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THEORY OF SYSTEMS OF RAYS
/ Read December 13, 1824,*
[ Transactions of the Royal Irish Academy, vol. 15 (1828), pp. 69-174.]

INTRODUCTION

Those who have hitherto written upon the properties of Systems of Rays, have confined them-
selves for the most part to the consideration of those particular systems, which are produced by
ordinary reflexion and refraction at plane surfaces and at surfaces of revolution. Malus, indeed,
in his Traité D’Optique, has considered the subject in a more general manner, and has made
some valuable remarks upon systems of rays, disposed in any manner in space, or issuing from
any given surface according to any given law; but besides that those remarks are far from
exhausting the subject, Malus appears to me to have committed some important errors, in the
application of his theory to the systems produced by combinations of mirrors and lenses. And
with the exception of this author, I am not aware that any one has hitherto sought to investigate,
in all their generality, the properties of optical systems;+ much less to establish principles
respecting systems of rays in general, which shall be applicable not only to the theory of light,
but also to that of sound and of heat. To establish such principles, and to investigate such
properties is the aim of the following essay. I hope that mathematicians will find its results and
reasonings interesting, and that they will pardon any defects which they may perceive in the
execution of so abstract and extensive a design.

Observatory,
June 1827.

CONTENTS*

ParT FirsT: On Ordinary Systems of Reflected Rays.
PArT SECOND: On Ordinary Systems of Refracted Rays.
PART THIRD : On Extraordinary Systems, and Systems of Rays in general.

PART FIRST. ON ORDINARY SYSTEMS OF REFLECTED RAYS
L Analytic expressions of the Law of Ordinary Reflexion.
The sum of the cosines of the angles which an incident and a reflected ray, measured from the mirror,
make with any assumed line, is equal to the cosine of the angle which the normal to the mirror makes
with the same line, multiplied by twice the cosine of incidence ; this theorem determines immediately

the angles which a reflected ray makes with three rectangular axes, when we know the corresponding
angles for the incident ray, and the tangent plane to the mirror., A ! i SRTIRE IO 3

* Since this paper was first read before the Academy, various delays have occurred, which postponed the
printing until the present time. I have availed myself of these delays, to add some developments and applications
of my Theory, which would, I thought, be useful. [See Appendix, Note 1, p. 462.]

t [See Appendix, Note 2, p. 463.]

1 [The paper, as originally published, contained only Part First, Part Second is now printed for the first time
from manuscript. We have not been able to find the manuscript of Part Third.]
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2 I. THEORY OF SYSTEMS OF RAYS

Principle of Least Action; the sum of the distances of the point of incidence, from any two assumed
points, situated on the two rays, is equal to the corresponding sum, for any point, indefinitely near,
upon the mirror, (the distances being counted negative when the assumed points are on the rays pro-
duced) : consequences respecting ellipsoid, hyperboloid, paraboloid, and plane mirrors. ; 3, 4, 5.

ILI. Theory of Focal Mirrors.

A Focal Mirror is one which would reflect to a given point the rays of a given system ; differential

equation of such mirrors. . 6.
In order that this equatlon should be 1ntegra.ble, the mcldent rays must be perpendlculars to a
surface. . ) Kng -t

When this condltlon is sa,tlsﬁed the mtegra.l expresses tha.t the Whole bent path traversed by the
light, in going from the perpendicular surface to the Focal Mirror, and from this to the Focus, is of a
constant length, the same for all the rays. 3 - 3 : ‘ . 9.

The Focal Mirror is the enveloppe of a certain series of elhpsmds - . - : Al 105

IIL. Surfaces of Constant Action.

‘When rays issuing from a luminous point, or from a perpendicular surface, have been any number
of times reflected, they are cut perpendicularly by a series of surfaces, possessing this property, that the
whole polygon path traversed by the light, in arriving at any one of them, is of a constant length, the

same for all the rays. ; : : , 3 . 115 12
Reasons for calling these surfaces, Suﬁ'aces q/ OOnstant Actwn . 4 ; 2 ¢ . 13.
Distinction of these surfaces into positive and negative. ¢ ; v 14.

Each surface of constant action is the enveloppe of a certain series of spheres if it be itself a
sphere, the final rays all pass through the centre of that sphere; it is always possible to choose the
final mirror, so as to satisfy this condition. i . ; 3 . . : : \ . 15,

IV. Classification of Systems of Rays.

Elements of Position of a ray ; a system in which there is but one such element, is a system of the
Jfirst class ; a system with two elements of position, is a system of the second class ; the principal systems

of optics belong to these two classes. 3 y r . . 16,17
A system is rectangular when the rays are perpendlcula.rs to a surface § : PN e
In such a system, the cosines of the angles that a ray makes with the axes of coordma.tes, are equal
to the partial differentials of a certain characteristic function. d : : 3 A 19, 20.

V. On the pencils of a Reflected System.

The rays that are reflected from any assumed curve upon the mirror, compose a partial system of

the first class, and have a pencil for their locus. : ; : 21, 22,
An infinite number of these pencils may be composed by the rays of a given reflected system ;
functional equation of these pencils. . ‘ ! : 23.

The arbitrary function in this equation, may be determmed by the condltlon of passing through a
given curve, or enveloping a given surface ; application of these principles to problems of painting and

perspective. . : i 24.
‘We may also ehmmate the arbltrary functlon, and thus obta.m a partlal dlﬁ'erentlal equation of the
first order, representing all the pencils of the system. . : ; ! ; g : . . 2b,

VI. On the developable pencils, the two foct of a ray, and the caustic curves and surfaces.

Each ray of a reflected system has two developable pencils passing through it, and therefore touches
two caustic curves, in two corresponding foci, which are contained upon two caustic surfaces. .  26.
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I. THEORY OF SYSTEMS OF RAYS 3

Equations which determine these several circumstances. . i : ; $ i 27T 28, 29,
Examples. . 5 * . a ; - : ¢ : e 90
Remarks upon the equations of the caustnc curves and surfaces : - : : . ey Bl

VII. ZLaines of reflection on a mirror.

The curves in which the developable pencils meet the mirror, are called the lines of reflexion ;
differential equations of these lines ; example. . ; 2 . 32, 33, 34.
Formule which determine at once the foci, and the hnes of reﬂean example s A o bk

VIIL. On Osculating Focal Mirrors.

Object of this section. . : > S |
‘When parallel rays fall on a curved mirror, the dlrectlons of the two lmes of reﬂexxon are the
directions of osculation of the greatest and least osculating paraboloids; and the two foci of the reflected
ray are the foci of those paraboloids. 4 ¢ 7 f ; ; : . ; { st 37,
In general the directions of the lines of reflexion are the directions of osculation of the greatest and
least osculating focal mirrors; and the two foci of the ray are the foci of those two mirrors. .  38.
The variation of the osculating focal length, between its extreme limits, follows an analogous law,
to the variation of the radius of an osculating sphere. y 39.
If on the plane passing through a given reflected ray and throuvh a given dlrectlon of osculatlon,
we project the ray reflected from a consecutive point on that direction, the projection will cross the
given ray in the osculating focus corresponding. ; . s ; : ; ; ; ; 40.

IX. On thin and undevelopable pencils.

Functional equation of thin pencils. . : ; ‘ ‘ G 15
‘When we look at a luminous point by any combmatlon of mirrors, every perpendlcular section of
the bounding pencil of wision is an ellipse, except two which are circular; namely, the section at the
eye, and the section whose distance from the eye is an harmonic mean between the distances of the two
foci ; when the eye is beyond the foci the radius of this harmonic circular section is less than the semi-

axis of any of the elliptic sections. . 4 . S
Whatever be the shape of a thin pencil, prov1ded it be closed the area of a perpendlcular section
varies as the product of the focal distances. . s R

The tangent plane to an undevelopable pencil does not touch the pencll in the whole extent of a
ray; it is inclined to a certain limiting plane, at an angle whose tangent is equal to a constant
coefficient divided by the distance of the point of contact from a certain fixed point upon the ray ; pro-
perties of the fixed point, the constant coefficient, and the limiting plane. P - ; 44, 45,

X. On the axes of a Reflected System.

The intersection of the two caustic surfaces of a reflected system, reduces itself in general to a finite
number of isolated points, at which the density of light is greatest ; these points may be called the
principal foci, and the corresponding rays the awxes of the 8g/stem ; determination of these points and rays
by means of the characteristic function. . : ) . 48,

Each axis is intersected in its own focus by all the rays mdeﬁmtely near ; thls focus belongs to an
osculating focal mirror, which has contact of the second order with the given mirror, at a point which

may be called the vertew. : : Gk

The principal focus is also the centre of a series of Qpheres, whlch have conta.ct of the second order

with the surfaces of constant action. : . : ‘ : 4 : : ! ; R N

"Examples. 5 : - y ; F . : : 3 : ; ; : 49, 50.
1-2
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4 I. THEORY OF SYSTEMS OF RAYS

XI. Images formed by Mirrors.

The image of a luminous point, formed by any given combination of mirrors, is the principal focus
of the last reflected system; the image of a curve or surface is the locus of the images of its points.  51.
Example ; the image of a planet’s disk, formed by a single mirror, is in general an ellipse; its pro-
jection on a plane perpendicular to the reflected rays is a circle, the radius of which is equal to the
focal length of the mirror multiplied by the semidiameter of the planet. . ‘ s § 52, 53.
General theorem respecting the images of small objects, formed by any combination of mirrors.  54.
There are, in general, one or more ways of placing a given mirror so as to produce an undistorted
image of a planet ; the points which are to be used as vertices for this purpose, are determined by two
relations between the partial differentials, third order, of the mirror. : . X : S

XII. Aberrations.

General series for calculating the lateral aberrations by means of the characteristic function ; the
longitudinal aberrations do not exist for reflected systems in general ; but there are certain analogous
quantities, calculated in the third part of this essay. - s . . A 56, b7,

First application ; aberrations measured on a plane which does not pass. through either focus; the
rays which make with the given ray angles not exceedmg some given small angle, are diffused over the
area of an ellipse. . : ; g 58.

Second application ; aberratlons measured on a plane pa,ssmg through one focus the rays which
were before diffused over the area of an ellipse, are now diffused over a mixt-lined space, bounded partly
by a curve shaped like a figure of eight, and partly by an arc of a common parabola, which envelopes
the other curve ; quadrature of this mixt-lined space, and calculation of the coefficients of the result, by
means of the curvatures of the caustic surface. : g . . 09,60, 61,

Third application ; aberrations measured on a plane pa.ssmg through a principal focus; the rays
which make with the given ray a given small angle, cut the plane of aberration in an elhpse if the
focus be inside this ellipse, the intermediate rays are diffused over the area of that curve; otherwise
they are diffused over a mixt-lined space, bounded partly by an arc of the ellipse, and partly by two
limiting lines, namely the tangents drawn from the focus. 2 : R

The distinction between these two cases depends on the nature of the roots of a certa.m quadratic
equation ; when the focus is inside the ellipse, the caustic surfaces do not intersect the plane of aberra-
tion ; but when the focus is outside, then the caustic surfaces intersect that plane in the limiting lines
before mentioned. . ‘ 4 63.

This distinction depends also on the roots of a certam cublc equatxon when the focus is mmde there
are three directions of focal inflexion on the mirror, and of spheric inflexion on the surfaces of constant
action, but when the focus is outside, there is but one such direction ; the aberrations of the second
order vanish, when there is contact of the third order between the mirror and the focal surface, or
between the surfaces of constant action and their osculating spheres. . ‘ : : 64, 65.

XIIL Density.

