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XV.

ON CAUSTICS*

PART FIRST
[1824]

To the Reverend Archdeacon Brinkley, Professor of Astronomy in the University of Dublin 
and President of the Royal Irish Academy, this first paper on Caustics is respectfully inscribed.The problems of Optics, considered mathematically, relate for the most part to the inter­sections of the rays of light, proceeding from known surfaces, according to known laws.In the present paper it is proposed to investigate some general properties common to all such Systems of Rays, and independent of the particular surface, or particular law. It is intended, in another paper, to point out the applications of these mathematical principles to the actual laws of Nature.A fortnight ago, I believed that no writer had ever treated of Optics on a similar plan. But within that period, my Tutor, the Reverend Mr. Boyton, to whom I had communicated some of my results, has shewn me in the College Library a beautiful Memoir of Malus on the subject, entitled “Trait0 d’Optique,” and presented to the Institute in 1807.fThose who may take the trouble to compare his Memoir with mine, will perceive a difference in method and extent. With respect to those results which are common to both, it is proper to state that I had arrived at them in my own researches, before I was aware of the existence of his.

Dublin, Ί S. Cumberland Street, 
December 6, 1824.

General Principles.I.Let us conceive that from every point of a given surface 
proceeds a ray of light, represented by its equations (R)in which μ,, v are known functions of and their partial differentials &c., whichwe will denote by p, q, &c. ,

* [See Appendix, Note 1, p. 462. This paper deals with the properties of a general rectilinear congruence, and 
with its singularities; for a recent treatment of the singularities, see G. Julia, iUments de Odometrie infinitι- 
iimale (Paris, 1927), pp. 204-217.]

+ [Memoirex pr^tent^ d Vlnetitut par divers savans, 2 (1811), pp. 214-302.]
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346 XV. ON CAUSTICSSuch a system of rays has several properties, independent of the form of the functions F, μ,, v : these properties we propose to investigate. When the equation of the surface is given, we can deduce from it the partial differentials p, q, &c., and therefore ∕i, v, as functions of x', y', z'. This is a consequence of our fundamental hypothesis that from each point of the surface proceeds but one ray of the system.If it be required to find the ray which passes through a given external point ic". y", z”, we have these three equations
z —z z —zto determine √, y', z', the point on the surface from which the ray proceeds.But since these equations are in general of a degree higher than unity, let the exponents of their respective degrees be

M, N, Φ,and the final equation will be of the degree marked by the product of these exponents JfWΦ, which we will denote by w. This is then the number of possible solutions, and n different rays may intersect in one point x", y", z".
If n be an even number, all the roots may be imaginary. Then no ray passes through the assumed external point x", y", z"'. But if n be an odd number, which requires that the equation of the surface should not be of an even degree, then one root at least is always real, and every point of space has at least one ray passing through it.If the three equations in x', y', z' reduce themselves to two, they express not a finite number of points but a curve on the given surface, all the rays from which intersect in the point x", y", z", and compose a cone, having that point for its vertex.Finally if the three equations reduce themselves to one, all the rays intersect in the point 

x"f y", z", which is then the focus of the system.If we trace any curve, plane or of double curvature, on the given surface, the rays proceeding from that curve will compose a surface of rays. We will obtain its equation by eliminating a;', y', z', between the equations of the ray (R) and those of the curve
This curve I call the δαse of the surface of rays. There are an infinite number of such surfaces, corresponding to the infinite number of possible bases : but they have all one common property, and are represented by one common equation in partial differentials of the first order. (P)in which we are to write, instead of p, v, their values as functions of x, y, z, deduced from the equations of the ray and of the given surface.(P) has been obtained by elimination of the arbitrary function Ψ. It expresses that the tangent plane to the surface of rays entirely contains the ray passing through its point of contact.This equation (P) furnishes a criterion whereby to ascertain whether a proposed surface F= 0 is composed of rays: and if not, to determine the curve of contact, in the whole extent of which it is enveloped by a system of rays. For if F = 0 represent a surface of rays, the equation

www.rcin.org.pl



XV. ON CAUSTICS 347is identically satisfied: and if not, F= 0, v≈Q are the equations of the curve of contact. This curve separates, on the proposed opaque surface F = 0, between the part illumined, and the part obscure.There are two particular surfaces, or rather two naps of one surface, which though not surfaces of rays, yet satisfy the equation of condition (P). Their equationsχ≡o, ∑' = o, without containing an arbitrary function, or even an arbitrary constant, are nevertheless integrals of that equation in partial differences of the first order.In fact they are singular primitives of that equation: and they belong to the two caustic surfaces, touched by all the rays. This subject will be resumed in the Illd Article of this paper.To find the surface of rays passing through a given curve F= 0, v = 0, we will first find its base, Ψ {x',y', /)= 0, by eliminating x, y, z between the equations of the given curve, and those of the ray. But it is necessary to observe, that since through each point of the given curve may pass n rays, the problem has in general n solutions: or rather the surface of rays has in general 
n branches, which all intersect in that curve. When F = 0, υ = 0 are the equations of a given ray, instead of a curve, the surface of rays has only n — 1 branches: for one evidently in this case coincides with that given ray.To find the surface of rays, enveloping a given surface F= 0, we are first to find the curve of contact, and so reduce this problem to the last.These two problems contain the complete solution of the problem of shadows. The caustic surfaces have no determined shadow. Every other curve or surface may in general have n shadows.Sometimes all the rays of the system intersect the curve F = 0, υ = 0. In this case, that curve takes the place of a caustic surface: and the equation 
found by elimination of x, y, z between the equations of the curve and those of the ray, is iden­tically satisfied by that of the given surface F {x', y', /)=0.The subject of caustic surfaces will be more fully treated in Article III.II.In the general equations of the ray, ∕λ, v are known functions of /, y', / and their partial differentials. But these latter are themselves functions of /, y', /, derived from the equation of the given surface F(/, y,/) = 0:so that, all reductions made, we may denote the differentials of /, μ,, v as follows.
p, q, ζ η, ζ', √ being all functions of /, y', /.This being laid down, suppose that from a given ray we wish to pass to a consecutive ray which intersects it, we must of codrse differentiate its equations, making /, y' vary, and z', μ,, v, as functions of these, but supposing dx = 0, dy = 0, dz = 0. That is, we must combine with the equations of the ray, namely
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348 XV. ON CAUSTICStheir derived equations
These four equations determine not only the coordinates of intersection, but the direction by which we must pass on the given surface, to obtain a consecutive ray intersecting the given ray. There are two such directions: and their properties will form the subject of the present Article.Eliminating z-z' between the two last equations we obtain the following.

