2} .
$$

This accordingly agrees with Herschel's formulæ, namely

$$
f=(1-m) R+m D ; \quad \Delta f=\frac{m(1-m)}{2}(R-D)^{2}\{m R-(1+m) D\} y^{2} .
$$

(In a paper in the Phil. Mag. for October, 1841 [No. XIII of the present volume, equation (26.)], I deduced, for the aberration of a single refracting spheric surface, an equation which, in the present notation, is

$$
\text { first member (as above) }=\frac{\mu_{0} \mu_{1}}{\mu_{1}-\mu_{0}}\left(r_{1}-z_{0}^{-1}-z_{2}^{-1}\right)\left(z_{2}^{-1}-z_{0}^{-1}\right)^{2} \frac{x^{2}}{2}
$$

Accordingly,

$$
\left.\mu_{1}\left(z_{2}^{-1}-r_{1}\right)=\mu_{0}\left(z_{0}^{-1}-r_{1}\right)=\frac{\mu_{0} \mu_{1}}{\mu_{1}-\mu_{0}}\left(z_{0}^{-1}-z_{2}^{-1}\right) .\right)
$$

For a lens in vacuo, $n=2, \mu_{0}=\mu_{2}=1, \mu_{1}=\mu$,

$$
\begin{gathered}
F_{1}^{-1}=r_{1}(\mu-1), \quad F_{2}^{-1}=F^{-1}=\left(r_{1}-r_{2}\right)(\mu-1), \\
\mu_{1}^{-1} F_{1}^{-2} \Delta r_{1}=-\mu^{-1}(\mu-1) r_{1}^{2} F^{-1}, \quad \mu_{1}^{-1} F_{1}^{-1} \Delta r_{1}=-\mu^{-1} r_{1} F^{-1}, \\
-\Sigma_{(2)}^{2} r_{i} \Delta_{i} \frac{1}{\mu}=-r_{1}\left(\mu^{-1}-1\right)-r_{2}\left(1-\mu^{-1}\right)=\mu^{-1} F^{-1} ;
\end{gathered}
$$

therefore

$$
\left\{\begin{array}{l}
2 F \lambda_{0}=F^{-2}-2 r_{2} F^{-1}-2 \mu^{-1}(\mu-1) r_{1}^{2}+2\left(\frac{s_{1}-s_{2}}{r_{1}-r_{2}}\right) \\
2 F \lambda_{1}=3 F^{-1}-4 r_{2}-4 \mu^{-1} r_{1}=-\left(3-3 \mu+\frac{4}{\mu}\right) r_{1}-(3 \mu+1) r_{2} \\
2 F \lambda_{2}=3+2 \mu^{-1} ; \quad \lambda_{3}=0
\end{array}\right.
$$

If the lens be spheric, the coefficient of r_{1}^{2} in $2 \mu F^{\prime} \lambda_{0}$ is
that of $r_{1} r_{2}$ is

$$
\mu(\mu-1)^{2}-2(\mu-1)+\mu=2-2 \mu^{2}+\mu^{3} ;
$$

and that of r_{2}^{2} is

$$
-2(\mu-1)^{2} \mu-2(\mu-1) \mu+\mu=-2 \mu^{3}+2 \mu^{2}+\mu
$$

$$
\mu\left\{(\mu-1)^{2}+2(\mu-1)+1\right\}=\mu^{3} .
$$

Hence, for a single infinitely thin spheric lens in vacuo, with curvatures r_{1}, r_{2}, index μ, focal length F, we have the equation

$$
\frac{1}{z_{3}}-\frac{1}{z_{0}}-\frac{1}{F}=\frac{x^{2}}{2 \mu F}\left\{\begin{array}{l}
\left(2-2 \mu^{2}+\mu^{3}\right) r_{1}^{2}+\left(\mu+2 \mu^{2}-2 \mu^{3}\right) r_{1} r_{2}+\mu^{3} r_{2}^{2} \\
\left.-\left(4+3 \mu-3 \mu^{2}\right) r_{1}+\left(\mu+3 \mu^{2}\right) r_{2}\right) z_{0}^{-1}+(2+3 \mu) z_{0}^{-2}
\end{array}\right\} ;
$$

agreeing with Herschel's formula. (Compare [28.].)
(Feb. 23d, 1844.) For a thin double spheric lens in vacuo, we have*

$$
\frac{1}{z_{5}}-\frac{1}{z_{0}}-\frac{1}{F}=x^{2}\left\{M+\left(2 N-\frac{1}{2} F^{-2}\right) z_{0}^{-1}+\left(O-\frac{1}{2} F^{-1}\right) z_{0}^{-2}\right\}
$$

in which

$$
F^{-1}=\left(\mu^{\prime}-1\right)\left(r_{1}-r_{2}\right)+\left(\mu^{\prime \prime}-1\right)\left(r_{3}-r_{4}\right),
$$

and M, N, O have been already developed [pp. 429, 430]. Thus $M\left(=-F^{-4} L=F^{-4}\left(4 Q+\frac{1}{2} F\right)\right)$ is the quarter of the function of indices and curvatures, which is equated to zero in (A) of [13.], or [34.]; or it is the half of the function equated to zero in $\left(A^{\prime}\right)$, of [35.], [36.]. (As a verification, when $r_{1}=r_{2}=r_{3}=0, z_{0}^{-1}=0$, we thus get

$$
L=-F^{4} M=-\frac{\frac{1}{2} F}{\left(1-m^{\prime \prime}\right)^{2}}=-\frac{1}{2} \mu^{\prime \prime 2} r_{4}^{2} F^{3}
$$

which agrees with the expression for a single plano-spheric lens, exposed to parallel rays, namely, by this section,

$$
\left.\frac{1}{z_{3}}=\frac{1}{F}+\frac{\mu^{2}}{2} \frac{r_{2}^{2} x^{2}}{F} .\right)
$$

For the same double lens, $2 N$ is the first member of (B) of [13.], with the signs changed; or it is the second member minus the first member of (B) of [34.]; or N is second member minus first member of (B^{\prime}) of [36.]. Finally, by [31.],

$$
0=2 F^{-1}+m^{\prime} p^{\prime}+m^{\prime \prime} p^{\prime \prime}
$$

In general, for any combination of thin lenses in vacuo, (spheric or not,)

$$
\lambda_{2}=\frac{3}{2} F^{-1}+\Sigma m p=\Sigma\left(\frac{3}{2}+m\right) p .
$$

[^8][39.] Foci and Aberrations for oblique parallel initial rays.
(Feb. 22d, 1844.) By [37.], for any combination of refracting surfaces of revolution close together in vacuo at the origin, the focal lengths and aberrations may be determined by the formula
$$
\frac{1}{z_{n+1}}=\frac{1}{z_{0}}+\frac{1}{F}+\left(\lambda_{0}+\frac{\lambda_{1}}{z_{0}}+\frac{\lambda_{2}}{z_{0}^{2}}\right) x^{2}
$$
in which, with the notation of [29.], [31.],
$$
\lambda_{0}=M ; \quad \lambda_{1}=2 N-\frac{1}{2} F^{-2} ; \quad \lambda_{2}=0-\frac{1}{2} F^{-1} .
$$

The initial ray passes through the points $0, z_{0}$ and $x, 0$; the final through $x, 0$ and $0, z_{n+1}$. (The final $x, 0$ is not exactly enough coincident with the initial $x, 0$; see below, and [40.].)* Hence the equation of the initial ray may be put under the form
and that of the final under the form

$$
\frac{\xi_{0}}{x}+\frac{\xi_{0}}{z_{0}}=1
$$

$$
\frac{\xi_{n+1}}{x}+\frac{\zeta_{n+1}}{z_{n+1}}=1
$$

if ξ_{0}, ζ_{0} be the general or current coordinates of the one, and ξ_{n+1}, ζ_{n+1} those of the other. Now let the initial rays be given to have a small and common inclination to the axis; then $\frac{x}{z_{0}}$ is small and constant $=-\alpha_{0}$; or $\frac{1}{z_{0}}=-\frac{\alpha_{0}}{x}, \alpha_{0}$ being a quantity of which we shall neglect the square. Then the formula gives

$$
\frac{x}{z_{n+1}}=\frac{x}{F}+\lambda_{0} x^{3}-\alpha_{0}\left(1+\lambda_{1} x^{2}\right) ;
$$

therefore

$$
\xi_{n+1}=x-\frac{x}{z_{n+1}} \zeta_{n+1}=x+\alpha_{0} \zeta_{n+1}\left(1+\lambda_{1} x^{2}\right)-\left(\frac{x}{F}+\lambda_{0} x^{3}\right) \zeta_{n+1} ;
$$

such, then, is, approximately, the equation of the final ray from the point $x, 0$, if the initial ray be parallel to $\xi_{0}=\alpha_{0} \zeta_{0}$, and if α_{0} be very small. For example, the final ray from 0,0 is $\xi_{n+1}=\alpha_{0} \zeta_{n+1}$, that is, light passes through the common vertex with an unchanged direction. Also if $x=F \alpha_{0}$, then the principal part of the inclination of the final ray vanishes.

Now consider the intersection of any other final ray with that from the vertex. We have, for this intersection,
that is,

$$
0=1+\zeta_{n+1}\left(\lambda_{1} \alpha_{0} x-\frac{1}{F}-\lambda_{0} x^{2}\right) ;
$$

that is,

$$
\zeta_{n+1}=F^{\prime}\left(1+F^{\prime} \lambda_{0} x^{2}-F^{\prime} \lambda_{1} \alpha_{0} x\right)^{-1}=F-F^{2} \lambda_{0} x^{2}+F^{2} \lambda_{1} \alpha_{0} x_{0}
$$

This conclusion is not exact enough, owing to the differences of the x 's of intersection of the initial and final rays with the axis of x, which is perpendicular to the axis of the system at the common vertex. See [40.]. See also the investigation resumed and completed in [41.], and by other methods in [43.], [44.].*

* [These remarks were inserted subsequently.]

When $M=0, N=0$, and $\mu_{n}=\mu_{0}=1$, we have, on the one hand, by [37.], the relation*

$$
\begin{equation*}
\frac{1}{z_{n+1}}=\frac{1}{z_{0}}+\frac{1}{F}-\frac{1}{2} \frac{x^{2}}{F^{2} z_{0}}+\left(0-\frac{1}{2} F^{-1}\right)\left(\frac{x}{z_{0}}\right)^{2} ; \tag{a}
\end{equation*}
$$

F being the focal length of the combination of surfaces of revolution, supposed to be close together in vacuo, and to be constructed according to my two conditions for the destruction of aberration; O is a certain other constant, namely, by [31.], $2 F^{-1}-\Sigma_{(0) 1}{ }_{1} r_{i} \Delta_{i} \frac{1}{\mu} ; z_{0}, z_{n+1}$ are the ordinates of intersection of the initial and final rays with the axis of the combination, or of z, the common vertex being taken for origin, and x is the semiaperture. Under the same conditions, by [31.],

$$
T=-\frac{1}{2} F\left(\alpha_{n}-\alpha_{0}\right)^{2}+\frac{1}{4} F^{2} O \alpha_{0}^{2}\left(\alpha_{n}-\alpha_{0}\right)^{2}-\frac{1}{8} F\left(\alpha_{n}^{2}-\alpha_{0}^{2}\right)^{2} ;
$$

therefore the equations of the initial and final rays are respectively

$$
\begin{align*}
& \text { (b) } \quad x_{0}-\alpha_{0}\left(1+\frac{1}{2} \alpha_{0}^{2}\right) z_{0}+F\left(\alpha_{n}-\alpha_{0}\right)=\frac{1}{2} F^{2} O \alpha_{0}\left(\alpha_{n}-\alpha_{0}\right)\left(2 \alpha_{0}-\alpha_{n}\right)-\frac{1}{2} F \alpha_{0}\left(\alpha_{n}^{2}-\alpha_{0}^{2}\right) ; \tag{b}\\
& \text { (c) } \quad x_{n+1}-\alpha_{n}\left(1+\frac{1}{2} \alpha_{n}^{2}\right) z_{n+1}+F\left(\alpha_{n}-\alpha_{0}\right)=\frac{1}{2} F^{2} O \alpha_{0}^{2}\left(\alpha_{n}-\alpha_{0}\right)-\frac{1}{2} F \alpha_{n}\left(\alpha_{n}^{2}-\alpha_{0}^{2}\right) .
\end{align*}
$$

To show that (a) is consistent with (b) and (c), we may observe that the two last equations give, when $x_{0}=0, x_{n+1}=0$,

$$
\begin{aligned}
& \frac{F\left(\alpha_{n}-\alpha_{0}\right)}{z_{0}}=\alpha_{0}\left\{1+\frac{1}{2} \alpha_{0}^{2}+\frac{1}{2} F O \alpha_{0}\left(2 \alpha_{0}-\alpha_{n}\right)-\frac{1}{2} \alpha_{0}\left(\alpha_{n}+\alpha_{0}\right)\right\}, \\
& \frac{F\left(\alpha_{n}-\alpha_{0}\right)}{z_{n+1}}=\alpha_{n}\left\{1+\frac{1}{2} \alpha_{n}^{2}+\frac{1}{2} F O \alpha_{0}^{2}-\frac{1}{2} \alpha_{n}\left(\alpha_{n}+\alpha_{0}\right)\right\} \\
& =\alpha_{n}\left(1-\frac{1}{2} \alpha_{0} \alpha_{n}+\frac{1}{2} F O \alpha_{0}^{2}\right) ;
\end{aligned}
$$

therefore
(d)

$$
z_{n+1}^{-1}-z_{0}^{-1}-F^{-1}=-\frac{1}{2} F^{-1} \alpha_{0} \alpha_{n}+O \alpha_{0}^{2}
$$

the error being of the 4th dimension. Now, to the accuracy of the 1st dimension, or indeed of the 2nd, inclusive, we have

$$
x=-F\left(\alpha_{n}-\alpha_{0}\right) ; \quad \alpha_{0}=-\frac{x}{z_{0}} ; \quad \alpha_{n}=-\frac{x}{z_{n+1}} ;
$$

therefore

$$
O a_{0}^{2}=O\left(\frac{x}{z_{0}}\right)^{2}, \quad-\frac{1}{2} F^{-1} \alpha_{0} \alpha_{n}=-\frac{1}{2} F^{-1} x^{2} z_{0}^{-1} z_{n+1}^{-1}=-\frac{1}{2} F^{-1} x^{2} z_{0}^{-1}\left(z_{0}^{-1}+F^{-1}\right) ;
$$

therefore (d) transforms itself into (a); and reciprocally, (a) may be changed to (d).