Method by which Malus computed the density for points not upon the caustic surfaces; other
method founded on the principles of this essay ; along a given ray, the density varies inversely as the
product of the focal distances; near a caustic surface it varies inversely as the square root of the
perpendicular distance from that surface. ; : ; il te. 800 67, 08,

Law of the density at the caustic surfaces; thls density is greatest a.t the principal foci, and at
a bright edge, the locus of the points upon the caustic curves, at which their radius of curvature
vanishes. ; g : ; . 3 5 : ; : . 4 g 3 . 69, 70.
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I. THEORY OF SYSTEMS OF RAYS )

Density near a principal focus ; ellipses or hyperbolas, upon the plane of aberration, at which this
density is constant; the axes of these curves may be considered as natural axes of coordinates; the
density at the principal focus itself is expressed by an elliptic integral, the value of which depends on
the excentricity of the ellipses or hyperbolas, at which the density is constant. 71, 72, 73, 74, 75, 76.

PART SECOND. ON ORDINARY SYSTEMS OF REFRACTED RAYS

XIV. Analytic expressions of the law of ordinary refraction.

Fundamental formula of dioptrics; principle of least action ; cartesian surfaces. Aoy T R A

XV. On focal refractors, and on the surfaces of constant action.

Differential equation of focal refractors; this equation is integrable, when the incident rays are
perpendicular to a surface; form of the integral ; the focal refractor is the enveloppe of a certain series

of cartesian surfaces. . : St 80
‘When homogeneous rays ha.ve been any number of tlmes reﬂected and refracted they are cut
perpendicularly by the surfaces of constant action. . . / s . : : 1 gl

XVI. Characteristic Function.

The systems produced by ordinary reflexion and refraction being all rectangular, the properties of
every such system may be deduced from the form of one characteristic function, whose partial
differentials of the first order, are proportional to the cosines of the angles that the ray makes with the
axes, : : ‘ . ° . : . § : ! 2 . 2 ‘ 3 i 82.

XVII. Principal properties of a refracted system.

The results contained in the preceding part, respecting the pencils of a reflected system, the lines of
reflexion, the caustic curves and surfaces, the osculating focal surfaces, the axes of the system, the
principal foci, the images, aberrations, and density, may all be applied, with suitable modifications, to
refracted systems also. . ’ i : 3 ‘ ’ 3 g p ; . 83, 84, 85, 86.

XVIIL. On the determination of reflecting and refracting surfaces, by their
lines of reflexion and refraction.
Analogy to questions in the application of analysis to geometry. . 87.
Remarks on a question of this kind, which has been treated by Malus; solutxon of the same questlon
on the principles of this essay. : ! ; 88, 89.
Questions of this kind conduct in genera.l to partlal dlﬁ‘erentlal equa.tnons of the second order ;
another example, which conducts to a case of the equation of vibrating chords. : : 5itd 90,
The partial differential equation, which expresses the condition for the lines of reflexion or refraction
coinciding with one another, resolves itself into two distinct equations ; the surfaces represented by the
integral, are the focal reflectors or refractors. . ! ; - j ’ ¥ : § grrgl,

XIX. On the determination of reflecting and refracting surfaces, by means of their caustic surfaces.

Object of this section. ¥ ; g . 5 i ¢ i 92.
Remarks on the analogous questlons trea.ted of by Monge g - ’ ! : R S
Method of reducing to those questions, the problems of the present sectlon : : 0 94,

Another method of treating the same problems, which conducts to partial differential equations of
an order higher by unity ; example, in the case where it is required to find a mirror, which shall have
one set of its foci upon a given sphere, the incident rays being parallel ; the complete integral, with two
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arbitrary functions, represents here the enveloppe of a series of paraboloids, which have their foci upon
the given sphere ; there is also a singular primitive, of the first order, representing the mirrors which

have the sphere for one of their caustic surfaces. : % ! : : : : 2 95, 96.
Generalization of the preceding results. 3 . s il O
Remarks on other questions of the same kmd Whlch conduct to equatlons in ordinary

differentials. . : i : 98.

The partial dlﬁ'erentla.l equatlon whlch expresses the condltlon for the two ca.ustlc surfa.ces coinciding,
resolves itself into two other equations which are peculiar to the focal reflectors or refractors: however,
these two equations determine, on some particular reflecting and refracting surfaces, a line of focal
curvature, analogous to the line of spheric curvature, which exists upon some curved surfaces, . 99.

XX. On the caustics of a given reflecting or refracting curve.

General theorem respecting the arc of a caustic curve ; means of finding by this theorem, the curves
corresponding to a given caustic. . : : : . . 100.

As an infinite number of curves correspond to the same glven caustic, so a,]so an mﬁmte number of
caustics correspond to the same given curve ; these caustics have for their locus a surface of circular
profile, and are the shortest lines between two points upon it ; this surface envelopes all the caustic
surfaces, corresponding to the reflectors or refractors, upon which the given curve is a line of reflection
or refraction. e ¢ y i : . i 3 ; 4 i X 7 ; 101, 102.

XXI. On the conditions of Achromatism.

The coordinates of the image of a luminous point, formed by any given combination of lenses and
mirrors, are functions of the colour of the rays; hence may be deduced series for the chromatic aberra-
tions, and conditions for achromatism, perfect or approximate. : “ £ . : 103, 104.

XXII. On systems of atmospheric rays.

Equations of an atmospheric ray. . 105.
These rays are perpendicular to the surfa.ces of constant actlon a,nd the propertles of the system
may all be deduced from the form of one characteristic function. . ’ : : . . k6

PART THIRD. ON EXTRAORDINARY SYSTEMS, AND SYSTEMS OF
RAYS IN GENERAL

XXIIL. On plane systems of rays.

Object of this third part. : 107.
Equation of a ray in a plane system, formulae for the focal coordmates and for the are a.nd curvature
of the caustic curve. 4 - ek,
General series and a.pprox1mate fmmulze for the a.berratlons latera.l a.nd longltudma.l principal
foci, and axes of a plane system. . : h : ; : : ; s 109, 110,311,
Properties of the rectangular tragectones : § : G
Least linear space, into which can be collected a glven parcel of rays near an axis of a plane
system. ; 3 . 4 ; ! i . " : 113.
On finding the system by means of the caustlc - s s LA,
On plane emanating systems ; general theorem respecting the focal lenoths of plane reflecting and
refracting curves, ordinary and extraordinary. 4 - : . ; i g ‘ SRR 1
Plane curves having a given caustic ; focal curves. . A . : : ’ - o Hid R0,
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I. THEORY OF SYSTEMS OF RAYS 7

XXIV. On developable systems.

A developable system is a system of the first class, in which the rays have a developable pencil for

their locus ; equations of a ray ; condition of developability. ! i ; ‘ \ ; ¢ 117,
Formulae for the caustic curve. . : : i . e 8 1Y
Aberrations ; formula for the radius of curvature of a curve in space ; prxnclpa.l foci and axes of a

developable system y . . f 119, 120, 121.

Remarks upon some propertles of developable pencﬂs consldered as curve surfaces. 122, 123, 124,

XXYV. On undevelopable systems.

Generalisation of the resvlts of the IXth section, respecting the tangent plane, the limiting plane,
the virtual focus, and the coefficient of undevelopability. . : . : . : : 125.
Virtual caustic, and axes of an undevelopable pencil. ; § J .. 1120
Directriz of the pencil ; every undevelopable surface composed of rlght hnes may be generated by
one of the indefinite sides of a rectangle of variable breadth, whose other indefinite side constantly
touches the directrix, while its plane constantly osculates to that curve. ¢ / b 127, 128.
Pencils having a given directrix ; isoplatal surfaces. ; s 7 129, 130.
The surfaces of centres of curvature of an undevelopable penc11 are the enveloppe of a series of
hyperboloids; formule for the two radii of curvature; these two radii are turned in opposite directions;
lines of equal and opposite curvature., . p i 131.
‘When the ray is an axis of the undevelopable penc11 the locus ot' centres ot' curvaturo is & common
hyperbola ; point of evanescent curvature at which the normal to the pencil is an asymptote to the
hyperbola. of centres ; point in which the ray touches the directrix; these two points are equally distant
from the focus. . : ; : il o .
On every surface whose curva.tures are oppos1te there exxst two series of lmes, whlch may be called
the lines of inflexion ; properties of these lines ; ‘on the surfaces of least area, the lines of inflexion cut
at right angles. . 3 ; | ; 133.
Aberrations in an undevelopa.ble system v1rtual developments of the pencll ’ : 134, 135.

XXVI. On systems of the second class.

General formulze for these systems ; condition of rectangularity ; equation of the surfaces which cut

the rays perpendicularly when this condition is satisfied. . 4 ’ ) v, 136
Pencils of the system ; caustic surfaces; when the system is recta.n(rula.l the lntersectlon of these
surfaces reduces itself to a finite number of points. : : : 137, 138.
Virtual foci of a ray ; virtual caustic surfaces ; diametral surface prlnmpal virtual foci. . 139,

Law of the variation of the virtual focus; the pla,nes of extreme virtual foci cut one another at right
angles ; generalization of the results of the IXth section respecting the properties of thin pencils.  140.
On emanating systems. . . ! 141.
Foci by projection ; the planes correspondlng to the extreme focl by prOJectlon, coincide with the
planes of extreme virtual foci; they furnish a pair of natural coordinates, which are of extensive use
in optics. . . » $ 142.
Osculating focal surfa,ces ; the greatest a.nd lea.st have thelr focl upon the caustlc surfaces, and
osculate in the directions in which the developable pencils intersect the surface from which the rays

proceed. : 2 : % : y : : ; 3 : s
Applications of thls theory / ; 3 144 145, 146, 147.
Caustics of a given curve; condltlons of mtegrablhty, whlch are necessary for the existence of focal

surfaces. . " . ; : . . . : ; ! : } . ‘ . 1 148.
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8 I. THEORY OF SYSTEMS OF RAYS
XXVIL On systems of the third class.

Object of this section ; limiting surface enveloped by all the cones and other pencils of the system ;
condition for this surface being touched by all the rays; remarks on the investigations of Malus,
respecting systems of this kind. : ; ¢ A : ; : - . - 149, 150, 151.

XXVIIL. On extraordinary systems produced by single-axed crystals.

Object of this section; analytic expression of the law of Huygens; principle of least action;
characteristic function of an extraordinary system. : : : 152, 153
The surfaces of constant action are touched by spheroids, havmtr thelr centres on the extraordinary
rays,.and the rays may be considered as proceeding from these surfaces, according to a simple law; when
the extraordinary rays converge to one focus, the surfaces of constant action become a series of concen-
tric spheroids, and it is always possible to assign such a form to the surface of the crystal as to satisfy
this condition : hence it follows, by XX V1., that the extraordinary rays are in general tangents to two
caustic surfaces, which contain the foci of the greatest and least osculating focal crystals; the directions
of osculation are the directions of the lines of ewtraordinary refraction, analogous to those lines of
ordinary reflexion and refraction which were before considered : the caustic surfaces of the extraordinary
system contain also the centres of the greatest and least spheroids which osculate to the surfaces of con-
stant action ; the intersection of the caustic surfaces reduces itself in general to a finite number of
principal jfoct, analogous to the principal foci of ordinary systems, considered in the two first parts;
each principal focus is the centre of a spheroid which has contact of the second order with a surface of
constant action ; it is also the focus of a focal crystal which has contact of the second order with the
surface of the given crystal ; the partial differential equations which represent crystals corresponding to
a given caustic surface, are to be integrated after the manner of the second part. . . 154, 155.
Condition for the rectangularity of an extraordinary system, expressed by a partial differential
equation of the second order ; integration of this equation ; the integral expresses that the normals to
a surface of constant action are tangents to a cylindric surface, whose generating line is parallel to the
axis of the crystal. . . : . | 156.
The preceding results may be extended to the extraordmary systems produced by reflexion at the
interior surface of the crystal ; when the extraordinary rays recover their ordinary velocity they become
again perpendicular to the surfaces of constant action : this theorem enables us to apply the results of
the two first parts to systems produced by combinations of crystals, mirrors, and lenses. . i 157.