• ∙ which when we substitute for d√, d∕z∙, dv their values, becomes quadratic in , and determines the directions. Before making this substitution, I will observe that when the rays are supposed perpendicular to the surface, on which hypothesis 
this last equation becomes 
a known form for the equation of the curves of greatest and least curvature.By a reasoning precisely analogous to that which is usually employed with respect to these curves of curvature, we infer that equation (2) is the differential equation belonging to a class of curves, two of which pass through every point on the given surface, and the rays proceeding from which intersect consecutively. These curves we will denote by (s), (s').Let us now develope (2), which determines their directions. It takes the form
in which

Suppose the roots of (3) are = β and ~~ = β': which gives us

(3)

Then the tangent to the curve of double curvature (s) has for its equations (t)and in the same manner the tangent to the other curve (s ) is given by the equations
Representing by θ the angle under which the curves (s), (s'), or their tangents (t), (t'), cut each other, we easily deduce

A being

www.rcin.org.pl



XV. ON CAUSTICS 349If we observe that these formulae contain only symmetric functions of β, β∖ the roots of (3), we will find no difficulty in calculating them in terms of Λ, B, G, the coefficients of that equation. Thus we obtain
By means of this equation (4), if the law and the surface be given, we can find the angle θ, made by the two directions at any given point on the surface: or that angle being given, we can find a curve on the surface, the locus of the points at which the two directions cut under that given angle.If the surface be given but not the law, (4) is the equation of condition which that law must satisfy, in order that at every point of the given surface, the two directions should cut under the required angle θ.Finally if the law and the angle are given, but not the surface, (4) is the equation in partial differences of the latter.Two particular cases deserve notice: 1st. θ = 90°, 2nd. ^ = 0. When θ =■ 90°, that is, when the two directions cut at right angles.

This condition becomes, when we substitute for A, B, G their values.
and it is satisfied of itself when the rays are perpendicular to the surface: for then
When Θ = 0, that is, when the two directions coincide,

The curve on the given surface which has for its equations the two following 
is a limit of a remarkable nature. Every ray proceeding from a point on one side of that limit, is intersected by two consecutive rays: every ray from a point upon it is intersected by but one consecutive ray: and finally every ray from a point on the other side of it, is not intersected by any consecutive ray.

This limit (Λ) is in general touched by all the curves (s), (s'), and its equations form a singular primitive of their differential equation (3).*
* [This is not necessarily true. (Λ) is a locus of cusps of (s), (s'), but is not, in general, touched by these 

curves; (Λ) does not, in general, satisfy (3); cf. E. Picard, Traiti <3 Analyse^ in (1908), chap, in; E. Goursat, 
Mathematical Aιιalysis (Hedrick-Dunkel), ii (2), p. 198 et seq. The error in Hamilton’s reasoning is explained in 
the Appendix, Note 22, p. 504.]

HMP 45
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350 XV. ON CAUSTICSBut we must observe that if any one of these hypotheses respecting the values of + ^AG be for any particular surface or law impossible, the limit (Λ) in that case does not exist at all, or at least not in the sense we have described.If, for example, + be essentially positive, or essentially negative, in the one case every ray is intersected by two consecutive rays, in the other case no two consecutive rays intersect.Again if B≡+ 4√1C*  = O is possible, but B^ + 4tAG< 0 impossible, the two directions coincide at the limit, but they do not become imaginary at either side of it. In this case the limit (A) is not touched by the curves (s), (s'), but cuts them obliquely. I will mention two cases of this, which are both of them found in Nature.

* [This happens when the rays form a normal congruence.]
+ [Not included in the MS.]
I [See Appendix, Note 22, p. 504.]