[40.] (Foci for oblique rays.)

Now, the equation (c) expresses that if α_{0} be given, all the final rays pass through the common focus
(e)

$$
X_{n+1}=\alpha_{0} F\left(1-\frac{1}{2} F O \alpha_{0}^{2}\right), \quad Z_{n+1}=\left(1-\frac{1}{2} \alpha_{0}^{2}\right) F\left(1-\frac{1}{2} F O \alpha_{0}^{2}\right) ;
$$

(compare [31.]; \dagger) and I wish to see whether we could deduce the existence and position of this common point or focus of the final rays, for a given small obliquity of the parallel initial rays, from the equation (a) or (d).

> * [The x of this formula was defined, without ambiguity, in [32.], p. 432.]
> + [The initial and final rays are at present considered to be in vacuo.]

That there is nearly such a common focus for the final rays, when the initial rays have been oblique to the axis but parallel to each other, may be proved even from the equation of focal lengths (not aberrations) for direct rays, namely

$$
\begin{equation*}
z_{n+1}^{-1}=z_{0}^{-1}+F^{-1} \tag{f}
\end{equation*}
$$

For the relation

$$
X_{n+1}=\frac{x\left(Z_{n+1}-z_{n+1}\right)}{-z_{n+1}}=x\left\{1-\left(z_{0}^{-1}+F^{-1}\right) Z_{n+1}\right\}
$$

is satisfied for all values of x and z_{0} which are in a constant ratio to each other, namely $x=-\alpha_{0} z_{0}$, by supposing $Z_{n+1}=F, X_{n+1}=\alpha_{0} F$. Thus, the law of the formation of approximate oblique foci, for parallel (and indeed for diverging or converging) initial rays, may be deduced from the law (f) of the approximate foci for diverging (or converging) initial rays. In fact, by the law (f), we can so far trace the course of a given initial ray, as to determine, with only an error of the 2nd dimension, the intersection of the final ray with the axis of z, and with only an error of the 3rd dimension in the intersection of the same ray with the axis of x, (the refracting surfaces being close together at the origin;) we can therefore determine the coordinates X and Z of this intersection of two final rays with each other, with only an error of the 3rd dimension (at most) in X, and of the 2 nd dimension in Z.

Thus, if the initial rays diverge from or converge to X_{0}, Z_{0}, we have the two equations

$$
\begin{equation*}
X_{0}=x\left(1-Z_{0} z_{0}^{-1}\right), \quad X_{n+1}=x\left(1-Z_{n+1} z_{n+1}^{-1}\right) ; \tag{g}
\end{equation*}
$$

therefore

$$
X_{n+1} Z_{n+1}^{-1}-X_{0} Z_{0}^{-1}=x\left(Z_{n+1}^{-1}-Z_{0}^{-1}-F^{-1}\right)
$$

and this will be satisfied independently of x, by establishing the following equations, which contain the theory of images:

$$
\begin{equation*}
Z_{n+1}^{-1}=Z_{0}^{-1}+F^{-1} ; \quad X_{n+1} Z_{n+1}^{-1}=X_{0} Z_{0}^{-1} . \tag{h}
\end{equation*}
$$

But although the equation (a) determines for a given initial ray the intersection of the final ray with the axis of z, so as to leave only an error of the 4th dimension, yet because that equation leaves us still liable to commit an error of the 3rd dimension with respect to the intersection of the same final ray with the axis of x, or the point where it emerges from the last refracting surface, we are liable, till farther information is procured respecting this last point, to commit an error of the 3 rd dimension relatively to X, and therefore one of the 2 nd dimension relatively to Z, of the intersection of two final rays with each other. We must not therefore expect to deduce, though we may perhaps verify, the existence of the focus (e), with the accuracy required above, by means of the equation (a) alone.

We must therefore combine with (a) another formula, derived from (b) and (c), for the change of x, at the common tangent to all the surfaces, that is, when $z_{0}=0, z_{n+1}=0$; namely

$$
\begin{equation*}
\Delta x=\frac{1}{2} F\left(\alpha_{n}-\alpha_{0}\right)^{2}\left\{F O \alpha_{0}-\left(\alpha_{n}+\alpha_{0}\right)\right\} ; \tag{i}
\end{equation*}
$$

or, in the same order of approximation, (see foot of preceding section,)
(j)

$$
\Delta x=\frac{1}{2} F^{-1} x^{3}\left\{(2-F O) z_{0}^{-1}+F^{-1}\right\} ;
$$

in which, [see [31.]]

$$
2-F O=\frac{\sum_{(i) 1}^{n} r_{i} \Delta_{i} \frac{1}{\mu}}{\sum_{(i) 1}^{n} r_{i} \Delta_{i} \mu}
$$

[41.] (Foci for oblique rays.)

Resuming therefore the investigations begun in [39.], with respect to the intersection, which we shall now call X_{n+1}, Z_{n+1}, of any two final rays corresponding to any two parallel oblique incident rays, or rays for which $\frac{x}{z_{0}}$ is constant, and employing the two formulæ (a) and (j); we have, as an equation of a final ray, the following:

$$
\begin{equation*}
\frac{X_{n+1}}{x+\Delta x}+\frac{Z_{n+1}}{z_{n+1}}=1 \tag{k}
\end{equation*}
$$

that is,
(1)

$$
\begin{aligned}
X_{n+1}\{1 & \left.-\frac{1}{2} F^{-1} x^{2}\left(\overline{2-F 0} z_{0}^{-1}+F^{-1}\right)\right\} \\
& +x Z_{n+1}\left\{z_{0}^{-1}+F^{-1}-\frac{1}{2} F^{-2} x^{2} z_{0}^{-1}+\left(O-\frac{1}{2} F^{-1}\right) x^{2} z_{0}^{-2}\right\}=x .
\end{aligned}
$$

Differentiating this equation with respect to x, but treating $x z_{0}^{-1}$ as constant, we find
(m) $-\frac{1}{2} X_{n+1} F^{-1}\left(\overline{2-F O} x z_{0}^{-1}+2 F^{-1} x\right)+Z_{n+1}\left\{F^{-1}-F^{-2} x^{2} z_{0}^{-1}+\left(O-\frac{1}{2} F^{-1}\right) x^{2} z_{0}^{-2}\right\}=1 ;$
so that we are led to try to satisfy the system of equations

$$
-\frac{1}{2} X_{n+1} F^{-1}(2-F O) x z_{0}^{-1}+Z_{n+1}\left\{F^{-1}+\left(O-\frac{1}{2} F^{-1}\right) x^{2} z_{0}^{-2}\right\}=1 ;
$$

and

$$
X_{n+1}\left(1-\frac{1}{2} F^{-2} x^{2}\right)+Z_{n+1} x z_{0}^{-1}\left(1-\frac{1}{2} F^{-2} x^{2}\right)=0,
$$

that is,

$$
X_{n+1}+Z_{n+1} x z_{0}^{-1}=0
$$

which can in fact be satisfied (in our present order of approximation) by supposing
(n)

$$
\left\{\begin{array}{l}
Z_{n+1}=\left\{F^{-1}+\frac{1}{2}\left(F^{-1}+O\right) x^{2} z_{0}^{-2}\right\}^{-1}=F\left(1-\frac{1}{2} x^{2} z_{0}^{-2}\right)\left(1-\frac{1}{2} F O x^{2} z_{0}^{-2}\right) ; \\
\text { and } \quad X_{n+1}=-x z_{0}^{-1} Z_{n+1} ;
\end{array}\right.
$$

that is, if we make $-x z_{0}^{-1}=\tan \sin ^{-1} \alpha_{0}$, and therefore $1-\frac{1}{2} x^{2} z_{0}^{-2}=\cos \sin ^{-1} \alpha_{0}$,
(o)

$$
\frac{X_{n+1}}{\alpha_{0}}=\frac{Z_{n+1}}{1-\frac{1}{2} a_{0}^{2}}=F\left(1-\frac{1}{2} F O \alpha_{0}^{2}\right) ;
$$

formulæ which agree with (e).
The formulæ (a) and (j) are therefore sufficient to show that, under the conditions which have conducted to them, namely, those denoted already by
(p)

$$
M=0, \quad N=0, \quad \mu_{n}=\mu_{0}=1,
$$

the aberration of the system is destroyed, for oblique parallel indiametral incident rays: which is one part of the theory of my object glass.
(Feb. 23d.) For any combination of coaxal refracting surfaces of revolution, placed close together at the origin, we have, by [31.], instead of the expression (j) at the foot of the preceding section, the following, in which Δx is the total change of abscissa of intersection of the ray with the axis of x, that is, with the common tangent to the surfaces:

$$
\Delta x=\frac{\delta T}{\delta \sigma_{0}}+\frac{\delta T}{\delta \sigma_{n}}=\frac{1}{2} F^{3} N\left(\sigma_{n}-\sigma_{0}\right)^{3}+\frac{1}{2} F^{2} O \sigma_{0}\left(\sigma_{n}-\sigma_{0}\right)^{2}-\frac{1}{2} \mu_{n}^{-2} F\left(\sigma_{n}+\sigma_{0}\right)\left(\sigma_{n}-\sigma_{0}\right)^{2}
$$

therefore

$$
\begin{aligned}
\Delta x & =\frac{1}{2} F^{3}\left(N-\mu_{n}^{-2} F^{-2}\right)\left(\sigma_{n}-\sigma_{0}\right)^{3}+\frac{1}{2} F\left(F O-2 \mu_{n}^{-2}\right) \sigma_{0}\left(\sigma_{n}-\sigma_{0}\right)^{2} \\
& =-\frac{x^{3}}{2}\left\{N-\mu_{n}^{-2} F^{-2}+\left(0-2 \mu_{n}^{-2} F^{-1}\right) \frac{\mu_{0}}{z_{0}}\right\}^{*} \\
& =\frac{x^{3}}{2}\left\{-\Sigma_{(i)}^{n-1} \mu_{i}^{-1} F_{i}^{-1} \Delta r_{i}+\mu_{n}^{-1} F_{n}^{-1} r_{n}+\mu_{0} z_{0}^{\prime-1} \sum_{(i)}^{n} r_{i} \Delta_{i} \frac{1}{\mu}\right\}
\end{aligned}
$$

$z_{0}{ }^{\prime}$ being the ordinate of the point where the first incident ray crosses the axis of the system. \dagger From geometrical considerations, I think that this ought to be equal to

$$
\frac{x^{3}}{2} \Sigma_{(i)}{ }_{1}^{n} r_{i} \Delta_{i} \frac{1}{z^{\prime}}
$$

z_{i}^{\prime} being the ordinate of the point where the i th refracted ray crosses the axis of the system. If so, we must have

$$
\Delta_{1} \frac{1}{z^{\prime}}=\mu_{1}^{-1} F_{1}^{-1}+\mu_{0} z_{0}^{-1} \Delta_{1} \frac{1}{\mu}=r_{1}\left(1-\frac{\mu_{0}}{\mu_{1}}\right)+z_{0}^{-1}\left(\frac{\mu_{0}}{\mu_{1}}-1\right)
$$

that is,

$$
\frac{\mu_{1}}{z_{1}^{\prime}}=\frac{\mu_{0}}{z_{0}^{\prime}}+r_{1}\left(\mu_{1}-\mu_{0}\right),
$$

which is true; and also,

$$
r_{n} \Delta_{n} \frac{1}{z^{\prime}}=\mu_{n-1}^{-1} F_{n-1}^{-1}\left(r_{n-1}-r_{n}\right)+\mu_{n}^{-1} F_{n}^{-1} r_{n}-\mu_{n-1}^{-1} F_{n-1}^{-1} r_{n-1}+\mu_{0} z_{0}^{-1} r_{n}\left(\mu_{n}^{-1}-\mu_{n-1}^{-1}\right)
$$

that is,

$$
z_{n}^{\prime-1}-z_{n-1}^{\prime-1}=\mu_{n}^{-1} F_{n}^{-1}-\mu_{n-1}^{-1} F_{n-1}^{-1}+\mu_{0} z_{0}^{-1}\left(\mu_{n}^{-1}-\mu_{n-1}^{-1}\right),
$$

that is,

$$
z_{n}^{\prime-1}-\mu_{n}^{-1}\left(F_{n}^{-1}+\mu_{0} z_{0}^{-1}\right)=z_{1}^{\prime-1}-\mu_{1}^{-1}\left(F_{1}^{-1}+\mu_{0} z_{0}^{-1}\right)=0
$$

or,
which is also true.

$$
\mu_{n} z_{n}^{\prime-1}=\mu_{0} z_{0}^{-1}+F_{n}^{-1}
$$

[42.] \ddagger (Foci for oblique rays.)