XXIX. On other extraordinary systems.

Law of extraordinary refraction in crystals with two axes; characteristic function of a system pro-
duced by such a crystal; spheroids of Brewster; surfaces of constant action; the results of the preceding
sections may be extended to these systems. . ; i 158, 159.

Remarks on systems produced by crystallized medlums of contmually va,rymg nature. o vl 60

XXX. Law of least action.

General expressions of this law; development of these expressions by means of the calculus of
variations. In every optical system, the action may be considered as a CHARACTERISTIC FUNCTION, from
the form of which function may be deduced all the other properties of the system. This function (when
we know the luminous point, and the reflecting or refracting media) depends only on the coordinates
and on the colour ; its partial differentials, of the first order, taken with respect to the coordinates, are
in ordinary systems of the form

di & 81
5= 0 8—y=v.,3. =0
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1, 2] I. THEORY OF SYSTEMS OF RAYS 9

and in extraordinary systems of the form

& S 8 v &

o S’ 3y B’ & ¥
a, B, y, being the cosines of the angles which the ray makes with the axes of z, ¥, 2, and » being the
velocity, estimated on the material hypothesis, and considered, in extraordinary systems, as a homo-
geneous function, first dimension, of the cosines a, 3, y. Reason for calling this principle the PriNcIPLE
oF CoNsTANT AcTION ; analogous principle respecting the motion of a system of bodies. General con-
sequences of this principle: generalisation of the properties of optical systems, considered in former
sections of this essay ; the phenomena of coloured systems depend on the partial differentials of the
characteristic function, taken with respect to the colour. > . L 3 . 161 to the end.

CONCLUSION

Review of the chief results of this essay, and of the manner in which they may be useful; and
remarks on the researches of former writers, respecting the properties of systems of rays.

PART FIRST
ON ORDINARY SYSTEMS OF REFLECTED RAYS

SECTION I
Analytic expressions of the law of ordinary reflexion.

1. When a ray of light is reflected at a mirror, we know by experience that the normal to
the mirror, at the point of incidence, bisects the angle between the incident and the reflected
rays. If therefore two forces, each equal to unity, were to act at the point of incidence, in the
directions of the two rays,* their resultant would act in the direction of the normal, and would
be equal to twice the cosine of the angle of incidence. If then we denote by (pl) (pl) (nl) the
angles which the two rays and the normal make respectively with any assumed line (/), and by
(1) the angle of incidence, we shall have the following formula,

cos. pl + cos. p’l =2 cos. I. cos. nl (A)

which is the analytic representation of the known law of reflexion, and includes the whole theory
of catoptrics.

2. It follows from (A) that if we denote by pz, py, pz, p'z, p'y, p'z, n, ny, nz, the angles which
the two rays and the normal make respectively with three rectangular axes, we shall have the
three following equations,

cos. pz + cos. p'z = 2 cos. I. cos. na
cos. py + cos. p'y = 2 cos. I . cos. ny L (B)
COS. ;;z + cos. p'z = 2 cos. I . cos. nz
which determine the direction of the reflected ray, when we know that of the incident ray, and
the tangent plane to the mirror.

* [The directions of both rays are away from the mirror.]
HMP 2



10 I. THEORY OF SYSTEMS OF RAYS [3, 4

3. Let (#, y, 2) be the coordinates of the point of incidence; x+ 8z, y+ 8y, 2+ 8z, those of a
point infinitely near; if this point be upon the mirror we shall have

cos. na . 8z + cos. ny . 8y + cos. nz. 8z = 0,

and therefore, by (B),
0 = cos. pz . &z + cos. py . 8y + cos. pz . 6z

+cos. p'w. 8 + cos. p'y . 8y + cos. p'z. bz. ©)

Now if we assume any point X, Y, Z, on the incident ray, at a distance p from the mirror, and
another point X', ¥’, Z’, on the reflected ray at a distance p’ from the mirror, the distances of
these assumed points from the point # + 8z, y + 8y, z + 8z, will be

p+d= p+d 8a;+:§p

dp
8y+d . 82,
P+ 8= p+dx 8a:+dp 8y+d . 02;

and because
PP =(X —ap+ (¥ —yp+(Z—2p,
pr= (X = af o+ (V= g+ (7 = 2,

we shall have
dp __X—=a dp_ Y-y dp Z —z

d p ' dy p ' de P
de’ v Bl KRN S LS
th t 4 dw pl ) dy pl 2 dz Pl )
atb is
gg = — 08, pa, % = — cos. pY, %g = — C08. pz,
dp 28 ’ dP, £ ’ dpl TSR 7N
o =~ cosp@, (—iy——cos.py, 5 =~ eos.p'z;
and finally, by (C)
3p +8p' =0. (D)

This equation (D) is called the Principle of least Action, because it expresses that if the
coordinates of the point of incidence were to receive any infinitely small variations consistent
with the nature of the mirror, the bent path (p+p’) would have its variation nothing; and
if light be a material substance, moving with a velocity unaltered by reflection, this bent path
p + p' measures what in mechanics is called the Action, from the one assumed point to the other.
Laplace* has deduced the formula (D), together with analogous formulae for ordinary and extra-
ordinary refraction, by supposing light to consist of particles of matter, moving with certain
determined velocities, and subject only to forces which are insensible at sensible distances. The
manner in which I have deduced it, is independent of any hypothesis about the nature or the
velocity of light ; but I shall continue to call it, from analogy, the principle of least action.

4. The formula (D) expresses, that if we assume any two points, one on each ray, the sum
of the distances of these two assumed points from the point of incidence, is equal to the sum of
their distances from any infinitely near point upon the mirror, If therefore we construct an

* [ Mémoires de U Académie des Sciences, Te. Sér., 10 (1810) ; Giuwres, t. 12, pp. 267—298.]
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4-7] I. THEORY OF SYSTEMS OF RAYS 11

ellipsoid of revolution, having its two foci at the two assumed points, and its axis equal to the
bent path traversed by the light in going from the one point to the other, this ellipscid will
touch the mirror at the point of incidence. Hence it may be inferred, that every normal to an
ellipsoid of revolution bisects the angle between the lines drawn to the two foci; and therefore
that rays issuing from one focus of an ellipsoid mirror, would be reflected accurately to the other.

5. These theorems about the ellipsoid have long been known; to deduce the known theorems
corresponding, about the hyperboloid and plane, I observe that from the manner in which the
formula (D) has been obtained, we must change the signs of the distances, p, p’, if the assumed
points X, Y, Z, X', ¥Y’, Z’, to which they are measured, be not upon the rays themselves, but on
the rays produced. If therefore we assume one point X, Y, Z, upon the incident ray, and the
other point X', ¥”, Z’, on the reflected ray produced behind the mirror, the equation (D) ex-
presses that the difference of the distances of these two points from the point of incidence, is
the same as the difference of their distances from any infinitely near point upon the mirror; so
that if we construct a hyperboloid, having its axis equal to this difference, and having its foci
at the two assumed points, this hyperboloid will touch the mirror. The normal to a hyperboloid
bisects therefore the angle between the line drawn to one focus, and the produced part of the
line drawn to the other focus; from which it follows, that rays issuing from one focus of a hyper-
boloid mirror, would after reflection diverge from the other focus. A plane is a hyperboloid
whose axis is nothing, and a paraboloid is an ellipsoid whose axis is infinite ; if, therefore, rays
issued from the focus of a paraboloid mirror, they would be reflected parallel to its axis; and
if rays issuing from a luminous point any where situated fall upon a plane mirror, they diverge
after reflection from a point situated at an equal distance behind the mirror, These are the
only mirrors giving accurate convergence or divergence, which have hitherto been considered
by mathematicians; in the next section I shall treat the subject in a more general manner, and
examine what must be the nature of a mirror, in order that it may reflect to a given point the
rays of a given system.

II. Theory of focal muirrors.

6. The question, to find a mirror which shall reflect to a given focus the rays of a given
system, is analytically expressed by the following differential equation,
(@+a)de+(B+B)dy+(y+v')dz=0, (E)
z, 9, z, being the coordinates of the mirror, and e, B, v, &', 8, o/, representing for abridgment
the cosines of the angles which the incident and reflected rays make with the axes of coordinates.
In this equation, which follows immediately from (C), or from (B), e, B, v, are to be considered
as given functions of #, 9, z, depending on the nature of the incident system, and o', &', o/, as
other given functions of #, ¥, 2, depending on the position of the focus; and when these functions
are of such a nature as to render integrable the equation (E), the integral will represent an
infinite number of different mirrors, each of which will possess the property of reflecting to the
given focus, the rays of the given system, and which for that reason I shall call focal mirrors.

7. To find under what circumstances the equation (E) is integrable, I observe that the part
o'de+ B'dy + o'dz
is always an exact differential; for if we represent by X', ¥’, Z’ the coordinates of the given
2-2
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12 I. THEORY OF SYSTEMS OF RAYS [7, 8

focus, and by p’ the distance of that focus from the point of incidence, we shall have .the
equations
¥l alp’, Y y= BIPI, L 'ylpl,
and therefore
o'de+ B'dy+o'dz=—dp’

a'2+B’2+'Y,2=1; a’dal+6,dﬁl+fy,d'y’=0.

If therefore the equation (E) be integrable, that is, if it can be satisfied by any unknown
relation between «, v, 2, it is necessary that in establishing this unknown relation between those
three variables, the part (¢.dz+8.dy+ . dz) should also be an exact differential of a function
of the two variables which remain independent; the condition of this circumstance is here

@) (- 7)+ @ +8) (F-50) ++n) (B - %) =0, (F)

and I am going to shew, from the relations which exist between the functions ¢, B, v, that this
condition cannot be satisfied, unless we have separately

g dy dy de_ . da dB __

R i i e s i
that is, unless the formula («.dz+ 8.dy+v.dz) be an exact differential of a function of z, ¥, z,
considered as three independent variables.

because

8. For this purpose I observe, that since the functions e, B, v, are the cosines of the angles
which the incident ray passing through the point (z, ¥, z) makes with the axes, they will not
vary when the coordinates , y, 2, receive any variations 8z, 8y, 8z proportional to those cosines
a, B, ; because then the point z + 8z, y + 8y, z + &z, will belong to the same incident ray as the
point #, y, z. This remark gives us the following equations,

a.—f+ﬁ.g—;+ g‘; 0,
2.0 Lo
o d—:;+,3.%+fy.%=0,
and combining these with the relations
fedsusl )
.d—“+/3.d—§+y.%=o,
0ap %05, i

which result from the known formula
a2 + Bﬁ + ,.),2 = 1,
we find that the three quantities
dB dy dy da da dB
@l da @ dy
are proportional to (&, B, ), and therefore that the condition (F') resolves itself into the three
equations (G).
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9-11] I. THEORY OF SYSTEMS OF RAYS 13

9. These conditions (G) admit of a simple geometrical enunciation; they express that the
rays of the incident system are cut perpendicularly by a series of surfaces, having for equation

f (edz + Bdy + ydz) = const. (H)

Let X, ¥, Z, be the point in which an incident ray is crossed by any given surface of this
series (H), and let p be its distance from the point of incidence (z, ¥, z): we shall have

X—z=ap, Y—y=Bp, Z—z=qp,

and therefore,
a.de+B.dy+v.ds=—dp,

a.dX+B.dY +vy.dZ=0.