1st Case. When B^-∖-4AG is an exact square: in this case the differential equation resolves itself into two rational factors.2nd Case. When B^ + 4AC= 0 can only be satisfied by putting separately*  
and when these suppositions are possible.In the Vlth Article of this Essay f will be found investigated a class of laws, including normals, reflected, and refracted rays, which come under this Second Case. The consideration of the point to which, in this case, the limit (A) generally reduces itself, is important in the Theory of Optics: and in the Second Part of this Essay f it will be introduced with all necessary development.Let us conceive the system of equations 
actually integrated. From their nature, the integral may be put under the form:J: 
the first being as before the equation of the given surface, and the second determining upon it the curves (s), (s'), φ, ψ represent rational functions of a;', y', z', and c is the arbitrary constant.To complete the integral, that is, to determine the constant by the condition of the curves (s), (s') passing through a given point of the surface, we have 
[</)], [ψ] representing what φ, -φ become at the given point, and c', c" being the corresponding values of c: so that the equations of the two curves passing through that point are
These curves are distinct, coincident, or imaginary, according as 
conditions which correspond to those before given, namely B^ + 4AG > 0, = 0, or < 0.They are altogether independent in their nature, if the function γ is an exact square, in which case B^ + 4A G is an exact square also. There exists then no one curve touched by them all, but all of one kind may intersect in one point.
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XV. ON CAUSTICS 351We shall get an idea of these circumstances, if we recollect that the curves of greatest and least curvature on a surface of revolution are the meridian and the parallel: the latter is always a circle, but the former may be any plane curve; there exists no one curve touched by all of either species, but all the meridians intersect in the vertex of the surface.In general, it may happen that through some particular point of the given surface pass more than two curves (s), (s'): in this case the quadratic equation
is not proper to determine their directions: analysis shews this by the coefficients vanishing. If there be three directions, they are given by the equation of the third degree
and in general if there be a finite number of directions = n, they are given by 
which becomes, at this point, an equation of the first order, and nth degree.The surfaces of rays proceeding from the curves (s), (s') are all developable, because composed of lines which intersect consecutively. Their equations are deduced from the equations of the curves (s), (s'), by the method of the 1st Article.In the next Article, we will treat of their aretes :*  in the present we will confine ourselves to their tangent planes.There are in general two such developable surfaces passing through every ray: their tangent planes contain the elements of the two curves (s), (s'), that is to say, their tangents (t), (t'). Hence the equations of those planes are 
β, 6" are the roots of the equation A^ + B^—G = Q: so that β+β' = -ββ' = -'The trigonometric tangent of the angle ω under which these two developable surfaces, or their tangent planes, cut each other, is given by the equation
N’ being A A' + BB' - CO', and

This formula is susceptible of an important reduction. In fact, if wo develope the quantity here denoted by N' we find it is of the formW" being so that, setting aside the particular case in which 1— μp -vq = Q, our angular formula becomes
* [Throughout the MS. this word is spelt without the circumflex accent.]
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352 XV. ON CAUSTICSIt is easy to apply to this equation (5) the remarks that were made in page 349, on the uses of equation (4). The same particular cases, here also, deserve notice, namely ω = 0 and ω = 90°.When ω = 0, tan ω = 0, + 4AC=0: that is to say, the tangent planes to the developablesurfaces coincide at the limit (Λ).When ω = 90°, that is, when the developable surfaces cut at right angles, we have tan ω = ∞ , W" = 0,This condition is always satisfied when the rays are perpendicular to the surface: for then
It is also satisfied by reflected and refracted rays.I will conclude this Article by shewing how some of the preceding formula) may be simplified, 1st, by a choice of the axes: 2nd, of the independent variables.1st. When our object is not to examine the general properties of the system, but circum­stances connected with some particular ray, we may assume that ray for the axis of z, which gives 
x' = 0, y' = 0, μ, = 0, V = 0. On this hypothesis the equations of the ray become (R) x = 0, y = 0 their derived equations (1) become 
the condition of intersection (2) becomes its developed equation (3) becomes the coefficients beingthe tangent planes become 
the formula for their mutual inclination becomes 
or 
and the condition for their rectangular!ty, A = G or η = ξ'.In this position of the axes, is the trigonometric tangent of the angle, which a plane con- taining the ray and cutting the surface in a direction corresponding to makes with the vertical plane zx, which latter also contains the ray. We will denote this angle by ct, and we have, for the two tangent planes

η tan≡ rσ + (ζ- η) tan τσ — ξ' = Q,which may be thus written
y — ζ' + (ζ- y') sin 2∙≡r == (y A ζ') cos 2ro∙,under which form we shall have occasion to employ it in the IVth Article.*

* [Not included in the MS.]
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XV. ON CAUSTICS 353Finally if we denote----- ^—7, the reciprocal of the focal distance taken negatively, by Δ, we-S' ∙*̂  zhave from equation (1)
2nd. The other simplification, which however we shall not make use of, consists in supposing the independent variables to be √ — ∕x∕, y' — vz', the coordinates of the intersection of the ray with the horizontal plane. Denoting these by α, δ, the equations (R) of the ray become

the condition of two consecutive rays being in the same plane is
and the condition of the two planes being at right angles is

III.The general equations of the ray being
we shewed that to obtain its intersection with a consecutive ray of the same kind, we must combine with (R) the derived equations
equations which we will now write thus (R)
The equation of condition
was shewn to indicate two directions by one or other of which we must pass on the given surface, in order that two consecutive rays should intersect. Being developed it was put under the formand shewn to be the differential equation of a class of curves (s), (s'), analogous to those of greatest and least curvature, two of which pass through every point of the given surface, (except those points which are at or beyond the limit (Λ),) and of which we represented the integral equation byWe calculated the tangents to these curves, and the angle under which they cut each other: we shewed that the rays proceeding from them intersect consecutively, and so compose developable surfaces (D), (D'): we calculated the tangent planes to these surfaces, and the angle ω under which they cut each other.
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354 XV. ON CAUSTICSThese were the principal subjects of the last Article. In the present we propose to consider the aretes of those developable surfaces; the coordinates, loci, and other circumstances connected with the intersections of consecutive rays.To find the coordinates x, y, z of the point in which the given ray from the point a·', y', / is intersected by a consecutive ray from the point 
or from the pointβ*,  β' being roots of the equation + — (7 = 0, we have the following equations:

The three equations marked (R) are common to both points of intersection : with them we must combine (i) for the first point, and (i') for the second.The focal distance of the surface in each direction, that is, the distance of the point of inter­section from the surface, measured on the ray, has for its expression
To find the arete (a) of the developable surface (D), that is, the locus of the intersections of the rays from the curve (s), eliminate y', /, Γ between the equations of that curve (s), and the four equations marked (R), (i): in the same manner to find the arete (a') of the developable surface (D'), eliminate /, y', z', Γ between the six equations (s'), (R), (i').These aretes (a), (a') are the caustics of the curves on the given surface (s), (s') : for they are touched by all the rays from those curves (s), (s'). These latter are the only curves on the given surface which have caustics.The tangent planes (T), (T') of which we found the equations in page 351, are the osculating planes of the caustics (a), (a') : for the tangent plane to a developable surface is always the osculating plane of its arete.Every ray of the system, within the limit (A), is the intersection of two developable surfaces, and the common tangent of two caustics.The locus of the caustics (a) is a curve surface (C), touched by all the rays, and containing upon it all their intersections of the first kind; we will call it the first caustic surface. Its equation is obtained by eliminating /, y', /, Γ between the equations (R), (i) and that of the given surface, F{x , y', z'} = 0.In the same manner, the locus of the caustics (a') is a curve surface (C'), touched also by all the rays, and containing upon it all the intersections of the second kind. We will call it the second caustic surface, and obtain its equation by eliminating /, y', /, Γ between (R), (i') and j^(∕,y,/) = 0.These two caustic surfaces are only, in general, two different branches of one and the same great surface: for if we represent their equations by S = 0, Σ' = 0, we find that these are in general irrational factors of the equation XS' = 0.This collective equation is immediately obtained by eliminating /, y', /, between theequations of the surface and ray, and their derived equations : or, in our present notation, by 

www.rcin.org.pl



XV. ON CAUSTICS 355eliminating a;', y , z', Γ between the equation of the given surface, and these four other equations
The last equation may be thus written in which

We cannot give a complete discussion of this equation, until we have shewn how to calculate the partial differentials of the caustic surface. However some obvious remarks may be inserted here. (7'*If -j77 > 0, the roots, if real, are of the same sign, and the two foci are at the same side of the ζΥ"given surface. If < 0, the roots are necessarily real, and of opposite signs: then the two foci Δ.are at opposite sides of the given surface.If B" = 0, the roots, if real, are equal in quantity, but different in sign : then the two foci are at opposite sides, and at equal distances.If 5"2 — 4A"(7" = 0, the roots are equal, and the foci coincide. This condition being developed is found to be the same as + 4AC = 0.If A" = 0, one of the roots is infinite, and two consecutive rays parallel. In this case 
dμ, = 0, dv = 0: that is 
either of these equations determines the direction on the surface in which one of its focal distances is infinite.Every ray from the curve on the given surface, determined by the equation 
is asymptot to two branches of a caustic situated on different sides of the given surface: and the surface of rays from the same curve is asymptotic to two branches of a caustic surface, situated likewise at different sides of the given surface. If Λ" ≈ 0 be identically satisfied, one of the developable surfaces is cylindrical.Let us now consider the problem “To find the partial differentials of the caustic surface,” its equation in x, y, z being given as the result of elimination of x', y', z', Γ between the five equations, 
F (√, y', z') = 0, (R) and (I).Instead of stopping at this, I will propose at once the more general problem “Given a system of m equations between m + n variables, to find the partial differential coefficient of any one of them, relative to the variation of any other.”Let us represent the coefficient sought by : and conceive zn — 1 variables eliminated between the m equations, so as to leave one equation between n + 1 variables, including x and z.
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3 5 6  X V. O N  C A U S TI C S

Of  t h e s e w e  will  c o n si d e r  z  a s  t h e d e p e n d e nt  v a ri a bl e,  a n d  t h e n  ot h e r s  a s  i n d e p e n d e nt. If n o w  

w e  diff e r e nti at e,  s u p p r e s si n g all  t h e diff e r e nti al s  e x c e pt  t h o s e of  x  a n d  z, t h e r e s ulti n g e q u ati o n  

i n d x,  d z  gi v e s  t h e c o effi ci e nt.

B ut  t h e eli mi n ati o n  w hi c h  w e  h a v e  h e r e  s u p p o s e d,  m a y  b e  i m p o s si bl e, a n d  i s n e v e r  n e c e s s a r y.  

I n f a ct if w e  att e n d  t o t h e p ri n ci pl e  of  t h e m et h o d,  w e  fi n d t h at it c o n si st s i n s u p p o si n g  c o n st a nt  

n — 1 o ut  of  t h e n  i n d e p e n d e nt v a ri a bl e s: o n  w hi c h  h y p ot h e si s  t h e r ati o d z'. d x  i s t h e c o effi ci e nt  

s o u g ht.

If t h e n w e  diff e r e nti at e  t h e m  gi v e n  e q u ati o n s,  s u p p o si n g n  —  1 of  t h e v a ri a bl e s  c o n st a nt, t h e 

m  r e s ulti n g e q u ati o n s, b ei n g  li n e a r e q u ati o n s b et w e e n  m  p a rti al  diff e r e nti al s,  c o nt ai n a n e a s y  

s ol uti o n of  t h e p r o bl e m.

P e r h a p s  I m a y  h a v e  n ot  s u c c e e d e d i n e x p r e s si n g  m y s elf  wit h  cl e a r n e s s, o n  a  s u bj e ct s o v e r y  

g e n e r al : b ut  I h o p e  t h at t h e p r e c e di n g  r e m a r k s will  b e  u n d e r st o o d  b y  o b s e r vi n g  t h ei r a p pli c ati o n  

t o t h e c a s e b ef o r e  u s.