Let $X P Q$ be any incident, and $X^{\prime} P q$ the corresponding refracted ray, $C X X^{\prime}$ being a tangent
 to the refracting surface $C P$ at the vertex C, and E, on the axis $C q Q$, being the centre of curvature. Let $P M$, as in Herschel's figure on last page, \S be a perpendicular let fall from the point of incidence P, on the axis $C Q$; but let us, as in the notation already employed in my own investigations on recent pages of this book, denote $P M$ by $x_{i} ; C E$
by r_{i}^{-1}; let us also denote $C Q$ by z_{i-1}^{\prime}; and $C q$ by z_{i}^{\prime}. Then, $\overline{C M}=\frac{1}{2} r_{i} x_{i}^{2}$, nearly;

$$
\frac{\overline{C M}}{\overline{M Q}}=\frac{1}{2} z_{i-1}^{\prime-1} r_{i} x_{i}^{2}=\frac{\overline{C X}-\overline{M P}}{\overline{M P}}
$$

* [Since $\frac{\sigma_{0}}{\sigma_{n}-\sigma_{0}}=\frac{\mu_{0} F}{z_{0}}$; see [37.].]
$+\left[z_{0}^{\prime}=z_{0}.\right]$
\ddagger [The method of the characteristic function is not used in [42.] to [45.] inclusive.]
\S [We have omitted the page referred to, and a few others, headed "Comparison with Herschel."]
therefore
neglecting x_{i}^{5}; similarly

$$
\overline{C X}-\overline{M P}=\frac{1}{2} z_{i-1}^{\prime-1} r_{i} x_{i}^{3}
$$

therefore

$$
\overline{C X^{\prime}}-\overline{M P}=\frac{1}{2} z_{i}^{\prime-1} r_{i} x_{i}^{3}
$$

$$
\overline{X X^{\prime}}=\overline{C X}-\overline{C X}=\frac{1}{2}\left(z_{i}^{\prime-1}-z_{i-1}^{\prime-1}\right) r_{i} x_{i}^{3}
$$

neglecting x_{i}^{5}. Hence if we denote $\overline{C X}$ by x_{i-1}^{\prime}, and $\overline{C X^{\top}}$ by $x_{i-1}^{\prime}+\Delta_{i} x^{\prime}$, we have

$$
\Delta_{i} x^{\prime}=r_{i} \frac{x_{i-1}^{\prime 3}}{2} \Delta_{i} \frac{1}{z^{\prime}}
$$

in which, as in former investigations,

$$
\Delta_{i} \frac{1}{z^{\prime}}=z_{i}^{\prime-1}-z_{i-1}^{\prime-1}
$$

Let therefore the first incident ray cut the axis of x, on the common tangent $C X$ to all the refracting surfaces of revolution at their vertex, in a point of which the abscissa, on that tangent, is $x_{0}{ }^{\prime}$, or simply x^{\prime}. The last refracted ray will cut the same axis, or tangent, $C X$, in a point of which the abscissa is

$$
x_{n}{ }^{\prime}=x^{\prime}+\frac{1}{2} x^{\prime 3} \Sigma_{(i)}{ }_{1}^{n} r_{i} \Delta_{i} \frac{1}{z^{\prime}} .
$$

But

$$
z_{i}^{\prime-1}=\mu_{i}^{-1}\left(\mu_{0} z_{0}^{\prime-1}+F_{i}^{-1}\right)
$$

if we neglect the aberrations which have no effect in the present investigation (relatively to $x_{n}{ }^{\prime}$); $z_{0}{ }^{\prime}$ being here the same as z_{0}. Hence, denoting for abridgment $z_{0}{ }^{\prime}$ by z^{\prime}, we have for the abscissa $x^{\prime \prime}$ of intersection of the final ray with the axis of x, the expression:

$$
x^{\prime \prime}=x^{\prime}+\frac{x^{\prime 3}}{2}\left\{\frac{\mu_{0}}{z^{\prime}} \Sigma_{(i)}^{n} r_{i} \Delta_{i} \frac{1}{\mu}+\Sigma_{(i)}^{n} r_{i} \Delta_{i}\left(\frac{1}{\mu} F^{-1}\right)\right\} ;
$$

in which we are to consider F_{0}^{-1} as equal to zero, because

$$
\Delta_{1} \frac{1}{z^{\prime}}=z_{1}^{\prime-1}-z_{0}^{\prime-1}=\mu_{0} z_{0}^{\prime-1} \Delta_{1} \frac{1}{\mu}+\mu_{1}^{-1} F_{1}^{-1}
$$

Thus,

$$
\Sigma_{(i)}^{n} r_{i} \Delta_{i}\left(\mu^{-1} F^{-1}\right)=r_{n} \mu_{n}^{-1} F_{n}^{-1}-\Sigma_{(i)}{ }_{1}^{n-1} \mu_{i}^{-1} F_{i}^{-1} \Delta r_{i}
$$

and by employing the symbols λ of [37.], this last expression becomes

$$
-\frac{1}{2} \lambda_{1}+\frac{3}{4} \mu_{n}^{-2} F^{-2}
$$

With the same symbols,

$$
\Sigma_{(i) 1}^{n} r_{i} \Delta_{i}\left(\frac{1}{\mu}\right)=-\lambda_{2}+\frac{3}{2} \mu_{n}^{-2} F^{-1}
$$

thus we may write, for any combination of coaxal refracting surfaces of revolution, placed close together at the origin,

$$
\left\{\begin{array}{l}
x^{\prime \prime-1}=x^{\prime-1}+\frac{x^{\prime}}{4}\left\{\lambda_{1}+2 \lambda_{2} \frac{\mu_{0}}{z^{\prime}}-\frac{3}{2} \mu_{n}^{-2} F^{-1}\left(F^{-1}+2 \frac{\mu_{0}}{z^{\prime}}\right)\right\} \\
z^{\prime \prime-1}=\mu_{n}^{-1}\left(\frac{\mu_{0}}{z^{\prime}}+\frac{1}{z^{\prime}}\right)+\mu_{n}^{-1} x^{\prime 2}\left(\lambda_{0}+\lambda_{1} \frac{\mu_{0}}{z^{\prime}}+\lambda_{2}\left(\frac{\mu_{0}}{z^{\prime}}\right)^{2}+\lambda_{3}\left(\frac{\mu_{0}}{z^{\prime}}\right)^{3}\right)
\end{array}\right.
$$

$x^{\prime}, 0$ and $0, z^{\prime}$ being the coordinates of the two points in which the initial ray crosses the axes of x and z; and $x^{\prime \prime}, 0$ and $0, z^{\prime \prime}$ being the coordinates of the two points where the final ray crosses the same axes; so that the equations of these rays may be thus written:

$$
X^{\prime} x^{\prime-1}+Z^{\prime} z^{\prime-1}=1 ; \quad X^{\prime \prime} x^{\prime \prime}-1+Z^{\prime \prime} z^{\prime \prime}-1=1
$$

μ_{0} being initial, and μ_{n} final index ; $\frac{1}{F}=\Sigma_{(i)}{ }_{1}^{n} r_{i} \Delta_{i} \mu$, as before, and $\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}$ having the values assigned in [37.].

And, in the order of approximation to which we have hitherto confined ourselves, we may investigate all circumstances respecting the arrangement of any system of indiametral rays, by the help of these last systems of equations.
[43.] (Foci for oblique rays.)
Thus, if the initial rays be parallel, x^{\prime} will bear a constant ratio to z^{\prime}; and to find the intersection of two infinitely near refracted rays, we may differentiate the equation of the refracted ray with respect to x^{\prime}, treating $\frac{x^{\prime}}{z^{\prime}}$ as constant; and thus we obtain, after multiplying by x^{\prime},

$$
\frac{X^{\prime \prime}}{x^{\prime}}+\frac{\mu_{0}}{\mu_{n} z^{\prime}}\left(1+\lambda_{3}\left(\frac{\mu_{0} x^{\prime}}{z^{\prime}}\right)^{2}\right) Z^{\prime \prime}=\frac{X^{\prime \prime}}{4}\left(\lambda_{1}-\frac{3}{2} \mu_{n}^{-2} F^{-2}\right) x^{\prime}+Z^{\prime \prime}\left(\lambda_{1} \frac{\mu_{0}}{\mu_{n}} \frac{x^{\prime}}{z^{\prime}}+2 \lambda_{0} \frac{x^{\prime}}{\mu_{n}}\right) x^{\prime}
$$

Neglecting at first small terms, we have the two equations

$$
\frac{X^{\prime \prime}}{x}=1-\mu_{n}^{-1} Z^{\prime \prime}\left(\frac{\mu_{0}}{z^{\prime}}+\frac{1}{F}\right), \quad \frac{X^{\prime \prime}}{x^{\prime}}=-\mu_{n}^{-1} Z^{\prime \prime} \frac{\mu_{0}}{z^{\prime}}
$$

which give as approximate coordinates of the intersection of the two infinitely near rays,

$$
X^{\prime \prime}=-\frac{\mu_{0} x^{\prime} F}{z^{\prime}} ; \quad Z^{\prime \prime}=\mu_{n} F ;
$$

then substituting these values in the terms of the 2 nd dimension, in the equation in the present section, and in that obtained by subtracting it from the one in the preceding section, namely

$$
\begin{gathered}
1=\frac{Z^{\prime \prime}}{\mu_{n} F}+\frac{X^{\prime \prime} x^{\prime}}{2}\left(\lambda_{1}-\frac{3}{2} \mu_{n}^{-2} F^{-2}\right)+\frac{X^{\prime \prime} x^{\prime}}{2} \frac{\mu_{0}}{z^{\prime}}\left(\lambda_{2}-\frac{3}{2} \mu_{n}^{-2} F^{-1}\right) \\
+\mu_{n}^{-1} Z^{\prime \prime} x^{\prime 2}\left(3 \lambda_{0}+2 \frac{\lambda_{1} \mu_{0}}{z^{\prime}}+\frac{\lambda_{2} \mu_{0}^{2}}{z^{\prime 2}}\right)
\end{gathered}
$$

we find 1st.,

$$
\begin{aligned}
\frac{Z^{\prime \prime}}{\mu_{n} F}= & 1+\frac{\mu_{0} x^{\prime 2} F}{2 z^{\prime}}\left(\lambda_{1}-\frac{3}{2} \mu_{n}^{-2} F^{-2}\right)+\frac{\mu_{0}^{2} x^{\prime 2} F}{2 z^{\prime 2}}\left(\lambda_{2}-\frac{3}{2} \mu_{n}^{-2} F^{-1}\right) \\
& -x^{\prime 2} F\left(3 \lambda_{0}+2 \frac{\lambda_{1} \mu_{0}}{z^{\prime}}+\frac{\lambda_{2} \mu_{0}^{2}}{z^{\prime 2}}\right)
\end{aligned}
$$

so that this expression will involve one term varying with $x^{\prime 2}$, and another with $\frac{x^{\prime 2}}{z^{\prime}}$, $\left(\frac{x^{\prime}}{z^{\prime}}\right.$ being constant, $)$ unless the two following conditions are satisfied:

$$
\lambda_{0}=0 ; \quad \lambda_{1}=-\frac{1}{2} \mu_{n}^{-2} F^{-2} ;
$$

that is, as before,

$$
M=0, \quad N=0 .
$$

But 2nd., when these two conditions are satisfied, then, (see [37.],)

$$
\begin{aligned}
\frac{Z^{\prime \prime}}{\mu_{n} F} & =1-\frac{1}{2}\left(\frac{\mu_{0} x^{\prime}}{z^{\prime}}\right)^{2} F\left(\lambda_{2}+\frac{3}{2} \mu_{n}^{-2} F^{-1}\right)=1-\frac{1}{2}\left(\frac{\mu_{0} x^{\prime}}{\mu_{n} z^{\prime}}\right)^{2}\left(1+\mu_{n}^{2} F O\right) \\
& =\left(1-\frac{1}{2} \alpha_{n}^{2}\right)\left(1-\frac{1}{2} F O \sigma_{0}^{2}\right)
\end{aligned}
$$

if

$$
\frac{\alpha_{0}}{1-\frac{1}{2} \alpha_{0}^{2}}=-\frac{x^{\prime}}{z^{\prime}}, \quad \alpha_{n}=\frac{\mu_{0} \alpha_{0}}{\mu_{n}}, \quad \sigma_{0}=\mu_{0} \alpha_{0} ;
$$

and, by the first equation in the present section,

$$
\begin{gathered}
X^{\prime \prime}=-\frac{x^{\prime} \mu_{0} F}{z^{\prime}}\left(1-\frac{1}{2} \alpha_{0}^{2}\right)\left(1-\frac{1}{2} \mu_{0}^{2} F O \alpha_{0}^{2}\right)=\mu_{n} \alpha_{n} F\left(1-\frac{1}{2} F O \sigma_{0}^{2}\right), \\
\sqrt{X^{\prime \prime 2}+Z^{\prime 2}}=\mu_{n} F\left(1-\frac{1}{2} F O \sigma_{0}^{2}\right), \quad \text { as in [31.]. }
\end{gathered}
$$

We find therefore, in this way also, namely from the connexion between the equations of an initial and a final ray, given in the last section, or from the expression for $x^{\prime \prime}$, combined with that for $z^{\prime \prime}$, as depending on x^{\prime} and z^{\prime}, that the additional condition, besides $\lambda_{0}=0$, or $M=0$, necessary in order that, for parallel oblique initial rays, the final rays in the diametral plane may converge to one common focus, is

$$
\lambda_{1}=-\frac{1}{2} \mu_{n}^{-2} F^{-2}, \text { or } N=0, \text { as before. }
$$

Nor have we in this last method of investigating these conditions $M=0, N=0$, employed the function T any farther than as in deducing the expressions of [37.] for $\lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3}$; which might, however, have been deduced by other methods, for example, by that which Herschel uses.