We may therefore put the differential equation of the mirror (E) under the form

because

dp +dp'=0,
of which the integral
p + p’ = const. @

expresses that the whole bent path traversed by the light in going from the perpendicular sur-
face (H) to the mirror, and from the mirror to the focus, is of a constant length, the same for all
the rays. In this interpretation of the integral (I) we have supposed the distances, p, p’, positive;
that is, we have supposed them measured upon the rays themselves; if on the contrary, they are
measured on the rays produced behind the mirror, they are then to be considered as negative.

10. Then, in geaeral, if it be required to find a mirror which shall reflect to a given focus
the rays of a given system, we must try whether the rays of that system are cut perpendicularly
by any series of surfaces; for unless this condition be satisfied, the problem is impossible. When
we have found a surface cutting the incident rays perpendicularly, we have only to take upon
each of those rays a point such that the sum or difference of its distances, from the perpendicular
surface and from the given focus, may be equal to any constant quantity; the locus of the points
thus determined will be a focal mirror, possessing the property required. Or, which comes to the
same thing, we may make an ellipsoid or hyperboloid of revolution, having a constant axis, but
a variable excentricity, move in such a manner that one focus may traverse in all directions the
surface that cuts the incident rays perpendicularly, while the other focus remains fixed at the
point through which all the reflected rays are to pass; the surface that envelopes the ellipsoid
or hyperboloid, in all its different positions, will be the mirror required, and each ellipsoid or
hyperboloid thus moving will in general have two such enveloppes.* And to determine whether
the reflected rays converge to the given focus, or diverge from it, it is only necessary to deter-
mine the sign of the distance p’, which is positive in the first case, and negative in the second.

III. Surfaces of constant action.

11. We have seen, in the preceding section, that if it be possible to find a mirror, which
- shall reflect to a given focus the rays of a given system, those rays must be perpendicular to a
series of surfaces; and that the whole bent path traversed by the light, from any one of these

* [The envelope of the ellipsoids will consist of two sheets, bounded by a common curve on the perpendicular

surface; one of these sheets will give a mirror having the given point as a real focus, the other, a virtual focus.
A similar remark applies to the envelope of the hyperboloids.]

www.rcin.org.pl



14 I. THEORY OF SYSTEMS OF RAYS [11-13

perpendicular surfaces to the mirror, and from the mirror to the focus, is a constant quantity,
the same for all the rays. Hence it follows, reciprocally, that when rays issuing from a luminous
point have been reflected at a mirror, the rays of the reflected system are cut perpendicularly
by a series of surfaces; and that these surfaces may be determined, by taking upon every re-
flected ray a point such that the whole bent path from the luminous point to it, may be equal to
any constant quantity. I am going to shew, in general, that when rays issuing from a luminous
point, or from a perpendicular surface, have been any number of times reflected, by any com-
bination of mirrors, the rays of the final system are cut perpendicularly by a series of surfaces,
possessing this remarkable property, that the whole polygon path traversed by the light, in
arriving at any one of them, is of a constant length, the same for all the rays.*

12. To prove this theorem I observe, that if upon every ray of the final system we take a
point, such that the whole polygon path to it, from the luminous point or perpendicular surface,
may be equal to any constant quantity, the locus of the points thus determined will satisfy the
differential equation

% ax+ 2.7+ % 5=, (K)
X, Y, Z, being the coordinates of the point, and p the last side of the polygon; because by
hypothesis the variation of the whole path is nothing, and also that part which arises from the
variation of the first point or origin of the polygon, and by the principle of least action, the part
arising from the variation of the several points of incidence, is nothing; therefore the variation
arising from the last point of the polygon must be nothing also, which is the condition expressed
by the equation (K) and which requires either that this last point should be a fixed focus
through which all the rays of the final system pass, or else that its locus should be a surface
cutting those rays perpendicularly.

13. We see then that when rays issuing from a luminous point, or from a perpendicular
surface, have been any number of times reflected, the rays of the final system are cut perpendi-
cularly by that series of surfaces, for which

3, (p) = const,, (L)
3 (p) representing the sum of the several paths or sides of the polygon. When we come to
consider the systems produced by ordinary refraction, we shall see that the rays of such a system
are cut perpendicularly by a series of surfaces having for equation
3. (mp) = const.,
3.. (mp) representing the sum of the several paths, multiplied each by the refractive power of the
medium in which it lies. In the systems also, produced by atmospheric and by extraordinary re-
fraction, there are analogous surfaces possessing remarkable properties, which render it desirable
that we should agree upon a name by which we may denote them. Since then in mechanics
the sum obtained by adding the several elements of the path of a particle, multiplied each by
the velocity with which it is described, is called the Action of the particle; and since if light
be a material substance its velocity in uncrystallized mediums is proportional to the refractive
power, and is not altered by reflection: I shall call the surfaces (L) the surfaces of constant
action ; intending only to express a remarkable analogy, and not assuming any hypothesis about
the nature or velocity of light.
* [See Appendix, Note 2, p. 463.]
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14-16] I. THEORY OF SYSTEMS OF RAYS 15

14. We have hitherto supposed all the sides of the polygon positive, that is, we have sup-
posed them all to be actually traversed by the light. This is necessarily the case for all the sides
between the first and last; but if the point to which the last side of the polygon is measured
were a focus from which the final rays diverge, or if it were on a perpendicular surface situated
behind the last mirror, this last side would then be negative; and in like manner, if the first
point, or origin of the polygon, were a focus to which the first incident rays converged, or if it
were on a perpendicular surface behind the first mirror, we should have to consider the first side
as negative, With these modifications the equation (L) represents all the surfaces that cut the
rays perpendicularly; and to mark the analytic distinction between those which cut the rays
themselves, and those which only cut the rays produced, we may call the former positive, and
the latter negative: the positive surfaces of constant action lying at the front of the mirror,
and the negative ones lying at the back of it.

15. It follows from the preceding theorems, that if with each point of the last mirror for
centre, and with a radius equal to any constant quantity, increased or diminished by the sum
of the sides of the polygon path, which the light has traversed in arriving at that point, we
construct a sphere, the enveloppe of these spheres will be a surface cutting the final rays per-
pendicularly. These spheres will also have another enveloppe perpendicular to the incident
rays.* It follows also, that when rays, either issuing from a luminous point, or perpendicular
to a given surface, have been reflected by any combination of mirrors, it is always possible to
find a focal mirror which shall reflect the final rays, so as to make them all pass through any
given point; namely, by choosing it so, that the sum of the sides of the whole polygon path
measured to that given focus, and taken with their proper signs, may be equal to any constant
quantity.

IV. Classification of Systems of Rays.

16. Before proceeding any farther in our investigations about reflected systems of rays, it
will be useful to make some remarks upon systems of rays in general, and to fix upon a classifi-
cation of such systems which may serve to direct our researches. By a Ray, in this Essay, is
meant a line along which light is propagated ; and by a System of Rays is meant an infinite
number of such lines, connected by any analytic law, or any common property. Thus, for ex-
ample, the rays which proceed from a luminous point in a medium of uniform density, compose
one system of rays; the same rays, after being reflected or refracted, compose another system.
And when we represent a ray analytically by two equations between its three coordinates, the
coefficients of those equations will be connected by one or more relations depending on the nature
of the system, so that they may be considered as functions of one or more arbitrary quantities.
These arbitrary quantities, which enter into the equations of the ray, may be called its Klements
of Position, because they serve to particularise its situation in the system to which it belongs.
And the number of these arbitrary quantities, or elements of position, is what I shall take for
the basis of my classification of systems of rays; calling a system with one element of position
a system of the First Class:T a system with two elements of position, a system of the Second
Class,} and so on. :

* [When the radius is made equal to a constant quantity, increased by the sum of the sides of the polygon
path, then the perpendicular surface to the reflected rays is the sheet of the envelope behind the mirror: but if
“increased ” is changed to ** diminished,” then the perpendicular surface is the sheet of the envelope i front of
the mirror. ]

t [“ Ruled Surface.”] 1 [“Congruence.”]
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16 I. THEORY OF SYSTEMS OF RAYS [17-19

17. Thus, if we are considering a system of rays emanating in all directions from a luminous

point (a, b, ¢), the equations of a ray are of the form

z—a=pu(z—c)

Jor b=v (Z e C)’
which involve only two arbitrary quantities, or elements of position, namely u, », the tangents
of the angles which the two projections of the ray, on the vertical planes of coordinates, make
with the axis of (2); a system of this kind is therefore a system of the second class. If among
the rays thus emanating in all directions from a luminous point (a, b, ¢), we consider those only
which are contained on a given plane passing through that point, and having for equation

z—c=A4A(x—a)+B(y-"b),
then the two quantities u, », are connected by the relation
1=Au+ By,

so that one only remains arbitrary, and the system is of the first class. In general if we consider
only those rays which belong to a given cone, having the luminous point for centre, and for equation

3/;1’:4,("’”;‘?),

L z—¢ z—c¢
¢ denoting any given function, the two quantities x, », will be connected by the given relation

=¢ (W),

and the system will be of the first class. If now we suppose a system of rays thus emanating
from a luminous point, to be any number of times modified by reflection or refraction, it is
evident that the class of the system will not be altered ; that is, there will be the same number
of arbitrary constants, or elements of position, in the final system as in the original system :
provided that we do not take into account the dispersion of the differently coloured rays. But
if we do take this dispersion into account, it will introduce in refracted systems a new element
of position depending on the colour of the ray, and thus will raise the system to a class higher
by unity.

18. From the preceding remarks, it is evident that optics, considered mathematically, relates
for the most part, to the properties of systems of rays, of the first and of the second class. In
the third part of this essay I shall consider the properties of these two classes in the most
general point of view; but at present I shall confine myself to such as are more immediately
connected with catoptrics. And I shall begin by making some remarks upon the general pro-
perties of those systems, in which the rays are cut perpendicularly by a series of surfaces; a
system of this kind I shall call a Rectangular System.* The properties of such systems are
of great importance in optics; for, by what I have already proved, they include all systems of
rays which after issuing from a luminous point, or from a perpendicular surface, have been any
number of times reflected, by any combination of mirrors; we shall see also, in the next part,
that they include also the systems produced by ordinary refraction.

19. In any system of the second class, a ray may in general be determined by the condition
of passing through an assigned point of space, for this condition furnishes two equations between
the coefficients of the ray, which are in general sufficient to determine the two arbitrary ele-
ments of position. We may therefore consider the cosines (e, B3, v) of the angles which the ray

* [“Normal Congruence.”]
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19-22] I. THEORY OF SYSTEMS OF RAYS 17

makes with the axes as functions of the coordinates (z, y, 2) of any point upon the ray; because,
if the latter be given, the former will be determined. And if the system be rectangular, that is,
if the rays be cut perpendicularly by any series of surfaces, it may be proved by the reasonings
in Section II. of this essay, that these functions must be of such a nature as to render the formula

(¢.de+B.dy+vy.dz2)

an exact differential, independently of any relation between (z, v, z) ; that is, the cosines (e, 3, )
of the angles which the ray passing through any assigned point (2, 7, z) makes with the axes,
must be equal to the partial differential coefficients

av av a4y
de! dy’. dsg’
of a function of (#, y, 2) considered as three independent variables.