I n t hi s c a s e,  w e  h a v e  a  s y st e m  of  fi v e e q u ati o n s  b et w e e n  s e v e n  v a ri a bl e s,  n a m el y  x,  y,  z,  x ∖  y ∖ z ∖  Γ : 

c o n s e q u e ntl y  t w o a r e  i n d e p e n d e nt; f o r t h e s e w e  will  t a k e x,  y. N o w  diff e r e nti ati n g,  a n d  s u p p o si n g  

d z di x ∕ d ^j ^ d z ^ ( Z Γ
y  c o n st a nt,  w e  o bt ai n  fi v e li n e a r e q u ati o n s  b et w e e n , , , , fi v e p a rti al  diff e r e nti al s

of  w hi c h  w e  o nl y  w a nt  t h e fi r st. B ut  si n c e t h e s e a r e all li n e a r e q u ati o n s  t h e r e i s n o  diffi c ult y,  

e x c e pt t h e l e n gt h of  t h e c al c ul ati o n, ( w hi c h i n t hi s c a s e i s a b ri d g e d b y  s o m e r e d u cti o n s t h at 

( /. S' 
p r e s e nt  t h e m s el v e s,) i n fi n di n g e a c h  s e p a r at el y. I n a  si mil a r m a n n e r  I h a v e  c al c ul at e d : a n d  

t h e s e a r e  t h e r e s ult s, aft e r  all  r e d u cti o n s :*

P,  Q  h e r e  d e n ot e  t h e p a rti al  diff e r e nti al! , of  t h e c a u sti c s u rf a c e.

T h e  t w o e x p r e s si o n s t h u s f o u n d f o r - a r e e q u al a m o n g  t h e m s el v e s, i n c o n s e q u e n c e of

e q u ati o n  (I): a n d  it i s e a s y  t o s e e t h at t h e y a r e  t h e r e ci p r o c al s of  t h o s e f o r

*  [ T h es e r es ults m a y  e asil y  b e  o bt ai n e d  fr o m t h e e q u ati o ns

T a ki n g  a n  ar bitr ar y  dis pl a c e m e nt  c ⅛', d y',  dz!  o n  t h e s urf a c e P( λ ∕, y',  2') = θ >  w e  fi n d

B ut,  si n c e Γ  s atisfi es (I) ( p, 3 5 5),  t his fr a cti o n is i n d e p e n d e nt of  d' ^ ∖ d x'. T h er ef or e

w w w.r ci n. or g. pl



XV. ON CAUSTICS 357Hence we deduce 
that is,
Now this equation in partial differences of the first order, belonging to the caustic surfaces, is precisely the same as that which we found in the first Article, to belong to all surfaces of rays, by elimination of an arbitrary function.And it is on the analysis here described, that I founded the assertion in that Article, that the equations of the two caustic surfaces, which we will still consider as distinct, and represent by X = 0, X' = 0, are singular primitives of the equation in partial differences

We have already considered these surfaces as formed by two different generations, and given two corresponding methods to find their equations.In the first method we obtained each separately, considering it as the locus of the caustic curves (a) or (a') of its own kind. In the second method we obtained their equations collectively, considering the great surface of which they are in general different branches, as the one locus of all the intersections of consecutive rays.In each method, their equations, whether separately or combined, are presented as the result of elimination.Now it is a received principle in Analysis, that whatever is represented by a system of equa­tions, may be represented by an infinite number of systems equivalent: in the same manner as, in Mechanics, forces which have no resultant, may be replaced by an infinite number of equivalent systems.Conformably to this general principle, I am going to shew that the caustic surfaces may have an infinite number of different generations, among which we are at liberty to choose, in any particular case, that which may offer the greatest facility.Conceive any curve whatever, with an arbitrary parameter, traced on the given luminous surface F{x∖ y', /) = 0: the rays proceeding from that curve will compose a surface of rays with an arbitrary parameter, which we will represent by
If we consider, a consecutive surface of the same kind, 
we find that it intersects the former in three different ways.lst. In the ray proceeding from the intersection of their consecutive bases.2nd. Every curve of the form (s) cuts the two bases in two points: the consecutive rays, one on each surface, proceeding from these two points, intersect each other: the locus of such inter­sections is a curve common to the two consecutive surfaces of rays, and this curve is on the first caustic surface.
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358 XV. ON CAUSTICS3rd. By a similar reasoning, the two consecutive surfaces of rays have another curve of intersection on the second caustic surface.
The rav and the two curves have for their common exnression

and if we eliminate e between these, we obtain in x, y, z an equation
Σ s⅛ 0, Σ' = 0 are the caustic surfaces; E = 0 is a surface of rays enveloping all those of the assumed form Φ (zr, y, z, e) = 0.In general every surface of rays envelopes both caustic surfaces. But there exists one remarkable exception which it is necessary to notice. The developable surfaces of the first kind (D) do not touch the first caustic surface (C): and in general the developable surfaces do not touch the loci of their own aretes: a circumstance sufficiently evident, because their tangent planes osculate to those aretes: but I believe it may be useful to shew how the preceding reasoning fails in this case.In fact it is evident that a curve of the form (s) does not cut the bases of two consecutive developable surfaces (D), though it may coincide with one of them: so that if we represent by 
D = 0, D' = 0, the general equations of the two developable surfaces, with the arbitrary constant, and eliminate c between D = 0, = 0, we obtain an equation Z2' = 0, which does not contain

dD^the first caustic surface. In the same manner, eliminating c between D' = 0, = 0, weobtain Z2 = 0.The common factor L = 0 belongs to a remarkable surface, the principal properties of which I will rapidly enumerate. 1st. It envelopes all the developable surfaces of both kinds (D), (D'); 2nd. it is a limiting surface, analogous to the limiting curve (Λ), since through every ray at one side of it pass two developable surfaces, through every ray upon it passes but one, and through every ray beyond it passes none; 3rd. it has for base the limiting curve (A); 4th. it envelopes both the caustic surfaces in one and the same curve of contact; 5th. it is itself developable and this curve of contact is its own arete; 6th. that arete is a curve of rebroussement on the caustic surfaces, in which the two branches touch each other and at which they terminate ; 7th. the same arete is itself a caustic curve, and the one in which the density of light is greatest; 8th. it is touched by all the caustic curves of both kinds, and it is the caustic of the limit (A).*

* [Some of these properties of (L) (the surface of rays through (Λ)) are derived from the assumption (see 
footnote to p. 349) that (Λ) is touched by the curves (s), (s'). In general (L) is not touched by the developables of 
the system, nor is it itself developable, but it does touch both the caustic surfaces in a single curve.]