The theory of my object glass, therefore, (at least so far as indiametral rays are concerned,) and the fundamental equations which'construct it, might have been deduced, although less elegantly, without the introduction of $m y$ characteristic function T.
[44.] (Foci for oblique rays.)
Without differentiating the equation of the final ray, given in [42.], let us put it under the form

$$
\begin{gathered}
0=\left\{X^{\prime \prime}+\frac{Z^{\prime \prime}}{\mu_{n}} \frac{\mu_{0} x^{\prime}}{z^{\prime}}\left(1+\lambda_{3}\left(\frac{\mu_{0} x^{\prime}}{z^{\prime}}\right)^{2}\right)\right\}+x^{\prime}\left\{-1+\frac{Z^{\prime \prime}}{\mu_{n}}\left(F^{-1}+\lambda_{2}\left(\frac{\mu_{0} x^{\prime}}{z^{\prime}}\right)^{2}\right)+\frac{X^{\prime \prime}}{2} \frac{\mu_{0} x^{\prime}}{z^{\prime}}\left(\lambda_{2}-\frac{3}{2} \mu_{n}^{-2} F^{-1}\right)\right\} \\
+\frac{x^{2}}{4}\left\{\left(X^{\prime \prime}+4 \frac{Z^{\prime \prime}}{\mu_{n}} \frac{\mu_{0} x^{\prime}}{z^{\prime}}\right) \lambda_{1}-\frac{3}{2} X^{\prime \prime} \mu_{n}^{-2} F^{-2}\right\}+x^{\prime 3} \frac{Z^{\prime \prime}}{\mu_{n}} \lambda_{0}
\end{gathered}
$$

and then we see that if it is to be satisfied for given values of $\frac{x^{\prime}}{z^{\prime}}, X^{\prime \prime}, Z^{\prime \prime}$, while x^{\prime} remains undetermined, we must have

$$
\begin{gathered}
\frac{Z^{\prime \prime}}{\mu_{n} F}=1-\frac{1}{2}\left(F \lambda_{2}+\frac{3}{2} \mu_{n}^{-2}\right)\left(\frac{\mu_{0} x^{\prime}}{z^{\prime}}\right)^{2} ; \quad \frac{X^{\prime \prime}}{F}=-\frac{\mu_{0} x^{\prime}}{z^{\prime}}\left\{1+\left(\lambda_{3}-\frac{1}{2} F^{\prime} \lambda_{2}-\frac{3}{4} \mu_{n}^{-2}\right)\left(\frac{\mu_{0} x^{\prime}}{z^{\prime}}\right)^{2}\right\} ; \\
\lambda_{1}=-\frac{1}{2} \mu_{n}^{-2} F^{-2} ; \quad \lambda_{0}=0 .
\end{gathered}
$$

And if we now employ the expressions, (see [37.]),

$$
\lambda_{0}=M ; \quad \lambda_{1}=2 N-\frac{1}{2} \mu_{n}^{-2} F^{-2} ; \quad \lambda_{2}=0-\frac{1}{2} \mu_{n}^{-2} F^{-1} ; \quad \lambda_{3}=\frac{1}{2}\left(\mu_{n}^{-2}-\mu_{0}^{-2}\right) ;
$$

we arrive (as before) at the conditions

$$
M=0, \quad N=0
$$

and at the coordinates

$$
\begin{aligned}
& X^{\prime \prime}=\mu_{n} F \alpha_{n}\left(1-\frac{1}{2} \mu_{0}^{2} F O \alpha_{0}^{2}\right), \\
& Z^{\prime \prime}=\mu_{n} F\left(1-\frac{1}{2} \alpha_{n}^{2}\right)\left(1-\frac{1}{2} \mu_{0}^{2} F^{\prime} O \alpha_{0}^{2}\right),
\end{aligned}
$$

in which
therefore

$$
\alpha_{0}=-\frac{x^{\prime}}{z^{\prime}}\left(1-\frac{1}{2} \frac{x^{\prime 2}}{z^{\prime 2}}\right), \quad \alpha_{n}=\frac{\mu_{0} \alpha_{0}}{\mu_{n}}
$$

as before. (See [31.].)
(Feb. 24th.) The equation of the final ray, given at the top of this section, is accurate to the 3rd dimension inclusive ; and if the initial rays be parallel to each other, although oblique to the axis, then $\frac{x^{\prime}}{z^{\prime}}$ is constant, but x^{\prime} is variable. Now x^{\prime} is the distance of the initial ray from the origin, that is, from the common vertex of the n refracting surfaces, measured upon their common tangent; if then we make $x^{\prime}=0$, without making $\frac{x^{\prime}}{z^{\prime}}=0$, we shall obtain the equation of the final ray which corresponds to the ray incident at the vertex, namely:

$$
X^{\prime \prime}=-\frac{Z^{\prime \prime}}{\mu_{n}} \frac{\mu_{0} x^{\prime}}{z^{\prime}}\left(1+\lambda_{3}\left(\frac{\mu_{0} x^{\prime}}{z^{\prime}}\right)^{2}\right)
$$

Substituting for λ_{3} its value, $\lambda_{3}=\frac{1}{2}\left(\mu_{n}^{-2}-\mu_{0}^{-2}\right)$, and making
this equation becomes

$$
\alpha_{0}=-\frac{x^{\prime}}{z^{\prime}}\left(1-\frac{1}{2}\left(\frac{x^{\prime}}{z^{\prime}}\right)^{2}\right), \quad \alpha_{n}=\frac{\mu_{0} \alpha_{0}}{\mu_{n}},
$$

$$
X^{\prime \prime}=\alpha_{n} Z^{\prime \prime}\left(1+\frac{1}{2} \alpha_{n}^{2}\right),
$$

as might have been expected, because the ray incident at the vertex emerges there, with that change of direction (if μ_{n} be different from μ_{0}) which is expressed by the equation $\alpha_{n}=\frac{\mu_{0} \alpha_{0}}{\mu_{n}}$. If we next inquire what is the intersection of THIS final ray, with any other, corresponding to any value of x^{\prime} different from zero, we are to suppress the part independent of x^{\prime} in the equation at the top of this section, and then divide by x^{\prime}, (treating always $\frac{x^{\prime}}{z^{\prime}}$ as constant,) and we thus find:

$$
\begin{aligned}
0=-1+\frac{Z^{\prime \prime}}{\mu_{n}}\left(F^{-1}+\lambda_{2}\left(\frac{\mu_{0} x^{\prime}}{z^{\prime}}\right)^{2}\right) & +\frac{X^{\prime \prime}}{2} \frac{\mu_{0} x^{\prime}}{z^{\prime}}\left(\lambda_{2}-\frac{3}{2} \mu_{n}^{-2} F^{-1}\right) \\
& +\frac{x^{\prime}}{4}\left\{\left(X^{\prime \prime}+4 \frac{Z^{\prime \prime}}{\mu_{n}} \frac{\mu_{0} x^{\prime}}{z^{\prime}}\right) \lambda_{1}-\frac{3}{2} X^{\prime \prime} \mu_{n}^{-2} F^{-2}\right\}+x^{\prime 2} \frac{Z^{\prime \prime}}{\mu_{n}} \lambda_{0}
\end{aligned}
$$

that is, in the same order of approximation, (neglecting here terms of 3rd dimension,)
$1=\frac{Z^{\prime \prime}}{\mu_{n}}\left\{F^{-1}+\lambda_{2}\left(\frac{\mu_{0} x^{\prime}}{z^{\prime}}\right)^{2}-\frac{1}{2}\left(\frac{\mu_{0} x^{\prime}}{z^{\prime}}\right)^{2}\left(\lambda_{2}-\frac{3}{2} \mu_{n}^{-2} F^{-1}\right)\right\}+\frac{3 x^{\prime}}{4} \frac{\mu_{0} x^{\prime}}{z^{\prime}} \frac{Z^{\prime \prime}}{\mu_{n}}\left(\lambda_{1}+\frac{1}{2} \mu_{n}^{-2} F^{-2}\right)+\lambda_{0} x^{\prime 2} \frac{Z^{\prime \prime}}{\mu_{n}} ;$
that is,

$$
\frac{\mu_{n}}{Z^{\prime \prime}}=\frac{1}{F}+\frac{1}{2}\left(\lambda_{2}+\frac{3}{2} \mu_{n}^{-2} F^{-1}\right)\left(\frac{\mu_{0} x^{\prime}}{z^{\prime}}\right)^{2}+\frac{3 x^{\prime}}{4}\left(\lambda_{1}+\frac{1}{2} \mu_{n}^{-2} F^{-2}\right)\left(\frac{\mu_{0} x^{\prime}}{z^{\prime}}\right)+\lambda_{0} x^{\prime 2} .
$$

[45.] (Foci for oblique rays.)

If in the next place we seek the intersection of the ray emerging from the vertex, with that which emerges from an infinitely near point, the incident rays having been parallel; we are to make $x^{\prime}=0$, (but not $\frac{x^{\prime}}{z^{\prime}}=0$) in the formula just now given, and we find

$$
\frac{\mu_{n}}{Z^{\prime \prime}}=\frac{1}{F}+\frac{1}{2}\left(\lambda_{2}+\frac{3}{2} \mu_{n}^{-2} F^{-1}\right)\left(\frac{\mu_{0} x^{\prime}}{z^{\prime}}\right)^{2}
$$

as a formula which determines the central focus for oblique rays in the diametral plane of an instrument, composed of any number of coaxal refracting surfaces of revolution, placed close together in vacuo ${ }^{*}$ at the origin. This central focus is the point $X^{\prime \prime}, Z^{\prime \prime}$, of which the coordinates are given in the upper half of the preceding section.

* [The restriction of being in vacuo is not actually made.]

нм ${ }^{\text {P }}$

Let the ordinate of this central focus of oblique rays, or the $Z^{\prime \prime}$ determined by the last formula, be called, for a moment, $Z^{\prime \prime \prime}$; then, the formula at the end of the preceding section becomes:

$$
\frac{\mu_{n}}{Z^{\prime \prime}}=\frac{\mu_{n}}{Z^{\prime \prime}}+\frac{3 x^{\prime}}{4}\left(\lambda_{1}+\frac{1}{2} \mu_{n}^{-2} F^{-2}\right)\left(\frac{\mu_{0} x^{\prime}}{z^{\prime}}\right)+\lambda_{0} x^{2}
$$

and gives

$$
Z^{\prime \prime}=Z^{\prime \prime}-
$$

so that there are in general two kinds of indiametral aberration, for parallel incident rays; one kind depending solely on the semiaperture x^{\prime}, and answering to the term $\lambda_{0} x^{\prime 2}$ in the expression for $\frac{\mu_{n}}{Z^{\prime \prime}}$; the other kind depending partly on that semiaperture x^{\prime}, and partly on the obliquity or inclination of the incident rays, of which the tangent is $-\frac{x^{\prime}}{z^{\prime}}$. If both these aberrations, or parts of aberration, are to vanish, we must have not only $\lambda_{0}=0$, which is the most usual and recognised condition, but also

$$
\lambda_{1}+\frac{1}{2} \mu_{n}^{-2} F^{-2}=0 ;
$$

and thus are still again conducted, by a slightly different path, to the same two conditions already several times (in this book) assigned by me, for the construction of an aplanatic object glass.

If the most usual condition of aplanaticity, namely $\lambda_{0}=0$, be satisfied, but not mine; or if, (which is indeed a case of the last supposition,) the two conditions of Herschel are satisfied, namely $\lambda_{0}=0, \lambda_{1}=0$; then the longitudinal aberration for oblique parallel rays involves a term proportional to the semiaperture x^{\prime}, and changing sign therewith; so that the corresponding term of lateral aberration is of one constant sign, independent of the sign of the semiaperture x^{\prime}, being indeed proportional to $x^{\prime 2}\left(\frac{x^{\prime}}{z^{\prime}}\right)$, while $\frac{x^{\prime}}{z^{\prime}}$ depends only on the inclination of the initial rays to the axis of the instrument. In fact when $Z^{\prime \prime}$ has the value above assigned for the central focus of oblique rays, the aberration of $X^{\prime \prime}$, measured from the ray which issues at the vertex, is, if $\lambda_{0}=0$, expressed by the formula:

$$
X^{\prime \prime}+\frac{Z^{\prime \prime}}{\mu_{n}} \frac{\mu_{0} x^{\prime}}{z^{\prime}}\left(1-\frac{1}{2} \frac{x^{\prime 2}}{z^{\prime 2}}\right)\left(1+\frac{1}{2} \frac{\mu_{0}^{2}}{\mu_{n}^{2}} \frac{x^{\prime 2}}{z^{\prime 2}}\right)=-\frac{3}{4} \frac{\mu_{0} x^{\prime}}{z^{\prime}} F\left(\lambda_{1}+\frac{1}{2} \mu_{n}^{-2} F^{-2}\right) x^{\prime 2}
$$

[46.] Ex-diametral rays, by function T.
System of Refracting Surfaces, close together at the origin.
(Feb. 29th, 1844.) For the last 40 pages, (right and left hand,)* we have considered only the arrangement of rays in the diametral plane of $x z$. But let us now resume the investigation

* [That is, of the note book. Seven of these pages, devoted to a comparison of Hamilton's results with those of Herschel on spherical aberration, are not reproduced here, and one page, headed "Foci for oblique rays. Caustic curve.", is blank. The investigations on rays in a diametral plane, as here reproduced, are contained in sections [14.] to [45.], inclusive.]