20. The properties of any one rectangular system, as distinguished from another, may all be
deduced by analytic reasonings from the form of the function (V); and it is the method of
making this deduction, together with the calculation of the form of the characteristic function (V')
for each particular system, that appears to me to be the most complete and simple definition
that can be given, of the Application of analysis to optics; so far as regards the systems pro-
duced by ordinary reflection and refraction, which, as I shall shew, are all rectangular. And
although the systems produced by extraordinary refraction, do not in general enjoy this property;
yet I shall shew that with respect to them, there exists an analogous characteristic function,
from which all the circumstances of the system may be deduced: by which means optics acquires,
as it seems to me, an uniformity and simplicity in which it has been hitherto deficient.

V. On the pencilé of a Reflected System.

21. When a rectangular system of rays, that is a system the rays of which are cut perpendi-
cularly by a series of surfaces, is reflected at a mirror, we have seen that the reflected system is
also rectangular; the rays being cut perpendicularly by the surfaces of constant action, (IIL);
and that therefore the cosines of the angles which a reflected ray makes with the axes, are
equal to the partial differential coefficients of a certain function (V') which I have called the
characteristic of the system, because all the properties of the system may be deduced from it.
It is this deduction which we now proceed to; and before we occupy ourselves with the entire
reflected system, we are going to investigate some of the properties of the various partial systems
that can be formed, by establishing any assumed relation between the rays, thas is by considering
only those which are reflected from any assumed curve upon the mirror.

22. A partial system of this kind, is a system of the first class; that is, the position of a ray
in such a system, depends only on one arbitrary element; for example, on any one coordinate
of the assumed curve upon the mirror. And if we eliminate this one element, between the two
equations of the ray, we shall obtain the equation of a surface, which is the locus of the rays of
the partial system that we are consifering. The form of this surface depends on the arbitrary
curve upon the mirror, from which the rays of the partial system proceed; so that according to
the infinite variety of curves which we can trace upon the given mirror, we shall have an infinite
number of surfaces composed by the rays of a given reflected system. And since these surfaces
possess many important properties, which render it expedient that we should denote them by a

HMP ! 3
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18 I. THEORY OF SYSTEMS OF RAYS [22-24

name, I shall call them pencils : defining a pencil to be the locus of the rays of a system of the
first class, that is, of a system with but one arbitrary constant.

23. Although, as we have seen, an infinite number of pencils may be formed by the rays of a
given reflected system, yet there are certain properties common to them all, which render them
susceptible of being included in one common analytic expression. For, if we denote by (V') the
characteristic function 20. of the given reflected system, so that

e
T et PR T

(@, B, ) being the cosines of the angles which the reflected ray passing through any assigned
point of space (z, y, z) makes with the axes of coordinates; we shall have, for all the points of
any one ray, the three equations

av av av
da dy dz

which are equivalent to but two distinct relations, because

CARICARCARRT

If then we consider the rays of any of the partial systems, produced by establishing an
arbitrary relation between the rays of the entire reflected system; the locus of these rays, that
is, the pencil of this partial system, will have for its equation

v _,(dry

dy - “'\de/’
f representing an arbitrary function, the form of which depends upon the nature of the partial
system.

(M)

= const., = const., = const,,

™)

24. The form of this function (f) may be determined, if we know any curve through which
the rays of the pencil pass, or any surface which they envelope. For first, the latter of these two
questions may be reduced to the former, by determining upon the enveloped surface the locus
of the points of contact; this is done by means of the formula

AV du dV du dV du

ot do Vg iy Y e |
which expresses that the rays of the unknown pencil are tangents to the given enveloped sur-
face w=0. And when we know a curve u =0, v =0, through which all the rays of the pencil pass,
we have only to eliminate (z, ¥, z) between the two equations of this curve, and the two following,

av av
=%}: B=El—:;:

we shall thus obtain the relation between (e, B) which characterises the rays that pass through
the given curve: and substituting, in this relation, the values of (e, 8) considered as functions
of (#, y, z) we shall have the equation of the pencil.

In this manner we can determine the shadow of any opaque body, produced by the rays of a
given reflected system, if we know the equation of the body, and that of the skreen upon which
the shadow is thrown; we can also determine the boundary of light and darkness upon the

a

www.rcin.org.pl



24-26] I. THEORY OF SYSTEMS OF RAYS 19

body, which is the curve of contact with the enveloping pencil ; and if we consider visual instead
of luminous rays, we can determine, on similar principles, the perspective of reflected light, that
is, the apparent form and magnitude of a body seen by any combination of mirrors; at least so
far as that form and magnitude depend on the shape and size of the visual cone.

25. Besides the general analytic expression
av av
@ =f (%) ) (N )
which represents all the pencils of the system, by means of the arbitrary function (f), we can
also find another analytic expression for those pencils, by eliminating that arbitrary function,
and introducing instead of it the partial differential coefficients of the pencil of the first order.
In this manner we find, by differentiating (N) for (#) and (y) successively, and eliminating the
differential coefficient of the arbitrary function (f),
@V #V_ &V )2_ VL @YV Y ) de
da? " dy? (dw.dy C |de.dy dy.dz  dy? dx.dzf dz
1 I b ol e
de.dy ' de.dz da® dy.dz) dy’

and since the general relation o*+ 8%+ y2=1, that is

dV\2  (dV\2  (dV\?
(@) x(@) (e ="
azv a2V 2V
a'W'FB'dw.dy-'-v'dw.dz:O’
a2V eV azv
a'dw.dy-'_’s'gf-'ﬂy'dy.dz:o’
&*Y BV VDY e (@Y &V omf)z :
de.dy dy.dz  dy? de.dz v W'&?’( g
LA oSNl o A 8 oL d2V>2
dxa'd_ya"( :

de.dy de.dz” da? 'dy.dz v'
the partial differential equation of the pencils becomes finally
a dz B dz

7@ty

gives by differentiation

and therefore

0)

which expresses that the tangent plane to the pencil contains the ray passing through the point
of contact.

VI. On the developable pencils, the two foci of a ray, and the caustic curves
. and surfaces.
26. Among all the pencils of a given rectangular system, there is only a certain series
developable ; namely, those which pass through the lines of curvature on the surfaces that cut

the rays perpendicularly. It follows from the known properties of normals to surfaces, that each
ray has two of these developable pencils passing through it, and is therefore a common tangent

3-2
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20 I. THEORY OF SYSTEMS OF RAYS [26, 27

to two caustic curves, the arétes de rebroussement of those pencils; the points in which it touches
those two caustic curves may be called the two foci of the ray; and the locus of these foci forms
two caustic surfaces, touched by all the rays.

27. To determine analytically these several properties of the system, let us represent by
(@, b, ¢) the coordinates of the point in which a ray crosses a given perpendicular surface ; these
coordinates will be determined, if the ray be given, so that they may be considered as functions
of (@, B); we may therefore put their differentials under the form

da da
da=d—a.da+@.dﬁ,

db db
db=— .da + JB .dB,
de de
de = = .de + d,3 .dp.

We have also ada + Bdb + ydc = 0, which gives
de (a da B db)
Y

da v’ de "da)’

de e da...B dby,

g~ (y'd/sz*&'d;s)’
da da db db

with respect to the coefficients do’ A8’ da’ 4B’ these are to be determined by differentiating

the two following equations,

av dvV
EE—;a’ TJl—b—_’B’
which give
a2V a2V azv
T da+d .db'db+da.dc'dc=da’
a2V v a2V
18 db .da + dbz.db'l‘m.dG:d/g,
and therefore
azv azv da:v vy .
M.da=(y. G5 ~ B g d) d"‘*(‘e'da.dc‘”"da.db)'dﬁ'
a2V da:v A a2V
M'db‘(“'db.dc‘“/°da.db> d"‘*( e e

if we put for abridgment

L R N L A
da.db db.dc da.dec’ db?

3 {d”V a2V a2V dZV}

M=a.{

N A ) 4

R oL ALY, i dzv)z}
Y Vda? * db? da.db ;
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27, 28] I. THEORY OF SYSTEMS OF RAYS 21

This being laid down, let (#, y, z) be any other point upon the ray, at a distance (p) from the
given perpendicular surface ; we shall have

z=a+ap, y=b+PBp, z=c+qp,
dp = adz + Bdy + ydz,
dz — edp =da+ pde, dy— Bdp=db+pdf:
and if the coordinates (z, 7, 2) belong to a caustic curve, the first members of these two last
equations will vanish, so that on this hypothesis,

da+p.de=0, db+p.dB=0;
eliminating (p) we find, for the developable pencils,

da.dB —db.da=0, (P)
- and eliminating %g we find, for the caustic surfaces,
do db\ da db !
(p+ ) o+ 8) a5 7= @

substituting for Z—Z, fll%’ 3—2, g%, their values, and observing that by the general relation

dV\?  (dV\* (dV\?
(@) + (@) +ia) =
a2V a2V A4
WPt G
a2V a2V a2V
“ T TP Y G d
a2V v >V
“Gadot P T et =
4Ny
da®’ db* \da.db)’
we find this other form for the equation* of the caustic surfaces,
8 Ll L Ll o AN L a4
Aae @~ (Gaa) | o+ (e @+ g} et 1=0 i
28. The manner in which these formula are to be employed is evident. We are to integrate

(P) considered as a differential equation, of the first order and second degree, between e, 8, or
between the corresponding functions of z, ¥, 2,

we have

0,

v. M=

R
dz’ dy’
* [This equation may also be written more symmetrically as follows:
V"ﬂ shp et Vas Vae =0,
Vba Vipt+p~! Vi
Yo Va Veetp~!

the subscripts denoting partial derivatives. Modern determinant notation, which can be used with advantage in
many places, especially in the Supplements, was not introduced until 1841 by Cayley (cf. T. Muir, Z%eory of
Determinants, vol. 2, p. 4).]
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22 I. THEORY OF SYSTEMS OF RAYS (28, 29

tﬂr'f(dm’ ).

C being an arbitrary constant; the condition of passing through a given ray will determine the
two values of this constant, corresponding to the two developable pencils: and the equations of
the caustic curves, considered as the arétes de rebroussement of those pencils, will follow by the
known methods from the equations of the pencils themselves. The points in which a given ray
touches these caustic curves, that is the two foci of the ray, are determined, without any integra-
tion, by means of (Q) or (R); and thus we can determine, by elimination alone, the equations of
the two caustic surfaces, the locus of those points or foci.

the integral will be of the form

29. In the preceding reasonings, we have supposed given the form of the characteristic
function V, whose partial differential coefficients of the first order, are equal to the cosines of
the angles that the reflected ray makes with the axes; let us now see how the partial differential
coefficients of the second order of this function, which enter into the formule that we have found
for the developable pencils and for the caustic surfaces, depend on the curvature of the mirror,
and on the characteristic function of the incident system. Let (V") represent this latter function,
so that we shall have :
¢ 24P LU ey

da’ gy T Nds
a', B, v being the cosines of the angles that the incident ray, measured from the mirror, makes
with the axes of coordinates; and let p, g, , s, ¢, be the partial differential coefficients of the
mirror, of the first and second orders, so that

dz=pdx + qdy, dp =rde+sdy, dq=sdz+ tdy,
@, y, z being the coordinates of the mirror. Then, by the first section of this essay we shall have
the two equations
at+a +py+9)=0, B+B +q(y+49)=0,
which give by differentiation,

@V BV’

0=(y+7). ?+dm‘ das+2p.(m+d%z)+p’-(dav d’V’),

d8 . dF

&V BV av eV BV BV
O=(y+7). t+dg+ i +29'(dy.dz dy. dz)+ " (Eg‘l'ﬁ):
L @AV BTV ATV @V
O=(y o). a4 dy TPy o i AN e i B ga o1 |

Combining these three equations with the three which result from differentiating the equation

() () 8.

we shall have the partial differential coefficients, second order, of V, when we know those of V*
and of z, that is, when we know the incident system and the mirror: it will then remain to sub-
stitute them in the formul@ of the preceding paragraph, in order to find the developable pencils,
and the caustic surfaces, in which we may change the partial differential coefficients of V, taken
with respect to (a, b, ¢), to the corresponding coefficients with respect to (z, ¥, 2).
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30, 31] I. THEORY OF SYSTEMS OF RAYS 23

30. Suppose, to give an example of the application of the preceding reasonings, that the
incident rays are parallel, and that we take for the axes of (#) and (y), the tangents to the lines
of curvature on the mirror at the point of incidence, so that the normal at that point shall be
vertical; the partial differential coefficients of the second order of (V) will vanish, and we shall have

=0, y=0, 2=0, p=0, ¢g=0, s=0,
a+a'=0, B+pB' =0, y=¢'=cos. 1,
I being the angle of incidence ; the formule for the partial differential coefficients of the second
order of (V') become

a2V VR (vl
W=—27’f‘, dey=O, E?=—2'yt,
W i SR d?V _ 2(c?r+ B%)
i dy.dz—2ﬂt’ T T Ty 4
and the formula (R) for the two foci, which may be thus written
P (BV &V ¢ d*V \? @V BV BV g
7 {dw“ dy? (d_w.dy) - Lt Tl > Gk o (B)
becomes
4~rt.p2——2$.{(a2+ryz)r+(/32+vy?)t}+1=O. )

If the incident rays be perpendicular to the mirror, at the given point of incidence, then

y=1, =0, B=0,

and the two roots of (S) are
B bl )
bt R e AR,

that is the two focal distances are the halves of the two radii of curvature of the mirror.