This is a proper place to point out some developments, and some demonstrations, which may assist in conceiving the connexion between the curves (s), (s') and the limit (A), and at the same time between the surfaces of rays proceeding from them, that is, the developable surfaces (D), (D') and the limiting surface (L).We have represented the general form of the equations of the curves (s), (s') by
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of  w hi c h  w e  n e e d  o nl y  att e n d  t o t h e l att e r, b e c a u s e  t h e f o r m e r b el o n g s  t o t h e gi v e n  s u rf a c e. If 

w e  eli mi n at e  t h e a r bit r a r y  c o n st a nt b y  diff e r e nti ati o n  w e  fi n d t h e f oll o wi n g,

w hi c h  m u st  b e  i d e nti c al λ vit h t h e o ri gi n al  diff e r e nti al  e q u ati o n  of  t h e c u r v e s,

( d)

e x p a n di n g  a n d  c o m p a ri n g, w e  fi n d

λ  b ei n g  a n  i n d et e r mi n at e c o effi ci e nt, w hi c h  p r o v e s  t h at w h e n  ι∕ r >  0,  =  0,  <  0,  o r  a n  e x a ct  s q u a r e,  

w e  h a v e  at  t h e s a m e ti m e +  4 Λ  ( 7 >  0,  =  0,  <  0,  o r  a n  e x a ct  s q u a r e.

It i s e vi d e nt  t h at t h e diff e r e nti al  e q u ati o n  ( d) h a s  a  si n g ul a r s ol uti o n, ' ψ' =  0,  d ψ  =  0. T h e s e  

h y p ot h e s e s  b el o n g  t o t h e li mit ( A), a n d  s h e w t h at t hi s l att e r c u r v e i s t o u c h e d b y  all  of  t h e f o r m 

( s), ( s').*  It h a s  h o w e v e r  o nl y  a  c o nt a ct of  t h e fi r st o r d e r  wit h  e a c h  : f o r if w e  diff e r e nti at e  ( d), 

a n d  p ut  ψ  =  0,  d ≠'  =  0,  w e  fi n d

t h e fi r st f a ct o r b el o n g s  t o t h e li mit, t h e s e c o n d t o t h e c u r v e : s o t h at t h e y h a v e  at  t h ei r c o m m o n  

p oi nt  a  c o m m o n t a n g e nt, b ut  n ot  a  c o m m o n o s c ul ati n g  ci r cl e.

Si n c e  at t h e li mit d ∖ f r =  0,  d ^ ∖∣ r =  2 d φ ,̂  o r  d ^ yf r  >  0,  ∖∕ r  i s a  mi ni m u m.  O nl y  o n e  c u r v e of  t h e 

f o r m ( s), ( s') p a s s e s  t h r o u g h e a c h p oi nt  of  t h e li mit. I n f a ct t h e s e t w o c u r v e s a r e  i n g e n e r al  of  

t h e s a m e n at u r e,  a n d  n o  ot h e r wi s e  diff e r  t h a n b y  t h e v al u e  of  t h e c o n st a nt c : w hi c h  at  t h e li mit 

h a s  b ut  o n e  v al u e.

P e r h a p s  a  si m pl e g e o m et ri c al  ill u st r ati o n m a y  b e  u s ef ul,  t o m a k e  t h e s e ci r c u m st a n c e s e a s y  of  

c o n c e pti o n. I m a gi n e a  s e ri e s of  ci r cl e s of  gi v e n  r a di u s, all t o u c hi n g e xt e r n all y  a  gi v e n  ci r cl e, i n 

it s o w n  pl a n e : t h r o u g h e v e r y  e xt e r n al p oi nt  t h e r e p a s s  i n g e n e r al t w o s u c h ci r cl e s ; t h e s e w e  

m a y  c o n c ei v e t o r e p r e s e nt t h e c u r v e s ( s), ( s'). T h r o u g h  e v e r y  p oi nt  u p o n  t h e gi v e n  ci r cl e p a s s e s  

b ut  o n e,  n a m el y  t h e ci r cl e of  t h e gi v e n  r a di u s, w hi c h  t o u c h e s it e xt e r n all y  at  t h at p oi nt. I n t hi s 

c a s e t h e gi v e n  ci r cl e i s t h e li mit ( A), a n d  n o  c u r v e  of  t h e ki n d  w e  a r e  c o n si d e ri n g p a s s e s  t h r o u g h 

a n y  p oi nt  wit hi n  it. It i s n e c e s s a r y  h o w e v e r  t o o b s e r v e  t h at i n t hi s c a s e t h e r e i s a n ot h e r  li mit, 

al s o  a  ci r cl e, t o u c h e d b y  all  of  t h e gi v e n  f o r m, t h r o u g h e v e r y  p oi nt  of  w hi c h  p a s s e s  b ut  o n e,  a n d  

t h r o u g h e v e r y p oi nt  b e y o n d  w hi c h  p a s s e s  n o n e : t hi s i s a p e c uli a rit y  of  t h e i n st a n c e w e  h a v e  

s el e ct e d, a n d  i s n ot  f o u n d i n t h e g e n e r al  c a s e.