Ex-diametral Rays, of fandin I.

cossidues only, th assanyement of rays in the dismetral flene
of x. Not bet as now reswot the invert offeap 184,
Dofforif indess pill $T_{0}=0$, the not $T=0$; th thel

$$
\begin{aligned}
& T=\sum T_{i} ; \quad T_{i}=乛_{i}^{-1} \Delta_{i} v \cdot\left\{1-\sqrt{1+\frac{\left(\Delta_{i} \sigma\right)^{2}+\left(\Delta_{i}\right)^{2}}{\left(\Delta_{i} \nu\right)^{2}}}\right\} ;
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\left(\Delta_{i} \sigma\right)^{2}+\left(\Delta_{i} \tau\right)^{2}}{2 \sigma_{i} \Delta_{i} v} ;\left(\Delta_{i} \nu\right)^{-1}=\left(\Delta_{i} \mu_{\rho}\right)^{-1}\left\{1+\frac{1}{2}\left(\Delta_{i} \mu\right)^{-1} \Delta_{i} \frac{\sigma^{2}+\nu^{2}}{\mu^{2}}\right\}^{i} ; \\
& T_{i}^{(2)}=-\frac{\left(\Delta_{i} \sigma\right)^{2}+\left(\Delta_{i} \sigma\right)^{2}}{2 \gamma_{i} \Delta_{i} \mu} ; T_{i}^{\prime \prime}(4)=-\frac{\gamma_{i}^{-1}}{4} \frac{\left(\Delta_{i} \sigma\right)^{2}+\left(\Delta_{i} \sigma\right)^{2}}{\left(\Delta_{i} \mu\right)^{2}} \Delta_{i} \frac{\sigma^{2}+\sigma^{2}}{\mu} ; \\
& T_{i}^{\prime \prime(A)}=+\frac{r_{i}^{-1}}{8} \frac{\left.(\Delta \cdot \sigma)^{2}+(\Delta \cdot \sigma)^{2}\right)^{2}}{\left(\Delta_{i} \mu\right)^{3}} ; T^{(2)}=\sum T_{i}^{(2)} ; T^{(1)}=\sum T_{i}^{\prime \prime(2)} ; \\
& T^{\prime \prime \prime(4)}=\Sigma T^{\prime \prime \prime}(4) ; \stackrel{\left(\Delta_{i} \mu\right)^{j}}{T}=T^{(2)}+T^{\prime \prime}(4)+T^{\prime \prime(4)} ; 0=\frac{\delta}{\delta \sigma_{i}} T^{(2)} ; 0 \frac{\delta}{\sqrt{\pi}} T_{i}^{(w)} ;
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{F}_{i}^{-1}=\sum_{i, 1} \tau_{i} \Delta_{i} \mu, \quad \sigma_{i}-\sigma_{0}=C \mathcal{F}_{i}^{-1}, J_{i}-\tau_{0}=\tau_{i}=D \mathcal{F}_{i}^{-1}, \mathcal{F}_{n}=\mathcal{F} \text {, } \\
& \sigma_{x}-\sigma_{0}=C \mathcal{F}^{-1}, \quad \tau_{x}=\partial \mathcal{F}^{-1} ; \quad \mathcal{F}^{-1}\left(\sigma_{i}-\sigma_{0}\right)=\mathcal{F}_{i}^{-1}\left(\sigma_{x}-\sigma_{0}\right), \mathcal{F}_{i}^{-1}=\mathcal{F}_{i}^{-1} \sigma_{n} ; \\
& \mathcal{F}^{-1} \Delta_{i} \sigma=\left(\sigma_{x}-\sigma_{0}\right) r_{i} \Delta_{i} \mu, \quad \mathcal{F}^{-1} \Delta_{i} \top=J_{n} \gamma_{i} \Delta_{i} \mu ; \\
& T_{i}^{(2)}=-\frac{1}{2} \mathcal{F}^{2} x_{i} \Delta i \mu\left\{\left(\sigma_{x}-\sigma_{0}\right)^{2}+J_{x}^{2}\right\}, \quad T^{(2)}=-\frac{1}{2} \mathcal{F}\left\{\left(\sigma_{x}-\sigma_{0}\right)^{2}+\sigma_{x}^{2}\right\} \text {; } \\
& T_{i}^{\prime \prime}(4)=-\frac{1}{4} \mathcal{F}_{i}^{2} x_{i} \cdot \frac{\sigma^{2}+\tau^{2}}{\mu} \times\left\{\left(\sigma_{x}-\sigma_{0}\right)^{2}+\tau_{x}^{2}\right\} ; T_{i}^{\prime \prime \prime}=\frac{1}{8} f^{4} \tau_{i}^{3} \Delta_{i} \mu\left\{\left(\sigma_{n}-\sigma_{0}\right)^{2}+\sigma_{n}^{2}\right\}_{i}^{2} \\
& \left.\mathcal{F}^{n(4)}=\frac{1}{4} \mathcal{F}^{4}\left(\sigma_{n}-\sigma_{0}^{2}\right)+\tau_{n}^{2}\right)\left\{-\mathcal{F}^{-2} \gamma_{n}^{x} \frac{\sigma_{n}^{2}+\sigma_{n}^{2}}{\mu_{n}}+\mathcal{F}^{-2}+\frac{\sigma_{0}^{2}}{\mu_{0}}+\sum_{(i) 1}^{n-1} \mu_{i}^{-1}\left\{\left(\mathcal{F}_{0}^{-1}+\mathcal{F}_{i}^{-1} \sigma_{n}^{-\sigma_{0}}\right)^{2}+\mathcal{F}_{i}^{-2} J_{n}^{2}\right\} \Delta x\right\} \\
& \left.\left.\boldsymbol{T}^{\prime \prime \prime(i)}=\frac{1}{8} \mathcal{F}^{4}\left(\sigma_{n}-\sigma_{0}\right)^{2}+J_{n}^{2}\right)^{2} \sum_{i, 1}^{n} x_{i}^{3} \Delta_{i \mu}=\frac{1}{4} \mathcal{F}^{4}\left(\sigma_{n}-\sigma_{0}\right)^{2}+\sigma_{n}^{2}\right)^{2} \sum_{i, 1}^{n} \Gamma_{i} \Delta_{i} \mu \text {. }
\end{aligned}
$$

$\|$ Hence, if io the expm on $T^{(2)}$ an $\left(\sigma_{n}+\sigma_{0}\right)^{-2} T^{(4)}$, fr indiandeabtary, Thatis, for tin can $r_{x}=0$, we charg $\sigma_{n}^{2} L_{0} \sigma_{x}^{2}+T_{x}^{2}$, we tireteget (the exam for T^{2}, and $\left\{\left(\sigma_{x}-\sigma_{0}\right)^{2}+T_{0}\right\}^{2} T^{(14)}$, yo exdiamebal ver ;
 how, in the sotalion of μ Her 18%, to indiametide rage,

$$
\begin{aligned}
& T^{(4)}=Q \sigma_{n}^{4}+Q \sigma_{n}^{3} \sigma_{0}+\left(Q^{\prime}+Q_{n}\right) \sigma_{n}^{2} \sigma_{0}^{2}+Q^{\prime} \sigma_{n} \sigma_{0}^{3}+Q^{\prime \prime} \sigma_{0}^{4} ; \\
& \because T^{(k)}\left(\sigma_{n}-\sigma_{0}\right)^{-1}=Q_{n}^{3}+\left(Q_{0}+Q_{1}\right) \sigma_{n}^{2} \sigma_{0}+\left(Q+Q_{1}+Q^{\prime}+Q_{11}\right) \sigma_{n} \sigma_{0}^{2} \\
& +\left(Q+Q+Q^{\prime}+Q_{1}+Q_{\prime}^{\prime}\right) \sigma_{0}^{3}, \\
& \text { an } 0=Q+Q_{1}+Q^{\prime}+Q_{1}+Q_{1}^{\prime}+Q_{1 \prime} \text {; aloo, ine likens, }
\end{aligned}
$$

$$
\begin{aligned}
& \left.0=Q+Q+Q+Q_{n}+\sigma_{0}\right)^{-2}=Q_{n}^{2}+\left(2 Q+Q_{1}\right) \sigma_{n} \sigma_{0}+\left(3 Q+2 Q_{1}+Q^{\prime}+Q_{\prime \prime}\right) \sigma_{0}^{2}, \\
& \text { and } \quad 0=4 Q+3 Q_{1}+2\left(Q^{\prime}+Q_{n}\right)+Q^{\prime},
\end{aligned}
$$

Hereon, for exdiametral rayp, the esritional fart is

$$
\sigma_{n}^{2}\left\{Q\left(\sigma_{n}^{2}+\sigma_{n}^{2}\right)+\left(2 Q+Q_{1}\right) \sigma_{n} \sigma_{0}+\left(3 Q+2 Q+Q^{\prime}+Q_{1 \prime}\right) \sigma_{0}^{2}\right\}+Q \sigma_{n}^{2}\left(\sigma_{n}-\sigma_{0}\right)^{2}
$$

and the whote $T^{(4)}=Q\left(\sigma_{x}^{2}+T_{n}^{2}\right)^{2}+Q_{1} \sigma_{n} \sigma_{0}\left(\sigma_{n}^{2}+J_{n}^{2}\right)+Q^{\prime} \sigma_{0}^{2}\left(\sigma_{n}^{2}+J_{n}^{2}\right)+Q_{11} \sigma_{0}^{2} \sigma_{n}^{2}$
 wift wheteon valu' of $Q^{\prime}+Q "$ mar hoon teen gneviours deruce from the atas, poth indiail lap, or fiom th dev jof (i)for $5=0$.

4. 1
of [33.], supposing indeed still $\tau_{0}=0,{ }^{*}$ but not $\tau_{i}=0$; so that

$$
\begin{aligned}
& T=\Sigma T_{i} ; \quad T_{i}=r_{i}^{-1} \Delta_{i} v \cdot\left\{1-\sqrt{1+\frac{\left(\Delta_{i} \sigma\right)^{2}+\left(\Delta_{i} \tau\right)^{2}}{\left(\Delta_{i} v\right)^{2}}}\right\} ; \\
& \nu_{i}=\mu_{i}-\frac{\sigma_{i}^{2}+\tau_{i}^{2}}{2 \mu_{i}} ; \\
& T_{i}=T_{i}^{(2)}+T_{i}^{\prime \prime(4)}+T^{\prime \prime \prime \prime}(4) ; \quad T_{i}^{(2)}+T_{i}^{\prime \prime(4)}=-\frac{\left(\Delta_{i} \sigma\right)^{2}+\left(\Delta_{i} \tau\right)^{2}}{2 r_{i} \Delta_{i} v} ; \\
& \left(\Delta_{i} v\right)^{-1}=\left(\Delta_{i} \mu\right)^{-1}\left\{1+\frac{1}{2}\left(\Delta_{i} \mu\right)^{-1} \Delta_{i} \frac{\sigma^{2}+\tau^{2}}{\mu}\right\} ; \\
& T_{i}^{(2)}=-\frac{\left(\Delta_{i} \sigma\right)^{2}+\left(\Delta_{i} \tau\right)^{2}}{2 r_{i} \Delta_{i} \mu} ; \quad T_{i}^{\prime \prime}{ }_{i}^{(4)}=-\frac{r_{i}^{-1}}{4} \frac{\left(\Delta_{i} \sigma\right)^{2}+\left(\Delta_{i} \tau\right)^{2}}{\left(\Delta_{i} \mu\right)^{2}} \Delta_{i} \frac{\sigma^{2}+\tau^{2}}{\mu} ; \quad T^{\prime \prime \prime}{ }_{i}^{(4)}=\frac{r_{i}^{-1}}{8}-\frac{\left(\left(\Delta_{i} \sigma\right)^{2}+\left(\Delta_{i} \tau\right)^{2}\right)^{2}}{\left(\Delta_{i} \mu\right)^{3}} ; \\
& T^{(2)}=\Sigma T_{i}^{(2)} ; \quad T^{\prime \prime(4)}=\Sigma T_{i}^{\prime \prime(4)} ; \quad T^{\prime \prime \prime}(4)=\Sigma T_{i}^{\prime \prime \prime}(4) ; \quad T=T^{(2)}+T^{\prime \prime(4)}+T^{\prime \prime \prime}(4) ; \\
& 0=\frac{\delta}{\delta \sigma_{i}} T^{(2)} ; \quad 0=\frac{\delta}{\delta \tau_{i}} T^{(2)} ; \\
& \because \frac{\Delta_{i} \sigma}{r_{i} \Delta_{i} \mu}=\frac{\Delta_{i+1} \sigma}{r_{i+1} \Delta_{i+1} \mu} ; \quad \frac{\Delta_{i} \tau}{r_{i} \Delta_{i} \mu}=\frac{\Delta_{i+1} \tau}{r_{i+1} \Delta_{i+1} \mu} ; \quad \Delta_{i} \sigma=C r_{i} \Delta_{i} \mu ; \quad \Delta_{i} \tau=D r_{i} \Delta_{i} \mu ; \\
& F_{i}^{-1}=\Sigma_{(i) 1}{ }^{i} r_{i} \Delta_{i} \mu, \quad \sigma_{i}-\sigma_{0}=C F_{i}^{-1}, \quad \tau_{i}-\tau_{0}=\tau_{i}=D F_{i}^{-1}, \quad F_{n}=F, \\
& \sigma_{n}-\sigma_{0}=C F^{-1}, \quad \tau_{n}=D F^{-1} ; \quad F^{-1}\left(\sigma_{i}-\sigma_{0}\right)=F_{i}^{-1}\left(\sigma_{n}-\sigma_{0}\right), \quad F^{-1} \tau_{i}=F_{i}^{-1} \tau_{n} ; \\
& \boldsymbol{F}^{-1} \Delta_{i} \sigma=\left(\sigma_{n}-\sigma_{0}\right) r_{i} \Delta_{i} \mu, \quad F^{-1} \Delta_{i} \tau=\tau_{n} r_{i} \Delta_{i} \mu ; \\
& T_{i}^{(2)}=-\frac{1}{2} F^{2} r_{i} \Delta_{i} \mu\left\{\left(\sigma_{n}-\sigma_{0}\right)^{2}+\tau_{n}^{2}\right\}, \quad T^{(2)}=-\frac{1}{2} F\left\{\left(\sigma_{n}-\sigma_{0}\right)^{2}+\tau_{n}^{2}\right\} ; \\
& T_{i}^{\prime \prime(4)}=-\frac{1}{4} F^{2} r_{i} \Delta_{i} \frac{\sigma^{2}+\tau^{2}}{\mu} \cdot\left\{\left(\sigma_{n}-\sigma_{0}\right)^{2}+\tau_{n}^{2}\right\}, \quad T^{\prime \prime \prime}\left(\begin{array}{c}
(4) \\
i
\end{array}=\frac{1}{8} F^{4} r_{i}^{3} \Delta_{i} \mu\left\{\left(\sigma_{n}-\sigma_{0}\right)^{2}+\tau_{n}^{2}\right\}^{2} ;\right. \\
& T^{\prime \prime(4)}=\frac{1}{4} F^{4}\left(\left(\sigma_{n}-\sigma_{0}\right)^{2}+\tau_{n}^{2}\right)\left\{-F^{-2} r_{n} \frac{\sigma_{n}^{2}+\tau_{n}^{2}}{\mu_{n}}+F^{-2} r_{1} \frac{\sigma_{0}^{2}}{\mu_{0}}+\Sigma_{(i)}{ }_{1}^{n-1} \mu_{i}^{-1}\left\{\left(F^{-1} \sigma_{0}+F_{i}^{-1} \overline{\left.\left.\left.\sigma_{n}-\sigma_{0}\right)^{2}+F_{i}^{-2} \tau_{n}^{2}\right\} \Delta r_{i}\right\} ; ~ ; ~}\right.\right.\right. \\
& T^{\prime \prime \prime}(4)=\frac{1}{8} F^{4}\left(\left(\sigma_{n}-\sigma_{0}\right)^{2}+\tau_{n}^{2}\right)^{2} \sum_{(i)}{ }_{1}^{n} r_{i}^{3} \Delta_{i} \mu=\frac{1}{4} F^{4}\left(\left(\sigma_{n}-\sigma_{0}\right)^{2}+\tau_{n}^{2}\right)^{2} \sum_{(i) 1}^{n} s_{i} \Delta_{i} \mu . \dagger
\end{aligned}
$$