If without being perpendicular to the mirror, the incident ray is contained in the plane of
(22), that is in the plane of the greatest or the least osculating circle to the mirror, we shall have
B=0,a*+*=1, and the two roots of (S) will be

|

1

. fy :
the first root is quarter of the chord of curvature, that is, quarter of the portion of the reflected
ray intercepted within the osculating circle before mentioned ; and the other root is equal to the
distance of the point, where the reflected ray meets a parallel to the incident rays, passing
through the centre of the other osculating circle. In general, it will appear, when we come to
treat of osculating focal mirrors, that the two foci determined by the formula (S), are the foci of
the greatest and least paraboloids of revolution which, having their axis parallel to the incident
rays, osculate to the mirror at the point of incidence.

i1 § i 1
Fg T Lprige

31. I shall conclude this section by remarking, that the equation of the caustic surfaces is
- a singular primitive of the partial differential equation (O), which we found in the preceding
section to represent all the pencils of the system, and that the equations,
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24 I. THEORY OF SYSTEMS OF RAYS [31-33

of which the complete integral represents all the rays, are also satisfied, as a singular solution, by
the equations of the caustic curves: from which it may be proved, that the portion of any ray,
or the arc of any caustic curve, intercepted between any two given points, is equal to the incre-
ment that the characteristic function (V') receives in passing from the one point to the other.

VII. Lines of Reflection on a mirror.

32. We have seen that the rays of a reflected system are in general tangents to two series
of caustic curves, and compose two corresponding series of developable pencils ; the intersections
of these pencils with the mirror, form two series of remarkable curves upon that surface, which
were first discovered by Malus,* and which were called by him the Lines of Reflexion. We pro-
pose, in the present section to investigate the differential equation of these curves, and some
of their principal properties; and at the same time to make some additional remarks, on the
manner of calculating the foci, and the caustic surfaces.

33. To find the differential equation of the curves of reflexion, we may employ the formula
of the preceding section,

V azv a2V v
dﬁ'{<ﬁdm PR o dy)d'3+( i iagd V8 dz)da}
a*v av azv a2V
=da.{<fy.w “da. dz)d/3+( dy.dz_'y'dw.dy>da}’ i
considering (@, B, v) as given functions of the coordinates of the point of incidence, such that

a2V a*v a2V

de = T dx+d$ - dy+dw s .dz,
azv a2V azv
dﬁ—dw dy Az + —— y dy+m.dz,

and deducing the partial differential coefficients of the characteristic function V, either imme-
diately from the form of that function itself, if it be given, or from the equation of the mirror
and from the nature of the incident system, according to the method already explained. But in
this latter case, that is, when we are only given the incident system and the mirror, it will be
simpler to treat the question immediately, by reasonings analogous to those by which the
formula (P) was deduced.

Let, therefore, X, ¥, Z, represent the coordinates of a point upon a caustic curve, at a
distance (p) from the mirror; we shall have

X=xz+ap, Y=y+Bp, Z=2z+qp,
dp=c.d(X-2)+B.d(Y—y)+q.d(Z-2),
dX =a.(adX +BdY + ydZ),
dY = B.(adX + BdY +ydZ),
dZ =v.(edX +BdY +ydZ),
dz—a.(adz+Bdy+ydz) + pde =0,
dy —B.(adz+ Bdy +ydz)+pdB=0,
dz —y.(adz+Bdy +ydz) +pdy =0
* [For reference, see Appendix, Note 2, p. 463.]
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33-35] I. THEORY OF SYSTEMS OF RAYS 25

eliminating de, df3, dvy, by these equations, from those which are obtained by differentiating the
formulee already found,
a+d +p(y+9)=0, B+B +q(y+v)=0,

we get the two following equations,
O0=p.{(y+v)dp+de +p.dy'}+ (e +yp) (ede+ Bdy + ydz) — (dz + pdz),
O=p.{(y+v)dg+dB +q.dv'} +(B+ v9) (ada + Bdy +ydz) - (dy +qdz),  (T)
which give by elimination of p, the following general equation for the lines of reflexion,
(y+9)dg+dB +q.dy _(B+vg)(adz+Bdy +ydz) — (dy +qd2)
(y+9)dp+de +p.dy'  (a+yp)(edz+ Bdy +ydz) — (dz+pdz)’

84. Suppose, to give an example, that the incident rays are parallel, and that the axes of
coordinates are chosen as in 30., the normal at some given point of incidence for the axis of (),
and the tangents to the lines of curvature for the axes of (2) and (y); our general formula (U)
will then become

U)

t.dy B.(adz+Bdy)—dy.
r.de  a.(edz+ Bdy) —dz’

aB.(t.dy? —r.da*) — (B2 + 9*)t — (2 +y?) 7} dz.dy = 0. V)

We shall see, in the next section, that the two directions determined by this formula, are the
directions of osculation of the greatest and least paraboloids,* which, having their axis parallel
to the incident rays, osculate to the mirror at the point of incidence ; in the mean fime we may
remark, that if the plane of incidence coincides with either the plane of the greatest or the least
osculating circle to the mirror, or if the point of incidence be a point of spheric curvature, one
of the two directions of the lines of reflexion is contained in the plane of incidence, while the
other is perpendicular to that plane; and it is easy to prove, by means of the formula (V), that
these are the only cases in which the lines of reflexion are perpendicular to one another, the
incident rays being parallel.

that is

36. The formule (T) determine not only, as we have seen, the lines of reflexion, but also
the two focal distances, and therefore the caustic surfaces. For as, by elimination of (p), they
conduct to the differential equation of the lines of reflexion, so by elimination of the differentials
they conduct to a quadratic equation in (p), which is equivalent to the formula (R), and which
determines the two focal distances. As an example of this, let us take the following general
problem, to find the caustic surfaces and lines of reflexion of a mirror, when the incident rays
diverge from a given luminous point X, ¥’, Z'. We have here

| X’=$‘+a'p', Y'=Z/+/3'P', Z'=Z+'y'p',
p" being the distance of the luminous point from the mirror;
dp' = — (¢ dw + B'dy + v d2),
—p.dd =do+d.dp', —p'.dB=dy+p.dp", —p'.dy=dz+9.dp,
and because
o +o/p=—(a+yp), B+v'¢=-B+)
odde+ B dy + v dz=— (adz + Bdy + ydz),

* [of revolution]
HMP N 4
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26 I. THEORY OF SYSTEMS OF RAYS [35-37

the equations (T') become

s g (]
(v +0'). G (E + F) (da + pde — (a +yp) (ada + Bdy +yde)},

(y+9).dg= (’1—) + }) {dy + qdz — (B +vq) (adz + Bdy +ydz)}:
eliminating p, we find, for the lines of reflexion,
dq . {dz+ pdz— (a + yp) (edz + Bdy + ydz)}
=dp. {dy +qdz— (B+vg) (adz + Bdy + ydz)}, (W)

and eliminating the differentials, we find, for the focal distances,
gy 1 it
{04 p-@ron G+ 3) - 4.}

Akt = @0 (5+3) — 401}

= {tba— @+ B0 (3 + %) = v+ ).} X)

We may remark, that since (p’) has disappeared from the equation (W) of the lines of
reflexion, the direction of those lines at any given point upon the mirror depends only on the
direction of the incident ray, and not on the distance of the luminous point; we see also, from
the form of the equation (X), that the harmonic mean between that distance (p') and either of
the two focal distances (p), does not depend on (p’): so that if the luminous point were to move
along the incident ray, the two foci of the reflected ray would indeed change position, but the
line joining each to the luminous point, would constantly pass through the same fixed point
upon the normal.

VIII. On osculating focal mirrors.

36. It has long been known that a paraboloid of revolution possesses the property of
reflecting to its focus, rays which are incident parallel to its axis; and that an ellipsoid in like
manner will reflect to one of its two foci, rays that diverge from the other: but I do not know
that any one has hitherto applied these properti~s of accurately reflecting mirrors, to the
investigation of the caustic surfaces, and lines of reflexion of mirrors in general. There exists
however a remarkable connexion between them, analogous to the connexion between the
properties of spheres and of normals; and it is this connexion, not only for paraboloids and
ellipsoids, but also for that general class of focal mirrors, pointed out in Section IL of this Essay,
that we are now going to consider.

37. To begin with the simplest case, I observe that the general equation of a paraboloid of
revolution may be put under the form

p=P+d.(z—X)+B' . (y=Y)+v'.(z—2Z),
(P) being the semiparameter, (p) the distance from the focus (X, Y, Z), and ¢, B, o/, the cosines
of the angles which the axis of the paraboloid, measured from the vertex, makes with the axes
of coordinates: and that the partial differential coefficients of (), of the first and second orders,
which we shall denote by (p’, ¢/, 7', &, t’), are determined by the following equations,
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37] I. THEORY OF SYSTEMS OF RAYS 27

2= X+p'.(e=2)=p.(@+4D)
y-Y+¢.(c-2)=p.B+7¢),
14p2 40" (2= Z)=py'r" + (@ + D)
14+g%+¢.(z=2)=py't +(B' +7¢)

Ve 8 (a=2) = py' s + (@ o) B+,

This being laid down, if we suppose the three constants (a’, 8’, 4") determined by the con-
dition that the axis of the paraboloid shall be parallel to a given system of incident rays, we may
propose to determine the other four constants (X, Y, Z, P) by the condition of osculating to a
given mirror, at a given point, in a given direction. The condition of passing through the given
point, will serve to determine, or rather eliminate (P), and the condition of contact produces the
two equations :
P=p ¢=¢
which express that the focus of the paraboloid is somewhere on the reflected ray, and which are
therefore equivalent to the three following,

X—m=ap, Y—y=ﬁp, Z—z=ryp,
(@, B, vv) being the cosines of the angles which the reflected ray makes with the axes. To deter-
mine the remaining constant (p), by the condition that the paraboloid shall osculate to the
mirror in a given direction, we are to employ the formula

(r =r)da®+2(s' —s)da.dy + (' —t)dy*=0,

7, 8, t, being the given partial differential coefficients, second order, of the mirror, and +', &', ¢,
the corresponding coefficients of the paraboloid, which involve the unknown distance (p), being
determined by the equations, '

p-(y+y).r"=1+p—(@ +4p),

p-(y+9).8 =pg—(@ +vp) (B +v9),

p-(y+o). ' =1+¢—-(8+v¢"
To simplify our calculations, let us, as in 30, take the normal to the mirror for the axis of (2),
and the tangents to the lines of curvature for the axes of () and (y); we shall then have

p=0, ¢=0, =0, e+a'=0, B+/'=0, y=v,
2yp.r' =B+ yp.s=—aB, yp.t=c+,
and the condition of osculation becomes
29p. (r+t1?) = B2+ o — 2aB7 + (e? + o*) 7%, (Y)
if we put dy=7.da. This formula (Y) determines the osculating paraboloid for any given value

of (7), that is, for any given direction of osculation; differentiating it with respect to (7), in
order to find the greatest and least osculating paraboloids, we get

Zypt.7= 4B+ (4 o),
2ypr =% +4*—apBT,
equations which give, by elimination,
{2ypt — (@* + o)} 2ypr — (B + 9°)} — *8% =0,
aB(t. 7 = 1) + (@ -+ 97 — (B + ) 7= 0:

42
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and since these coincide with the formula (S) (V) of the two preceding sections, it follows, that
when parallel rays are incident upon a mirror, the two foci of any given reflected ray, that is,
the two points in which it touches the caustic surfaces, are the foci of the greatest and least
paraboloids, which having their axis parallel to the incident rays, osculate to the mirror at the
given point of incidence ; and that the directions of the two lines of reflexion passing through
that point, are the directions of osculation corresponding.