B ut  w h e n  t h e f u n cti o n ψ  i s a n e x a ct  s q u a r e w hi c h  w e  will  r e p r e s e nt b y  il∖  t h e diff e r e nti al  

e q u ati o n
Λ » Ί t 9 Ί t 9  ∕ ∖ ∕J ∖

*  [ T his is n ot  tr u e i n g e n er al. S e e  A p p e n di x,  N ot o  2 2,  p.  5 0 4. ]
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360 XV. ON CAUSTICSresolves itself into two factors : one of them is ∩≡ = 0, the other dφ^ — = 0 : the first belongsto the limit, which is still a particular solution, and the second belongs to the curves which on this hypothesis become φ + Ώ = c (s), φ -il=c (s'):in this, as in all cases, at the limit the two values of the constant become equal, but the curves themselves do not touch either the limit or each other.*  In this case then, (Λ) is no longer a limit, properly speaking, nor is (L) a limiting surface.In this case also the curves (s), (s') and the surfaces (D), (D') are altogether independent. Nor does there then exist any one surface touched by all the developable surfaces of both kinds: but as we observed in page 350, that in this case the curves of one kind may all pass through one common point, so we will now observe, that all the developable surfaces of one kind may touch one common surface, or pass through one common line : which surface or line is then to be considered as one of the caustic surfaces, in this case independent.It is proper to take our illustrations from the properties of normals to a surface, because these being treated of by all elementary writers, are familiar to the conception, and because Monge has taken them for the principal subject of his profound and beautiful “ Analyse.” Suppose then the rays all normal to a surface of revolution: one of the developable surfaces is the meridian plane, the other is a right cone, having its vertex in the axis : their natures are different; all those of the first kind pass through a common line, namely the axis : all those of the other kind touch one common surface, namely the one formed by the evolute of the meridian revolving round the axis.The angle under which the developable surfaces cut the loci of their own aretes, is the same as that under which they cut each other, namely ω, calculated in the IInd Article. This is also the angle under which the osculating planes of the caustic curves (a), (a') cut their own caustic surfaces (C), (C'). Hence it follows that when ω = 90’, the caustic curves are the shortest between two points on their caustic surfaces. This is the case for normals, for reflected and for refracted rays. In the Vth Article j∙ we will prove that, in the first of these three cases, the caustic curves are the shortest on another kind of locus, which consequently touches the caustic surface in the whole extent of the caustic curve.Whenever the condition ω = 90° is satisfied, a thread drawn in the direction of the ray, and, at the point where it meets either of the caustic surfaces, freely wound round that surface, would trace upon it the caustic curve corresponding: and conversely such a thread freely unwound would trace out on the given surface the curve (s) or (s'): so that the caustics are analogous to evolutes.In fact evolutes are a particular case of caustics, when the latter, as in this paper, are considered in all their generality. In the case of evolutes, the rays are perpendicular to the surface: the curves (s), (s') are the curves of greatest and least curvature on the latter: the developable surfaces (D), (D') are the normal surfaces, with which Monge occupied himself so much, and which cut at right angles: the caustic surfaces (C), (C') are the loci of the centres of curvature, which answer to the foci, and finally, the caustic curves (a), (a') are the evolutes of
* [There is some confusion in the argument, since (unless √l=7^=C=0 on (λ)) the equation

Λ dai-Cdx"^=Q
(which defines (s), (s')) is satisfied by a unique direction when 7/-+ 4^1(7=0. The curves (s),. (s') therefore touch 
each other at the points where they meet (Λ).]

+ [Not included in the MS,]
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XV. ON CAUSTICS 361the curves of greatest and least curvature, which Monge proved in a similar manner to be the shortest lines between two points on their own loci.Monge also proved that if from any point of space we could see the two surfaces which are the loci of the centres of curvature, their profiles would appear to cut at right angles. I will only stop to observe that if ω be any constant angle, the profiles of the two caustic surfaces would appear to cut under that angle.We may now resume the discussion of the equation of focal distance in page 355, 
which was there left incomplete. We there discussed the cases Λ" = 0 and B" = 0. The hypothesis 
belongs to a curve on the given surface, in the whole extent of which, one focal distance being = 0, one caustic surface intersects the given surface.This is a remarkable curve: let us consider some of its properties.1st. It is, as we have seen, the intersection of the given surface with a caustic surface.2nd. But it is at the same time a curve of contact between the given surface and that caustic surface: for if we make 
in the expression calculated in page 356 for the partial differentials of the caustic surface, P, Q, we find P =p, Q≈q∙3rd. It is a singular curve on the caustic surface, for if we calculate the partial differentials, second order, of that surface, we find them, at that curve, in general infinite.*

* [Hamilton must have been led to this conclusion by an error of calculation. The partial derivatives of the 
second order for the caustic surface are infinite only if

4th. The equation which in general determines tan ω, disappears when
5th. On the same hypothesis the equation which determines the directions of the curves (s), (s'), namely

resolves itself into two rational factors, of which one being μdy' — vdx' = 0, that is, v - = 0,changes the equations in page 348, for the tangent (t) to the curve (s), into these, 
because in the present case 1 — μp- vq = Q∙. and these equations (t) shew that the tangent to one of the curves (s), (s') is in this case the ray itself.6th. Finally the curve
is that in which the given surface is itself enveloped by a surface of rays. It remains to consider the case — 4A"U" = 0.
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I n g e n e r al  w h e n  w e  s e e k t h e i nt e r s e cti o n of  t h e t w o c a u sti c s u rf a c e s, o r  of  t h e t w o b r a n c h e s  

of  t h e g r e at  c a u sti c  s u rf a c e, w hi c h  i s c o m p o s e d  of  t h e m b ot h,  w e  s u p p o s e t h e t w o f o ci t o c oi n ci d e,  

a n d  t h e r ef o r e t h e e q u ati o n  i n Γ  t o t a k e e q u al  r o ot s.*

*  [ H a milt o n l e a v es o ut  of  c o nsi d er ati o n  a n  i nt ers e cti o n f or w hi c h  a  c o m m o n  p oi nt  is a  f o c us o n  t w o diff er e nt  
r a ys.]

+  [ T his, a n d  t h e pr o p erti es  w hi c h  f oll o w, ar e  b as e d  o n  t h e ass u m pti o n  t h at (s), (s') t o u c h ( Λ).]