Hence, if in the expressions [in [33.]] for $T^{(2)}$ and $\left(\sigma_{n}-\sigma_{0}\right)^{-2} T^{(4)}$, for indiametral rays, that is, for the case $\tau_{n}=0$, we change σ_{n}^{2} to $\sigma_{n}^{2}+\tau_{n}^{2}$, we shall get the expressions for $T^{(2)}$ and

$$
\left\{\left(\sigma_{n}-\sigma_{0}\right)^{2}+\tau_{n}^{2}\right\}^{-1} T^{(4)}
$$

for exdiametral rays; the refracting surfaces being supposed to be all close together at the origin.
Now, in the notation of [33.], for indiametral rays,

$$
T^{(4)}=Q \sigma_{n}^{4}+Q_{1} \sigma_{n}^{3} \sigma_{0}+\left(Q^{\prime}+Q_{n \prime}\right) \sigma_{n}^{2} \sigma_{0}^{2}+Q_{1}^{\prime} \sigma_{n} \sigma_{0}^{3}+Q^{\prime \prime} \sigma_{0}^{4} ;
$$

therefore

$$
T^{(4)}\left(\sigma_{n}-\sigma_{0}\right)^{-1}=Q \sigma_{n}^{3}+\left(Q+Q_{1}\right) \sigma_{n}^{2} \sigma_{0}+\left(Q+Q_{1}+Q^{\prime}+Q_{n}\right) \sigma_{n} \sigma_{0}^{2}+\left(Q+Q_{1}+Q^{\prime}+Q_{n \prime}+Q_{\prime}^{\prime}\right) \sigma_{0}^{3},
$$

* [The incident rays are assumed to be parallel to the plane $y=0$.]
+ [This latter expression applies to surfaces of revolution in general; the former to spheres only.]
and*

$$
0=Q+Q_{1}+Q^{\prime}+Q_{\prime \prime}+Q_{\prime}^{\prime}+Q^{\prime \prime} ;
$$

also, in like manner,

$$
T^{(4)}\left(\sigma_{n}-\sigma_{0}\right)^{-2}=Q \sigma_{n}^{2}+\left(2 Q+Q_{1}\right) \sigma_{n} \sigma_{0}+\left(3 Q+2 Q_{1}+Q^{\prime}+Q_{n}\right) \sigma_{0}^{2},
$$

and*

$$
0=4 Q+3 Q_{1}+2\left(Q^{\prime}+Q_{I I}\right)+Q_{1}^{\prime} ;
$$

therefore, for exdiametral rays, the additional part is

$$
\tau_{n}^{2}\left\{Q\left(\sigma_{n}^{2}+\tau_{n}^{2}\right)+\left(2 Q+Q_{1}\right) \sigma_{n} \sigma_{0}+\left(3 Q+2 Q_{1}+Q^{\prime}+Q_{n \prime}\right) \sigma_{0}^{2}\right\}+Q \tau_{n}^{2}\left(\sigma_{n}-\sigma_{0}\right)^{2} ;
$$

and the whole

$$
T^{(4)}=Q\left(\sigma_{n}^{2}+\tau_{n}^{2}\right)^{2}+Q, \sigma_{n} \sigma_{0}\left(\sigma_{n}^{2}+\tau_{n}^{2}\right)+Q^{\prime} \sigma_{0}^{2}\left(\sigma_{n}^{2}+\tau_{n}^{2}\right)+Q_{n \prime} \sigma_{0}^{2} \sigma_{n}^{2}+Q_{\prime}^{\prime} \sigma_{0}^{3} \sigma_{n}+Q^{\prime \prime} \sigma_{0}^{4} .
$$

if we make*

$$
4 Q+2 Q_{1}+Q_{1 \prime}=0
$$

a condition necessarily compatible with whatever value of $Q^{\prime}+Q_{n}$, may have been previously deduced from the study of the indiametral rays, or from the development of $T^{(4)}$ for $\tau_{n}=0$. Reciprocally, this last condition must be fulfilled, if we wish to have the form just assigned for $T^{(4)}$, for the case of an exdiametral system.
[47.] The three conditions*

$$
\begin{array}{r}
Q+Q_{1}+Q^{\prime}+Q_{1 \prime}+Q_{1}^{\prime}+Q^{\prime \prime}=0 \\
4 Q+3 Q_{1}+2\left(Q^{\prime}+Q_{\prime \prime}^{\prime \prime}\right)+Q_{1}^{\prime}=0 \\
4 Q+2 Q_{1}+Q_{" \prime}=0,
\end{array}
$$

are doubtless those required for the divisibility of the expression

$$
T^{(4)}=Q\left(\sigma^{2}+\tau^{2}\right)^{2}+Q, \sigma_{0} \sigma\left(\sigma^{2}+\tau^{2}\right)+Q^{\prime} \sigma_{0}^{2}\left(\sigma^{2}+\tau^{2}\right)+Q_{\prime \prime} \sigma_{0}^{2} \sigma^{2}+Q_{1}^{\prime} \sigma_{0}^{3} \sigma+Q^{\prime \prime} \sigma_{0}^{4}
$$

by $\sigma^{2}+\tau^{2}-2 \sigma_{0} \sigma+\sigma_{0}^{2}$. It may be instructive to verify this divisibility, and to assign an expression for the quotient.

Retaining Q, Q_{I}, Q^{\prime}, and expressing $Q_{I \prime}, Q_{l}^{\prime}, Q^{\prime \prime}$ by these, we have

$$
\begin{aligned}
& Q_{\prime \prime}=-4 Q-2 Q_{1} ; \\
& Q_{1}^{\prime}=4 Q+Q_{1}-2 Q^{\prime} ; \\
& Q^{\prime \prime}=-Q+Q^{\prime} .
\end{aligned}
$$

But

$$
\begin{aligned}
\left(\sigma^{2}+\tau^{2}\right)^{2}-4 \sigma_{0}^{2} \sigma^{2}+4 \sigma_{0}^{3} \sigma-\sigma_{0}^{4} & =\left(\sigma^{2}+\tau^{2}-2 \sigma_{0} \sigma+\sigma_{0}^{2}\right)\left(\sigma^{2}+\tau^{2}+2 \sigma_{0} \sigma-\sigma_{0}^{2}\right) ; \\
\sigma_{0} \sigma\left(\sigma^{2}+\tau^{2}\right)-2 \sigma_{0}^{2} \sigma^{2}+\sigma_{0}^{3} \sigma & =\left(\sigma^{2}+\tau^{2}-2 \sigma_{0} \sigma+\sigma_{0}^{2}\right) \sigma_{0} \sigma ; \\
\sigma_{0}^{2}\left(\sigma^{2}+\tau^{2}\right)-2 \sigma_{0}^{3} \sigma+\sigma_{0}^{4} & =\left(\sigma^{2}+\tau^{2}-2 \sigma_{0} \sigma+\sigma_{0}^{2}\right) \sigma_{0}^{2} ;
\end{aligned}
$$

the division therefore succeeds, and the quotient is

$$
Q\left(\sigma^{2}+\tau^{2}\right)+\left(2 Q+Q_{1}\right) \sigma_{0} \sigma-\left(Q-Q^{\prime}\right) \sigma_{0}^{2} .
$$

* [These three relations between the coefficients in the general expression for any instrument of revolution,

$$
T^{(4)}=Q \epsilon^{2}+Q, \epsilon \epsilon,+Q^{\prime} \epsilon \epsilon^{\prime}+Q_{\prime \prime} \epsilon_{,}^{2}+Q^{\prime} \epsilon, \epsilon^{\prime}+Q^{\prime \prime} \epsilon^{\prime 2},
$$

are consequences of the condition that the system is thin and situated at the origin, $T^{(4)}$ being then divisible by $\epsilon-2 \epsilon,+\epsilon^{\prime}$; see Appendix, Note 26, p. 511.]

Comparing then this last expression with that given by the last section for

$$
\left(\sigma^{2}+\tau^{2}-2 \sigma_{0} \sigma+\sigma_{0}^{2}\right)^{-1} T^{(4)}
$$

(in which we have written σ, τ, for σ_{n}, τ_{n},) we find

$$
\left\{\begin{array}{l}
4 F^{-4} Q=-F^{-2} \mu_{n}^{-1} r_{n}+\Sigma_{(i) 1}^{n-1} \mu_{i}^{-1} F_{i}^{-2} \Delta r_{i}+\Sigma_{(i) 1}^{n} s_{i} \Delta_{i} \mu ; \\
2 F^{-4}\left(2 Q+Q_{1}\right)=\Sigma_{(i) 1}^{n-1} \mu_{i}^{-1} F_{i}^{-1}\left(F^{-1}-F_{i}^{-1}\right) \Delta r_{i}-\Sigma_{(i) 1}^{n} s_{i} \Delta_{i} \mu ; \\
4 F^{-4}\left(Q^{\prime}-Q\right)=F^{-2} \mu_{0}^{-1} r_{1}+\Sigma_{(i) 1}^{n-1} \mu_{i}^{-1}\left(F^{-1}-F_{i}^{-1}\right)^{2} \Delta r_{i}+\Sigma_{(i) 1}^{n} s_{i} \Delta_{i} \mu ;
\end{array}\right.
$$

and consequently

$$
\begin{aligned}
& 2 F^{-3}\left(4 Q+Q_{1}\right)=-F^{-1} \mu_{n}^{-1} r_{n}+\Sigma_{(i) 1}^{n-1} \mu_{i}^{-1} F_{i}^{-1} \Delta r_{i} \\
& 2 F^{-3}\left(2 Q^{\prime}+Q_{\prime}\right)=F^{-1} \mu_{0}^{-1} r_{1}+\Sigma_{(i) 1}^{n-1} \mu_{i}^{-1}\left(F^{-1}-F_{i}^{-1}\right) \Delta r_{i}
\end{aligned}
$$

therefore finally,

$$
4 F^{-2}\left(2 Q+Q_{1}+Q^{\prime}\right)=-\mu_{n}^{-1} r_{n}+\mu_{0}^{-1} r_{1}+\Sigma_{i) 1}^{n-1} \mu_{i}^{-1} \Delta r_{i}=-\Sigma_{(i)}^{n} r_{i} \Delta_{i} \frac{1}{\mu}
$$

[48.]* The equations of a final ray are

$$
\left\{\begin{array}{l}
x_{n+1}-\frac{\sigma_{n}}{\mu_{n}}\left(1+\frac{\sigma_{n}^{2}+\tau_{n}^{2}}{2 \mu_{n}^{2}}\right) z_{n+1}+F\left(\sigma_{n}-\sigma_{0}\right)=\frac{\delta T^{(4)}}{\delta \sigma_{n}} \\
y_{n+1}-\frac{\tau_{n}}{\mu_{n}}\left(1+\frac{\sigma_{n}^{2}+\tau_{n}^{2}}{2 \mu_{n}^{2}}\right) z_{n+1}+F \tau_{n}=\frac{\delta T^{(4)}}{\delta \tau_{n}}
\end{array}\right.
$$

in which

$$
\left\{\begin{array}{l}
\frac{\delta T^{(4)}}{\delta \sigma_{n}}=4 Q \sigma_{n}\left(\sigma_{n}^{2}+\tau_{n}^{2}\right)+Q_{,} \sigma_{0}\left(3 \sigma_{n}^{2}+\tau_{n}^{2}\right)+2\left(Q^{\prime}+Q_{\prime \prime}\right) \sigma_{0}^{2} \sigma_{n}+Q_{1}^{\prime} \sigma_{0}^{3} \\
\frac{\delta T^{(4)}}{\delta \tau_{n}}=4 Q \tau_{n}\left(\sigma_{n}^{2}+\tau_{n}^{2}\right)+2 Q_{1} \sigma_{0} \sigma_{n} \tau_{n}+2 Q^{\prime} \sigma_{0}^{2} \tau_{n}
\end{array}\right.
$$

if then we make, as in [33.],

$$
4 Q=-\frac{1}{2} \mu_{n}^{-2} F, \quad Q=0,
$$

the equations of a final ray will become

$$
\begin{aligned}
& x_{n+1}-F \sigma_{0}-Q_{\prime}^{\prime} \sigma_{0}^{3}=\sigma_{n}\left(1+\frac{\sigma_{n}^{2}+\tau_{n}^{2}}{2 \mu_{n}^{2}}\right)\left\{\frac{z_{n+1}}{\mu_{n}}-F+2\left(Q^{\prime}+Q_{n \prime}\right) \sigma_{0}^{2}\right\} \\
& y_{n+1}=\tau_{n}\left(1+\frac{\sigma_{n}^{2}+\tau_{n}^{2}}{2 \mu_{n}^{2}}\right)\left\{\frac{z_{n+1}}{\mu_{n}}-F+2 Q^{\prime} \sigma_{0}^{2}\right\}
\end{aligned}
$$

Hence, under these conditions, and in the prasent order of approximation, the final rays all intersect the two following FOCAL LINES :

* [In modern terminology, this section contains a discussion of astigmatism in an instrument of revolution, corrected for spherical aberration and coma by the relations $4 Q=-\frac{1}{2} \mu_{n}^{-2} F, Q_{1}=0$. See also p. 378. The fact that the system is thin does not enter essentially until the last few lines, although of course it is necessary in the case of a thick system to employ different origins in the initial and final media in order to have for $T^{(2)}$ the simple form assigned in [46.]. The origins must in fact be chosen at the principal points (points of unit lateral magnification); the distances of the principal foci beyond and in front of these points will be $\mu_{n} F$ and $\mu_{0} F$.]