38. In general when the incident system is rectangular, which is always the case in nature,
it follows from the principles already established that we can find an infinite number of focal
mirrors, possessing the property of reflecting the rays to any given point (X, ¥, Z), and having
for their differential equation,

dp =d'dz +B'dy +o'de =dV’,

V' being the characteristic function of the incident system, and p the distance from the point of
incidence (z, ¥, 2) to the point (X, Y, Z), the focus of the focal mirror. The condition of touching
the given mirror at a given point, furnishes two equations of the form
r=p ¢=¢ ‘
which express that the focus (X, Y, Z) is somewhere on the given reflected ray; and the con-
dition of osculating in a given direction furnishes the equation
(" =r).d*+2(s'—s).de.dy+ (@ —t).dy?=0,
(7, s, t) being given, but (+', ', ¢’) depending on the unknown focal distance (p); and if we wish
to make this distance a maximum or a minimum, we are to satisfy the two conditions
(r"=r).de+('—8).dy=0, (s=3s).de+ (@ —1t).dy=0,
which may be thus written
dp' =dp, dq' =dy,

7', ¢', being the partial differentials, first order, of the focal mirror, and p, ¢, those of the given
mirror. Now the general equation of focal mirrors, dp = d V' =e'dz + B'dy + +'dz, gives

e—X+p'.(2—-2Z)=p.(¢ +9D)

Yy-Y+¢ . (¢=2Z)=p.(8' +v9),
do+p'de— (@ +o'p)dp=p.(de +p'dy')+(Z —2+'p)dp,
dy+q'de— (B +v'q)dp=p.(dB +q'dy)+(Z—2+v'p)dq;

if then we put p’ = p, ¢’ = ¢, in order to express that the focal mirror touches the given mirror,
we shall have, to determine dp’, dq’, two equations which may be thus written,

pAly+9)dp +da +pdy'} =da+pdz — (@ + yp) (edz + Bdy + rydz),} 7
p-{ly+v)dg +dB" + qdy'} = dy + qdz — (B + v9) (adz + Bdy + ydz),

and if in these equations (Z) we change (dp’, dq’) to (dp, dg) in order to find the greatest and
least osculating focal mirrors, they become the formule (T) of the preceding section. Hence it
follows, that in general, the foci of the greatest and least osculating mirrors, are the points in
which the reflected ray touches the two caustic surfaces; and that the directions of the lines of
reflexion, are the directions of osculation corresponding.

and therefore
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39. The equations (Z) determine not only the maximum and minimum values of the oscu-
lating focal distance (p), but also the law by which that distance varies for intermediate
directions of osculation. To find this law, we are to employ the formula,

(r'—r).d?+2(s"—s).de.dy+ (' —¢).dy?=0,
that is
dp' .de+dq .dy=dp.dx+dg.dy.
Adding therefore the two equations (Z), multiplied respectively by (d, dy), then changing
(dp'de + dq'dy) to (dpde+ dgdy), and reducing; we find the following general expression for
the osculating focal distance
i dz® + dy? + d2® — dp?

P=(+v).(dp.de+dq.dy) + ded .dw+dB .dy+dy .dz"
To simplify this formula, let us take the given reflected ray for the axis of (2); the numerator
then reduces itself to (dz® + dy?), and the denominator may be put under the form

eda®+ . dzdy + ndy?,
the coefficients ¢, &, 7, being independent of p, and of the differentials; if then we put
dy = da . tan.

so that (y) shall be the angle which the plane, passing through the ray and through the direction
of osculation, makes with the plane of (2z), we shall have

&)

% =e.cos.2Y + &.8in. Y. cos. Yo + 7. sin2 . (B")

This formula may be still further simplified, by taking for the planes of (, 2), (v, z), the tangent
planes to the developable pencils, which, by what we have proved, correspond to the maximum

and minimum of (p). To find these planes we are to put j—";= 0, which gives,

tan, 24 = e_E—n;

if then we take them for the planes of (z, 2), (y, 2) we shall have

1 1
=O’ = —, bl
¢ s el

and the formula for the osculating focal distance becomes

1 o= _1_ 2 l in 2 ’

P—pl.cos. \]r+p2.sm. . )
p1, p2, being the extreme values of p, namely the distances of the two points in which the ray
touches the two caustic surfaces. The analogy of this formula (C’) to the known formula for
the radius of an osculating sphere, is evident; and it is important to observe, that although the
reciprocal of (p) is included between two given limits, the quantity (p) itself is not always in-
cluded between the corresponding limits, but is on the contrary excluded from between them,
when those limits are of opposite algebraic signs, that is, when the two foci of the ray are at
opposite sides of the mirror: so that, in this case, there is some impropriety in the term greatest
osculating focal distance, since there are some directions of osculation for which that distance is
infinite, namely, the two directions determined by the condition

1 P2
~=0, taniy=-—-L=.
P _ ¥ P1
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I shall however continue to employ it, both on account of the analytic theorem which it ex-
presses, and also on account of its analogy to the received phrase of greatest osculating sphere,
to which the same objection may be made, when the two concavities of the surface are turned
in opposite directions.

40. T shall conclude this section, by pointing out another remarkable property of the oscu-
lating focal mirrors; which is, that if upon the plane, passing through a given direction of
osculation, we project the ray reflected from the consecutive point on that direction, the pro-
jection will cross the given ray in the osculating focus corresponding. To prove this theorem,
I observe, that when the given ray is taken for axis of (2), the point where it meets the mirror
for origin, and the tangent planes of the developable pencils for the planes of (, 2), (y, 2), the
partial differentials second order of the characteristic function (V') become, at the origin,

e AN Ll b g Sl a2V i azv

de® ~  p’ do.dy ' dy  p’ dw.dz ’ dy.dz ° d&f
and therefore the cosines of the angles which an infinitely near ray makes with the axes of (z)
and (y), are

=0,

dz dy
de=——, dB=--<,
a_ P1 R P2

Hence it follows that the equations of this infinitely near ray are of the form

P&’ + (2 —p1)dz=0, poy' + (' —pa)dy=0;
and if we project this ray on the plane

& dy—vy de=0,

which passes through the given ray and through the consecutive point on the mirror, the pro-
jecting plane will have for equation

pl.w’+(z'—p1).dzv_p2.y'+(z’—p2).dy=0

G=p)-da 7 S

(h) being the height of the point where the projection crosses the given ray, which is to be
determined by the condition that the latter plane shall be perpendicular to the former, that is,
by the equation,

P1- dy P2 - dz Sl
(h=pyda " (h—p)dy ’
which, when we put dy =dz. tan. v, becomes ’
o P1- P2 ?
h—pz.cos.2\k+p1.sin.“1]r’ i
a formula that evidently coincides with the one that we found before, for the height of the
osculating focus.

IX. On thin and undevelopable pencils.

41. Having examined some of the most important properties of the developable pencils of a
reflected system, we propose in this section to make some remarks upon pencils not developable ;
and we shall begin by considering thin pencils, that is, pencils composed of rays that are very
near to a given ray; because in all the most useful applications of optical theory, it is not
an entire reflected or refracted system that is employed, but only a small parcel of the rays
belonging to that system.
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To simplify our calculations, let us take the given ray for the axis of (2), and let us choose
the coordinate planes as in the preceding paragraph ; the cosines of the angles which a near ray
makes with the axes of (#) and (y), will be, nearly,

, 1y, being coordinates of the point in which it meets the mirror; and the equations of this near
ray will be, nearly,
¥=z+ar, y=y+p7,

d=a.(Z~p), Y=B.(~p) ()
@', 9y, 2, being the coordinates of the near ray. And if we eliminate ¢, 3, by these equations,
from the general equation (N)

that is

B=[(a)
which represents all the pencils of the system, we find for the general equation of thin pencils,
Wiy ( @ 7
oL B )

42. These equations (E’), (F’) include nearly the whole theory of thin pencils. As a first
application of them, let us suppose that we are looking at a luminous point, by means of any
combination of mirrors; the rays that enter the eye will not in general diverge from any one
focus, and therefore will not be bounded by a cone, but by a pencil of another shape, which
I shall call the Bounding Pencil of Vision, and the properties of which I am now going to
investigate.

Suppose for this purpose, that the optic axis coincides with that given ray of the reflected
system which we have taken for the axis of (z), and let (8) represent the distance of the eye from
the mirror; the circumference of the pupil will have for equations

2=9, 0Hyt=el
(e) being the radius of the pupil; the rays of the bounding pencil of vision Apass through this
circumference, and therefore satisfy the condition
a®.(8—p1)* +B%.(8—pa)2=¢?;
and eliminating e, B, from this, by means of (E’), we find the following equation for the bounding

pencil of vision,
(8 —P1>2 w/2+ (8 —P2)2 ylg L s (G/)
' ZI Y i ] ; Z/ - P2 y \

It is evident, from this equation, that every section of the pencil by a plane perpendicular
to the optic axis, that is, to the given ray, is a little ellipse, having its centre on that ray, and
its semiaxes situated in the tangent planes to the two developable pencils, that is in the planes
of (#, 2), (y, 2). Denoting these semiaxes by (), (b), we have

L - P1 ) ’
a=%+e.5x—"—, b=te.c—; H
et pul 0= py 22,
these semiaxes become equal, that is, the little elliptic section becores circular, first when
Z;=8, la=b=¢,
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that is, at the eye itself, and secondly when

2.(8—p1) (6= po) gl ety e.(p1—p2)

(®=p)+(®—p)’ =20 =(p1+ pa)’

that is, at a distance from the eye equal to the harmonic mean between the distances of the eye
from the two foci of that reflected ray, which coincides with the optic axis. It may also be
proved, that when the eye is beyond the two foci, the radius of this harmonic section, (which is
to the radius of the pupil as the semi-interval between the two foci is to the distance of the
eye from the middle point between them,) is less than the semiaxis major of any of the elliptic
sections, that is, than the extreme aberration of the visual rays at any other distance from
the eye; so that, in this case, we may consider the centre of the harmonic section as the visible
vmage of the luminous point, seen by the given combination of mirrors; observing however that
the apparent distance of the luminous point will depend on other circumstances of brightness,
distinctness and magnitude, as it does in the case of direct vision with the naked eye.