T hi s  h y p ot h e si s  f u r ni s h e s t h e c o n diti o n  A" G"  =  0  : w hi c h  b ei n g  d e v el o p e d  i s f o u n d t o

b e  t h e s a m e a s  +  4 Λ  ( 7 = 0. H e n c e  w e  c o n cl u d e

1 st.  t h e c u r v e of  i nt e r s e cti o n i s al s o  a  c u r v e of  c o nt a ct : f o r 5 ^  +  4 2 1( 7  =  0  gi v e s  t a n ω  =  0  ;

2 n d.  t hi s c u r v e i s t h e r ef o r e o n e  of  r e b r o u s s e m e nt o n  t h e g r e at  c a u sti c s u rf a c e ;

3 r d.  t h e s u rf a c e of  r a y s p a s si n g  t h r o u g h it h a s  f o r b a s e  t h e li mit ( Λ), [ a n d]

4t h.  i s t h e r ef o r e t h e d e v el o p a bl e  li miti n g s u rf a c e ( L);f

5t h.  t h e c u r v e it s elf i s t h e a r et e  of  t h at s u rf a c e ( L) a n d  h a s  all  t h e p r o p e rti e s  m e nti o n e d  i n 

p a g e  3 5 8 : t h at i s t o s a y

6t h.  it i s t h e c a u sti c of  t h e li mit ( Λ), a n d  t o u c h e d b y  all  t h e c a u sti c s of  b ot h  ki n d s  ;

7t h.  f o r t hi s c a u sti c, t h e d e n sit y  of  li g ht i s a  m a xi m u m : w e  will  c all it t h e p ri n ci p al  c a usti c.

It d o e s  n ot  s uit t h e pl a n  of  t hi s p a p e r  t o e nt e r i nt o a  d et ail  of  e x c e pti o n s : w e  will  h o w e v e r  

m e nti o n  t h e m o st  e xt e n si v e  a n d  i m p o rt a nt.

1 st. W h e n  + G  i s a n  e x a ct  s q u a r e.

II n d. W h e n  2 ^ 2 ÷ 4 √ 1 C*  =  O  c a n o nl y  b e  s ati sfi e d b y  p utti n g  s e p a r at el y 2l  =  O,  B  =  0, ( 7 = 0, 

a n d  w h e n  t h e s e s u p p o siti o n s a r e  p o s si bl e.

T h e s e  a r e  t h e s a m e e x c e pti o n s t h at w e  m e nti o n e d  i n p a g e  3 5 0,  r e s p e cti n g t h e n at u r e  of  t h e 

li mit ( Λ). W e  a r e  g oi n g  t o c o n si d e r t h e m s e p a r at el y.

I n t h e 1 st  C a s e,  t h e c a u sti c s u rf a c e s a r e n ot  b r a n c h e s  of  o n e a n d t h e s a m e s u rf a c e, b ut  

a r e  a b s ol ut el y  di sti n ct  a n d i n d e p e n d e nt. T h e y  d o  n ot  t o u c h at t h ei r i nt e r s e cti o n, n o r  d o  t h e y 

t e r mi n at e t h e r e. T h at  i nt e r s e cti o n i s n ot  a  c a u sti c ; n o r  i s t h e s u rf a c e of  r a y s ( L) p a s si n g  t h r o u g h 

it, d e v el o p a bl e ; n o r  a  li miti n g s u rf a c e  : n o r  t h e b a s e  ( Λ) a  li miti n g c u r v e.

H o w e v e r  t h e i nt e r s e cti o n of  t h e t w o c a u sti c s u rf a c e s i s still a n i m p o rt a nt c u r v e, si n c e f o r 

e v e r y  p oi nt  of  it t w o f o ci c oi n ci d e, a n d  t h e d e n sit y  of  li g ht i s g r e at e st.

I n t h e II n d C a s e,  t h e li mit ( Λ) g e n e r all y  r e d u c e s it s elf t o a p oi nt : a n d t h e r e e xi st s  a  cl a s s  

of  l a w s w hi c h  r e n d e r n ot  o nl y  t h e e q u ati o n  it s elf.

b ut  all  it s d e ri v e d  e q u ati o n s  i d e nti c al at  t h at p oi nt : s o t h at t h e r a y f r o m t h at p oi nt  i s i nt e r s e ct e d 

b y  a n  i nfi nit e n u m b e r  of  c o n s e c uti v e r a y s.

M o r e o v e r  t h e y all  i nt e r s e ct it i n o n e  a n d  t h e s a m e p oi nt,  f o r t h e e q u ati o n  

t a k e s e q u al r o ot s : t o t hi s p oi nt  t h e p ri n ci p al  c a usti c i n t hi s c a s e r e d u c e s it s elf: w e  will  c all it 

t h e p ri n ci p al  f o c us. T h e  p oi nt  o n  t h e gi v e n s u rf a c e t o w hi c h  i n t hi s c a s e t h e li mit ( Λ) r e d u c e s  

it s elf, a n d f r o m t h e p o rti o n  of  t h e s u rf a c e n e a r  t o w hi c h  t h e li g ht c o n v e r g e s a c c u r at el y  t o t h e 

p ri n ci p al  f o c u s, I will  c all t h e v e rt e x  of  t h e s u rf a c e.
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XV. ON CAUSTICS 363These two points exist in Nature, and it is obvious how important the consideration of them must be. It will of course be introduced in the second part of this paper,*  whenever I have leisure to complete it.

* [Not included in the MS.]

To find the coordinates of the vertex of the given surface, we may employ any three of the four equations 
and to find the coordinates of the principal focus, x, y, z, we have the following.
Γ IS the projection of the focal distance on the axis oi z∖ that distance is

I had prepared an Article on the intersections of rays at finite distances from each other, which was to have been inserted in this place : but the comparative unimportance of the subject, and the press of other matter, have induced me to relinquish that intention.
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