Ist.

$$
x_{n+1}=F \sigma_{0}+Q^{\prime} \sigma_{0}^{3}, \quad z_{n+1}=\mu_{n} F-2 \mu_{n}\left(Q^{\prime}+Q_{n}\right) \sigma_{0}^{2} ;
$$

IInd.

$$
y_{n+1}=0,
$$

$$
z_{n+1}=\mu_{n} F-2 \mu_{n} Q^{\prime} \sigma_{0}^{2} .
$$

The ordinate z of the IInd, minus that of the Ist, is equal to $2 \mu_{n} Q_{1 \prime} \sigma_{0}^{2}$; in which, by preceding section,
hence, by present section,

$$
Q_{n}=-4 Q-2 Q_{1}
$$

$$
Q_{n}=\frac{1}{2} \mu_{n}^{-2} F,
$$

and the interval between the two focal lines is therefore equal to

$$
\mu_{n}^{-1} F \sigma_{0}^{2},
$$

$=$ distance of IInd beyond Ist.
[49.] Combination of Two Lenses.

(Indiametral Rays.)

(April 4th, 1844.) By [11.], changing $\epsilon, \epsilon^{\prime}, \epsilon_{l}, \epsilon_{l}^{\prime}, \epsilon_{\prime \prime}, \epsilon^{\prime \prime}$, to $\alpha^{2}, \alpha^{\prime 2}, \alpha \alpha^{\prime}, \alpha^{\prime} \alpha^{\prime \prime}, \alpha \alpha^{\prime \prime}, \alpha^{\prime \prime 2}$, we obtain for any combination of two coaxal lenses of revolution in vacuo, and for indiametral rays,

$$
\begin{aligned}
T^{(4)}=\frac{1}{8} v_{1} \alpha^{\prime 4} & +\frac{1}{8}\left(v_{3}-v_{2}\right) \alpha^{4}-\frac{1}{8} v_{4} \alpha^{\prime \prime 4} \\
& +\frac{1}{8} t_{1} \mu_{1}^{-3} R_{1}^{-4}\left(r_{1} \alpha-r_{2} \alpha^{\prime}\right)^{4}+\frac{1}{8} t_{2} \mu_{2}^{-3} R_{2}^{-4}\left(r_{3} \alpha^{\prime \prime}-r_{4} \alpha\right)^{4} \\
& +\frac{\left(r_{1} \alpha-r_{2} \alpha^{\prime}\right)^{2}}{4 \mu_{1}\left(\mu_{1}-1\right)^{2} R_{1}^{4}}\left\{r_{2}\left(\rho_{1} \alpha-\alpha^{\prime}\right)^{2}-r_{1}\left(\alpha-\rho_{2} \alpha^{\prime}\right)^{2}\right\} \\
& +\frac{\left(r_{3} \alpha^{\prime \prime}-r_{4} \alpha\right)^{2}}{4 \mu_{2}\left(\mu_{2}-1\right)^{2} R_{2}^{4}}\left\{r_{4}\left(\rho_{3} \alpha^{\prime \prime}-\alpha\right)^{2}-r_{3}\left(\alpha^{\prime \prime}-\rho_{4} \alpha\right)^{2}\right\} \\
& +\frac{r_{1} \alpha^{2}\left(\alpha-\rho_{2} \alpha^{\prime}\right)^{2}-r_{2} \alpha^{2}\left(\rho_{1} \alpha-\alpha^{\prime}\right)^{2}}{4\left(\mu_{1}-1\right)^{2} R_{1}^{2}}+\frac{r_{3} \alpha^{2}\left(\alpha^{\prime \prime}-\rho_{4} \alpha\right)^{2}-r_{4} \alpha^{\prime \prime 2}\left(\rho_{3} \alpha^{\prime \prime}-\alpha\right)^{2}}{4\left(\mu_{2}-1\right)^{2} R_{2}^{2}} \\
& +\frac{s_{1}\left(\alpha-\rho_{2} \alpha^{\prime}\right)^{4}-s_{2}\left(\rho_{1} \alpha-\alpha^{\prime}\right)^{4}}{4\left(\mu_{1}-1\right)^{3} R_{1}^{4}}+-\frac{s_{3}\left(\alpha^{\prime \prime}-\rho_{4} \alpha\right)^{4}-s_{4}\left(\rho_{3} \alpha^{\prime \prime}-\alpha\right)^{4}}{4\left(\mu_{2}-1\right)^{3} R_{2}^{4}} ;
\end{aligned}
$$

in which, $v_{1}, v_{2}, v_{3}, v_{4}$ are the ordinates of the four vertices; $r_{1}, r_{2}, r_{3}, r_{4}$ the four curvatures, positive when surfaces are convex to incident light; $s_{1}, s_{2}, s_{3}, s_{4}$ coefficients of $\left(\frac{x^{2}}{2}\right)^{2}$ in the developments of z (each y being zero) ; μ_{1}, μ_{2} indices of the two lenses; $\alpha^{\prime}, \alpha, \alpha^{\prime \prime}$ inclinations of initial, intermediate, and final rays (each in vacuo) to the axis of the combination; t_{1}, t_{2}, thicknesses, so that $t_{1}=v_{2}-v_{1}, t_{2}=v_{4}-v_{3}$;

$$
\begin{aligned}
R_{1}=r_{1}-r_{2}+\left(1-\mu_{1}^{-1}\right) r_{1} r_{2} t_{1} ; & R_{2}=r_{3}-r_{4}+\left(1-\mu_{2}^{-1}\right) r_{3} r_{4} t_{2} ; \\
\rho_{1}=1-r_{1} t_{1}+\mu_{1}^{-1} r_{1} t_{1}=1-\left(1-\mu_{1}^{-1}\right) r_{1} t_{1} ; & \rho_{2}=1+r_{2} t_{1}-\mu_{1}^{-1} r_{2} t_{1}=1+\left(1-\mu_{1}^{-1}\right) r_{2} t_{1} ; \\
\rho_{3}=1-r_{3} t_{2}+\mu_{2}^{-1} r_{3} t_{2}=1-\left(1-\mu_{2}^{-1}\right) r_{3} t_{2} ; & \rho_{4}=1+r_{4} t_{2}-\mu_{2}^{-1} r_{4} t_{2}=1+\left(1-\mu_{2}^{-1}\right) r_{4} t_{2} ;
\end{aligned}
$$

$$
\begin{gathered}
\alpha=f^{\prime} \alpha^{\prime}+f^{\prime \prime} \alpha^{\prime \prime} \\
f^{\prime}=F\left(\mu_{2}-1\right) R_{2} ; f^{\prime \prime}=F\left(\mu_{1}-1\right) R_{1} ; \\
F^{-1}=\left(\mu_{1}-1\right) R_{1}+\left(\mu_{2}-1\right) R_{2}+\lambda\left(\mu_{1}-1\right)\left(\mu_{2}-1\right) R_{1} R_{2} ; \\
\lambda=v_{2}-v_{3}-\frac{r_{1} t_{1}}{\mu_{1} R_{1}}+\frac{r_{4} t_{2}}{\mu_{2} R_{2}} ; \\
T^{(4)}=Q \alpha^{\prime \prime 4}+Q,_{1} \alpha^{\prime \prime 3}+\left(Q^{\prime}+Q_{\prime \prime}\right) \alpha^{\prime 2} \alpha^{\prime \prime 2}+Q_{1}^{\prime} \alpha^{\prime 3} \alpha^{\prime \prime}+Q^{\prime \prime} \alpha^{\prime 4}
\end{gathered}
$$

Hence,

$$
\begin{aligned}
Q= & \frac{1}{8}\left(v_{3}-v_{2}\right) f^{\prime \prime 4}-\frac{1}{8} v_{4}+\frac{1}{8} t_{1} \mu_{1}^{-3} R_{1}^{-4} r_{1}^{4} f^{\prime \prime 4}+\frac{1}{8} t_{2} \mu_{2}^{-3} R_{2}^{-4}\left(r_{3}-r_{4} f^{\prime \prime}\right)^{4} \\
& +\frac{r_{1}^{2}\left(r_{2} \rho_{1}^{2}-r_{1}\right) f^{\prime \prime 4}}{4 \mu_{1}\left(\mu_{1}-1\right)^{2} R_{1}^{4}}+\frac{\left(r_{3}-r_{4} f^{\prime \prime}\right)^{2}\left\{r_{4}\left(\rho_{3}-f^{\prime \prime}\right)^{2}-r_{3}\left(1-\rho_{4} f^{\prime \prime}\right)^{2}\right\}}{4 \mu_{2}\left(\mu_{2}-1\right)^{2} R_{2}^{4}} \\
& -\frac{r_{2} \rho_{1}^{2} f^{\prime \prime 4}}{4\left(\mu_{1}-1\right)^{2} R_{1}^{2}}+\frac{r_{3} f^{\prime \prime 2}\left(1-\rho_{4} f^{\prime \prime}\right)^{2}-r_{4}\left(\rho_{3}-f^{\prime \prime}\right)^{2}}{4\left(\mu_{2}-1\right)^{2} R_{2}^{2}}+\frac{\left(s_{1}-\rho_{1}^{4} s_{2}\right) f^{\prime \prime 4}}{4\left(\mu_{1}-1\right)^{3} R_{1}^{4}} \\
& +\frac{\left\{s_{3}\left(1-\rho_{4} f^{\prime \prime}\right)^{4}-s_{4}\left(\rho_{3}-f^{\prime \prime}\right)^{4}\right\}}{4\left(\mu_{2}-1\right)^{3} R_{2}^{4}} ;
\end{aligned}
$$

$$
\begin{aligned}
Q_{1}= & \frac{1}{2}\left(v_{3}-v_{2}\right) f^{\prime \prime 3} f^{\prime}+\frac{1}{2} t_{1} \mu_{1}^{-3} R_{1}^{-4} f^{\prime \prime 3} r_{1}^{3}\left(f^{\prime} r_{1}-r_{2}\right)-\frac{1}{2} t_{2} \mu_{2}^{-3} R_{2}^{-4} f^{\prime} r_{4}\left(r_{3}-f^{\prime \prime} r_{4}\right)^{3} \\
& +\frac{r_{1}\left(r_{2} \rho_{1}^{2}-r_{1}\right) f^{\prime \prime 3}}{2 \mu_{1}\left(\mu_{1}-1\right)^{2} R_{1}^{4}}\left(f^{\prime} r_{1}-r_{2}\right)+\frac{r_{1}^{2} f^{\prime \prime 3} R_{1}^{-4}}{2 \mu_{1}\left(\mu_{1}-1\right)^{2}}\left(r_{2} \rho_{1}\left(f^{\prime} \rho_{1}-1\right)-r_{1}\left(f^{\prime}-\rho_{2}\right)\right)+\& c .=
\end{aligned}
$$

the $Q_{1}^{(1)}+Q_{1}^{(2)}$ of the next section. So far the 14 quantities $\mu_{1}, \mu_{2}, v_{1}, v_{2}, v_{3}, v_{4}, r_{1}, r_{2}, r_{3}, r_{4}$ $s_{1}, s_{2}, s_{3}, s_{4}$, remain entirely arbitrary; the two component lenses are not necessarily spheric, nor thin, nor close together.
[50.] The first differential coefficient of $T^{(4)}$ with respect to α, is

$$
\begin{aligned}
& \frac{1}{2}\left(v_{3}-v_{2}\right) \alpha^{3}+\frac{1}{2} t_{1} \mu_{1}^{-3} R_{1}^{-4} r_{1}\left(r_{1} \alpha-r_{2} \alpha^{\prime}\right)^{3}-\frac{1}{2} t_{2} \mu_{2}^{-3} R_{2}^{-4} r_{4}\left(r_{3} \alpha^{\prime \prime}-r_{4} \alpha\right)^{3} \\
& \quad+\frac{r_{1}\left(r_{1} \alpha-r_{2} \alpha^{\prime}\right)}{2 \mu_{1}\left(\mu_{1}-1\right)^{2} R_{1}^{4}}\left\{r_{2}\left(\rho_{1} \alpha-\alpha^{\prime}\right)^{2}-r_{1}\left(\alpha-\rho_{2} \alpha^{\prime}\right)^{2}\right\} \\
& \quad-\frac{r_{4}\left(r_{3} \alpha^{\prime \prime}-r_{4} \alpha\right)}{2 \mu_{2}\left(\mu_{2}-1\right)^{2} R_{2}^{4}}\left\{r_{4}\left(\rho_{3} \alpha^{\prime \prime}-\alpha\right)^{2}-r_{3}\left(\alpha^{\prime \prime}-\rho_{4} \alpha\right)^{2}\right\} \\
& \quad+\frac{\left(r_{1} \alpha-r_{2} \alpha^{\prime}\right)^{2}}{2 \mu_{1}\left(\mu_{1}-1\right)^{2} R_{1}^{4}}\left\{r_{2} \rho_{1}\left(\rho_{1} \alpha-\alpha^{\prime}\right)-r_{1}\left(\alpha-\rho_{2} \alpha^{\prime}\right)\right\} \\
& \quad-\frac{\left(r_{3} \alpha^{\prime \prime}-r_{4} \alpha\right)^{2}}{2 \mu_{2}\left(\mu_{2}-1\right)^{2} R_{2}^{4}}\left\{r_{4}\left(\rho_{3} \alpha^{\prime \prime}-\alpha\right)-r_{3} \rho_{4}\left(\alpha^{\prime \prime}-\rho_{4} \alpha\right)\right\} \\
& \quad+\frac{1}{2}\left(\mu_{1}-1\right)^{-2} R_{1}^{-2}\left\{r_{1} \alpha^{\prime 2}\left(\alpha-\rho_{2} \alpha^{\prime}\right)-r_{2} \alpha\left(\rho_{1} \alpha-\alpha^{\prime}\right)^{2}-r_{2} \rho_{1} \alpha^{2}\left(\rho_{1} \alpha-\alpha^{\prime}\right)\right\} \\
& \quad+\frac{1}{2}\left(\mu_{2}-1\right)^{-2} R_{2}^{-2}\left\{r_{4} \alpha^{\prime \prime 2}\left(\rho_{3} \alpha^{\prime \prime}-\alpha\right)+r_{3} \alpha\left(\alpha^{\prime \prime}-\rho_{4} \alpha\right)^{2}-r_{4} \rho_{4} \alpha^{2}\left(\alpha^{\prime \prime}-\rho_{4} \alpha\right)\right\} \\
& \quad+\left(\mu_{1}-1\right)^{-3} R_{1}^{-4}\left\{s_{1}\left(\alpha-\rho_{2} \alpha^{\prime}\right)^{3}-\rho_{1} s_{2}\left(\rho_{1} \alpha-\alpha^{\prime}\right)^{3}\right\} \\
& \\
& +\left(\mu_{2}-1\right)^{-3} R_{2}^{-4}\left\{s_{4}\left(\rho_{3} \alpha^{\prime \prime}-\alpha\right)^{3}-\rho_{4} s_{3}\left(\alpha^{\prime \prime}-\rho_{4} \alpha\right)^{3}\right\} ;
\end{aligned}
$$

and if, in this, we make $\alpha^{\prime}=0, \alpha=f^{\prime \prime} \alpha^{\prime \prime}$, and then divide by $\alpha^{\prime \prime 3}$, and multiply by f^{\prime}, we find, as one part of Q_{l},

$$
\begin{aligned}
& Q_{1}^{(1)}=\frac{1}{2} f^{\prime}\left\{\left(v_{3}-v_{2}\right) f^{\prime \prime 3}+t_{1} \mu_{1}^{-3} R_{1}^{-4} r_{1}^{4} f^{\prime \prime 3}-t_{2} \mu_{2}^{-3} R_{2}^{-4} r_{4}\left(r_{3}-f^{\prime \prime} r_{4}\right)^{3}\right. \\
&+\frac{r_{1}^{2} f^{\prime \prime 3}\left(r_{2} \rho_{1}^{2}-r_{1}\right)}{\mu_{1}\left(\mu_{1}-1\right)^{2} R_{1}^{4}}-\frac{r_{4}\left(r_{3}-f^{\prime \prime} r_{4}\right)\left\{r_{4}\left(\rho_{3}-f^{\prime \prime}\right)^{2}-r_{3}\left(1-f^{\prime \prime} \rho_{4}\right)^{2}\right\}}{\mu_{2}\left(\mu_{2}-1\right)^{2} R_{2}^{4}} \\
&+\frac{r_{1}^{2} f^{\prime \prime 3}\left(r_{2} \rho_{1}^{2}-r_{1}\right)}{\mu_{1}\left(\mu_{1}-1\right)^{2} R_{1}^{4}}-\frac{\left(r_{3}-f^{\prime \prime} r_{4}\right)^{2}\left\{r_{4}\left(\rho_{3}-f^{\prime \prime}\right)-r_{3} \rho_{4}\left(1-f^{\prime \prime} \rho_{4}\right)\right\}}{\mu_{2}\left(\mu_{2}-1\right)^{2} R_{2}^{4}} \\
&-\frac{2 r_{2} \rho_{1}^{2} f^{\prime \prime \prime}}{\left(\mu_{1}-1\right)^{2} R_{1}^{2}}+\frac{r_{4}\left(\rho_{3}-f^{\prime \prime}\right)+r_{3} f^{\prime \prime}\left(1-f^{\prime \prime} \rho_{4}\right)^{2}-r_{4} \rho_{4} f^{\prime \prime 2}\left(1-f^{\prime \prime} \rho_{4}\right)}{\left(\mu_{2}-1\right)^{2} R_{2}^{2}} \\
&\left.+\frac{2\left(s_{1}-\rho_{1}^{4} s_{2}\right) f^{\prime \prime 3}}{\left(\mu_{1}-1\right)^{3} R_{1}^{4}}+2\left(\frac{s_{4}\left(\rho_{3}-f^{\prime \prime}\right)^{3}-s_{3} \rho_{3}\left(1-f^{\prime \prime} \rho_{4}\right)^{3}}{\left(\mu_{2}-1\right)^{3} R_{2}^{4}}\right)\right\} .
\end{aligned}
$$

The other part of Q, is to be found by first taking the differential coefficient of $T^{(4)}$ with respect to α^{\prime}, and making $\alpha^{\prime}=0$, which gives, so far,

$$
\begin{aligned}
-\frac{1}{2} t_{1} \mu_{1}^{-3} R_{1}^{-4} r_{2} r_{1}^{3} \alpha^{3}-\frac{r_{1} r_{2}\left(r_{2} \rho_{1}^{2}-r_{1}\right) \alpha^{3}}{2 \mu_{1}\left(\mu_{1}-1\right)^{2} R_{1}^{4}}- & \frac{r_{1}^{2} \alpha^{3}\left(r_{2} \rho_{1}-r_{1} \rho_{2}\right)}{2 \mu_{1}\left(\mu_{1}-1\right)^{2} R_{1}^{4}} \\
& +\frac{r_{2} \rho_{1} \alpha^{3}}{2\left(\mu_{1}-1\right)^{2} R_{1}^{2}}-\frac{\left(\rho_{2} s_{1}-\rho_{1}^{3} s_{2}\right) a^{3}}{\left(\mu_{1}-1\right)^{3} R_{1}^{4}}
\end{aligned}
$$

and then, by making $\alpha=f^{\prime \prime} \alpha^{\prime \prime}$, and dividing by $\alpha^{\prime \prime 3}$, we obtain
and finally,*

$$
\begin{aligned}
& Q_{1}^{(2)}=-\frac{1}{2} f^{\prime \prime 3} R_{1}^{-4}\left\{t_{1} r_{2} r_{1}^{3} \mu_{1}^{-3}+\frac{r_{1} r_{2}\left(r_{2} \rho_{1}^{2}-r_{1}\right)+r_{1}^{2}\left(r_{2} \rho_{1}-r_{1} \rho_{2}\right)}{\mu_{1}\left(\mu_{1}-1\right)^{2}}\right. \\
& \left.-\quad-\frac{r_{2} \rho_{1} R_{1}^{2}}{\left(\mu_{1}-1\right)^{2}}+\frac{2\left(\rho_{2} s_{1}-\rho_{1}^{3} s_{2}\right)}{\left(\mu_{1}-1\right)^{3}}\right\}
\end{aligned}
$$

$$
Q_{1}=Q_{t}^{(1)}+Q_{l}^{(2)}
$$

[There follow a few pages devoted to the case in which one of the two lenses is infinitely thin, and in contact with the other; the investigation then ends.]

* [The method employed is the following: write $T^{(t)}=\left(G\left(a^{\prime}, a, a^{\prime \prime}\right)\right)_{a=f^{\prime} a^{\prime}+f^{\prime \prime} a^{\prime \prime}}=H\left(a^{\prime}, a^{\prime \prime}\right)$; then

$$
\text { But } \quad \begin{aligned}
& Q=\frac{1}{a^{\prime \prime 3}}\left(\frac{\partial H}{\partial a^{\prime}}\right)_{a^{\prime}=0} . \\
& \frac{\partial H}{\partial a^{\prime}}=\left(f^{\prime} \frac{\partial G}{\partial a}+\frac{\partial G}{\partial a^{\prime}}\right)_{a=f^{\prime} a^{\prime}+f^{\prime \prime} a^{\prime \prime}}, \quad\left(\frac{\partial H}{\partial a^{\prime}}\right)_{a^{\prime}=0}=\left(f^{\prime} \frac{\partial G}{\partial a}+\frac{\partial G}{\partial a^{\prime}}\right)_{a^{\prime}=0, \alpha=f^{\prime \prime} a^{\prime \prime}} ;
\end{aligned}
$$

But
therefore $Q_{1}=Q_{1}{ }^{(1)}+Q_{1}{ }^{(2)}$, where

$$
\left.Q_{1}^{(1)}=\frac{f^{\prime}}{a^{\prime \prime 3}}\left(\frac{\partial G}{\partial a}\right)_{a^{\prime}=0, a=f^{\prime \prime} a^{\prime \prime}}, \quad Q_{1}^{(2)}=\frac{1}{a^{\prime \prime 3}}\left(\frac{\partial G}{\partial a^{\prime}}\right)_{a^{\prime}=0, a=f^{\prime \prime} a^{\prime \prime}}\right]
$$

[A method for the computation of the aberration coefficients in the general instrument of revolution, following Hamilton's method and notation, will be found in the Appendix, Note 27, p. 512.]

[^0]: * [This was the title of a paper read to the Royal Irish Academy on June 24, 1844, but never published. The manuscript which follows (obviously not prepared for publication) probably represents the work which led to that paper, and for that reason we prefix to the manuscript the title of the paper. There are no numbered sections in the manuscript; the sections as now printed correspond to pages in the note book. Slight verbal alterations to suit this mode of reference have been made in the text without comment. The formulæ underlined by Hamilton have been enclosed in rectangles. The synopsis of contents has been supplied by the Editors.]

[^1]: * [Cf. Third Supplement, $\left(I^{7}\right),\left(K^{7}\right)$, p. 216. These equations are general, but the rest of the work deals with an instrument of revolution.]

[^2]: * [The subscripts 1,2 refer to the first and second faces of the lens; 0,3 refer to the incident and emergent regions respectively.
 + [These are the "nodal points," coincident in the present case with the "principal points." See Appendix, Note 25, p. 508.]
 \ddagger [This agrees with the general definition of focal length given by C. F. Gauss, "Dioptrische Untersuchungen," Abhand. Kgl. Ges. Wiss. Göttingen, 1 (1838-1841), Math. Cl., p. 14. Cf. von Rohr, The Formation of Images in Optical Instruments (English translation), London (1920), p. 103, or J. P. C. Southall, Geometrical Optics, p. 233. Hamilton does not appear to have been acquainted with the optical work of Gauss.]

[^3]: * [The single accent refers to the incident system, the double accent to the emergent. The expression is valid for any instrument of revolution in vacuo.]

[^4]: * [These relations were given in [4.]; they also follow at once from the form of $T^{(2)}$ given at the beginning of [5.], by making use of the fact that this expression has a stationary value with respect to σ and τ.]
 + [We have not been able to find either of these among the Hamilton MSS.]

[^5]: * [No additional difficulty is involved in calculating $T^{(2)}$ in a form suitable for the discussion of exdiametral rays; this form is given by changing σ_{0}^{2} to $\sigma_{0}^{2}+\tau_{0}^{2}, \sigma_{2}^{2}$ to $\sigma_{2}^{2}+\tau_{2}^{2}$, and $\left(\sigma_{2}-\sigma_{0}\right)^{2}$ to $\left(\sigma_{2}-\sigma_{0}\right)^{2}+\left(\tau_{2}-\tau_{0}\right)^{2}$. The expression at the end of [4.] is a particular case of the expression obtained as above.]
 $+\left[\right.$ For refraction through a plate, whose faces are perpendicular to the z-axis, we have $\sigma_{0}=\sigma_{1}=\sigma_{2}, \tau_{0}=\tau_{1}=\tau_{2}$, since at each refraction $\Delta \sigma=\Delta \tau=0$. The focal centres are the principal points; see Appendix, Note 25, p. 508.]

[^6]: * [See Appendix, Note 25, p. 508.]
 $+[\nu$ denotes generally the angle between the normal to the refracting surface and the axis of the instrument; it is positive or negative according as the projection of the normal (in the sense of z increasing) on the x-axis is positive or negative.]

[^7]: * [L. Seidel (Astr. Nach. 43 (1856), 328) also remarked that these conditions were incompatible in the case of a telescope objective.]
 + [Cf. [18.].]

[^8]: * [This is derived directly from the general result of the preceding section, on substituting for the λ 's their values in terms of M, N, O (p. 441). Changing z_{5} to z_{n+1}, the result is applicable to any system of thin lenses (spheric or not) close together in vacuo.]