Z=8—

43. One of the principal properties of thin pencils, is that the area of a perpendicular section
of such a pencil is always proportional to the product of its distances from the two foci of the
given ray. We may verify this theorem, in the case of the bounding pencil of vision, by means
of the formule (H') for the semiaxes of the little elliptic section; in general if we represent
by = the area of the section of any given thin pencil, corresponding to any given value of (),
we shall have by (E’)

2, 3w f (Y da’ = &'dy’) = (¢ — p1) (¢ — pe) - [ (Bde—adp), @)

and the definite integral f (Bde— adp), depending only on the relation between a, B, is constant

when the pencil is given. It follows from this theorem, that along a given ray the density of the
reflected light varies inversely as the product of the distances from the two foci, and is infinite
at the caustic surfaces.

44. The same equations (E'), from which we have deduced the theory of thin pencils, serve
also to investigate the properties of other undevelopable surfaces, composed by the rays of the
system. The most remarkable difference between an undevelopable and a developable pencil,
consists in this, that the tangent plane to the latter always touches it in the whole extent of a
ray; whereas in the former, when the point of contact moves along a given ray, the tangent
plane changes position, and turns round that ray, like a hinge. To find the law of this rotation
let the coordinate planes be chosen as before, the given ray for axis of (2), the point where it
meets the mirror for origin, and the tangent planes to the two developable pencils for the planes
of (#2), (yz); then by (E’), the equations of an infinitely near ray will be

¥=(—p).de, y=(—ps).dB, (K"
and if it belong to a given undevelopable pencil having for equation 8 =f (), we shall have
dB=f".de,

J' being a given quantity; the tangent plane to this pencil, at any given distance (2’) from the
mirror, being obliged to contain the given ray, and to pass through a point on the consecutive,
has for equation

W2 s

7 — / /
T, )
1
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when 2’ increases, that is, when the point of contact recedes indefinitely from the mirror, this
tangent plane approaches to the limiting position

gy, (M)

&

which is evidently parallel to the consecutive ray (K’); and the angle (P) which it makes with
this limiting position, is given by the formula

= (p1— p2) - f'
tan, P = Z.A+fH—(pr+pe-f?)’

that is, if we put f’ = tan. ,

tan, P = (p1— ps).sin. L. cos. L.

2" —(py.cos.2L + py.sinL)’

or, finally,

tan. P = g, (N
(u) being a constant coefficient,
u=(p;— ps).sin. . cos. L, (0"

and (8) being the distance of the point of contact from a certain fixed point upon the ray, whose
distance from the mirror is*
7'=py.co82 L+ py.sinL, 9]

45. The quantity (u), which thus enters as a constant coefficient into the law of rotation of
the tangent plane of an undevelopable pencil, I shall call the coefficient of undevelopability. In
the third part of this essay, I shall treat more fully of its properties, and of those of the fixed
point determined by the formula (P’); in the mean time, I shall observe, that if we cut the
consecutive ray (K') by any plane perpendicular to the given ray, at a distance (8) from this
fixed point (P’), the interval between the two rays, corresponding to this distance (8), is

A=y(u+ &).do, , @)

(d0) being the angle between the rays; from which it follows, that the fixed point (P’) may be
called the virtual focust of the given ray, in the given undevelopable pencil, because it is the
nearest point to an infinitely near ray of that pencil; and that the coefficient of undevelop-
ability (u), is equal to the least distance between the given ray and the consecutive ray, divided
by the angle between them. We may also observe, that although a given ray has in general an
infinite number of undevelopable pencils passing through it, and therefore an infinite number
of virtual foci corresponding, yet these virtual foci are all included between the two points where
the ray touches the two caustic surfaces, because the expression (P’)

2'=p;.co82 L+ py.sin?L,

is always included between the limits p; and p,. And whenever, in this essay, the term foci of
a ray shall occur, the two points of contact with the caustic surfaces are to be understood
except when the contrary is expressed.

* [This equation is now generally known as “ Hamilton’s equation”; ¢f. Salmon, Analytic Geometry of
Three Dimensions, vol. 2 (1915), p. 62.]
t [Hamilton’s definition of *virtual focus” is stated incorrectly in Salmon, loc. ciz., p. 60.]

HMP ¢ 5
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X. On the axes of a reflected system.

46. We have seen that the density of light in a reflected system is greatest at the caustic
surfaces; from which it is natural to infer, that this density is greatest of all at the intersection
of those surfaces: a remark which has already been made by Malus,* and which will be still
farther confirmed, when we come to consider the aberrations. It is important therefore to in-
vestigate the nature and position of the intersection of the caustic surfaces. I am going to shew
that this intersection is not in general a curve, but reduces itself to a finite number of isolated
points,t the foci of a finite number of rays, which are intersected in those points by all the rays
infinitely near them. For this purpose, I resume the formula (Q) found in Section VI.

da db\ da db
(o @) o+ ) ~ T8 da =" e
which determines the two foci of a given ray, and in which the coefficients — daists &b g are
’ de’ dB’ da’ dB’

connected by the following relation,} deduced from the same sectlon,
o8 (Ge- o) - @+ ). St (B 4. 5 ®)
The condition of equal roots in (Q), is '
(2 Yy da
de dp "dB de
this then is the equation which determines the relation between e, B, that belongs to the rays
passing through the intersection of the caustic surfaces; and it is easy to prove,§ by means of
the formula (R"), that it resolves itself into the three following, which however, in consequence
of the same formula, are equivalent to but two distinct equations:
da db da db ’
The rays determined by these equations, I shall call the axes of the reflected system, and their
foci, for which

da db
P=—&='—E‘E, (T')
I shall call the principal foci.

* [For reference, see Appendix, Note 2, p. 463.]

+ [But in 1833 Hamilton was aware that the two sheets of the surface of centres of an ellipsoid intersect in a
curve (cf. No. vI, p. 300) ; however the points on these curves are foci on two different rays, and are not principal
foci.]

i [ada+bdB+ edy is a perfect differential. Hence

da db
V(5 %) -G z-o

(R') is then obtained by substituting for ? ;;g from 27.]

§ [1f gz gg % 0, then, by the condition for equal roots, nelt.her dﬁ nor @ is zero, and they have opposite

signs ; suppose %; is negativa Then (R’) can be written

+'s\/ K. ‘”#( )0

which is impossible. Therefore cdi_z - =0, and (8') follows immediately.]
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47. We have seen, that a given ray has, in general, an infinite number of virtual foci, cor-

responding to the undevelopable pencils, and determined by the formula (P’),

2'=py.co82L + py.sin2 L,
and an infinite number of osculating foci, corresponding to the osculating focal mirrors, and
determined by the formula (C’) / 5

Fa S0t 2 Erndy in 2

ey cos.2yr + =t sin.2 .,
But when p;=p;, that is, when the ray is an axis of the system, then the variable angles dis-
appear from these formule, and all the virtual and all the osculating foci close up into one single
point, namely, the principal focus corresponding to that axis. Hence, and from the coefficient
of undevelopability vanishing, it follows, that each axis of the system is intersected, at its own
focus, by all the rays infinitely near; and that this focus, is the focus of a focal mirror, which has,
with the given mirror, complete contact of the second order. A point of contact of this kind,
that is, a point where the given mirror is met by an axis of the reflected system, I shall call a
vertez of the mirror.

48. Another remarkable property of the principal foci, is that they are the centres of
spheres, which have complete contact of the second order with the surfaces that cut the rays
perpendicularly ; which may be proved by means of the following formulw®, deduced from (S’)
and (T"), combined with the formula of 27.,

ok PR b, T BT - i L S ).

?l-a?=p’dy2—p’?¢lza_p’
i A, L. e SRR A -

)

de.dy p’ de.dz p’ dy.dz p’
And if we substitute these expressions (U’) in the formule of 29., we find the following
equations,

EpE: av’ av’ o V' 14+ p2—(a+yp)?
(v+v).r+ da? +2p'dw.dz+p dt T p ;
L BV BV 1+ g - (B+yq) ;
('Y+'y).t+d—y2—+2q.dy'dz+q.dzz— o , » (V)
: a@v’ a2V’ v’ a*V' _pq—(a+vyp)(B+v9)
A7) st Gy TP dy de Y dway TP aE T p d

which determine the vertices, the axes, and the principal foci, when we know the equation of
the mirror, and the characteristic function of the incident system. These formule (V') may
also be deduced from the equations (Z) of Section VIIL by means of the theorem that we have
already established, respecting the complete contact of the second order, which exists, at a
vertex, between the given mirror and the osculating focal surface corresponding : and they may
be reduced to the two following; that is, to the equations (T) of Section VIL

p{y+y).dp+dd +p.dy}=de+p.dz—(a +ryp)(adw+/30ly+fydz),}
p-{ly+v).dg+dB +q.dy'}=dy+q.dz—(B+g)(ada + Bdy +ydz),

by observing, that these equations, which in general determine the lines of reflexion on the

mirror, are, at a vertex, satisfied independently of the ratio between the differentials (dz, dy),

provided that we assign to (p) its proper value, namely the distance of the principal focus.
5-2

(T)
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49. As an application of the preceding theory, let us suppose that the incident rays diverge
from a luminous point (X', ¥”, Z’), and let us seek the vertices, the axes, and the principal foci
of the reflected system. In this question, the equations (T) become, by 35.,

('y+fy').dp=(%+,%) {dz + pdz — (@ + yp) (adz + Bdy + ydz)},

(7). dg= (5 + ) Ay + gz = (B +0) (ado + Bdy + yde),

p’ being the distance of the luminous point from the mirror; and since these equations are to
be satisfied independently of the ratio between (d, dy), they resolve themselves into the three
following,

(y+9).r= (%+§:) AL+ 2= (a4 p),

(+).t= 5+ 3). L+~ B+, (W)

(v+v’)-8=(,1—)+§>-{pq—(a+'rp)(/9+'yq)},‘

which contain the solution of the problem.

To shew the geometrical meaning of these equations (W’), let us take the vertex for origin,
the normal at that point for the axis of (2), and the tangents to the lines of curvature for the
axes of (#) and (y); we shall then have

p=0, ¢=0, s=0, r=—11z ; t=11?,
I being the angle of incidence, and R, R', being the two radii of curvature of the mirror; and
the formule (W’) become

y=q'=cos. I,

h.cos,7T=R(1-e®)=R'(1-2?%), eB=0, (X")
(h) being the harmonic mean between the conjugate focal distances, so that
2 Ll
F o ; h ? ¥

The equation ¢3=0, shews that the plane of incidence must coincide either with the plane of
the greatest or the least osculating circle to the mirror; and if we put B=0, that is, if we
choose the plane of incidence for the plane of (z, z) we shall have R'=R (1 - a2), R> R/, so
that it is with the plane of the greatest osculating circle that the plane of incidence coincides.
We have also 1 —a2=cos.2 1,

h=R.cos.I=R'.seclI,

MR=RR', R =R.cos2l,

from which it follows, that the harmonic mean between the conjugate focal distances, is equal
to the geometric mean between the radii of curvature of the mirror; and that the square of the
cosine of the angle of incidence is equal to the ratio of those two radii of curvature. It follows
also, that the line joining the luminous point to its conjugate focus, (that is, the axis of the
osculating ellipsoid) passes through the centre of the least osculating circle to the mirror; and
since it is also contained in the plane of the greatest osculating circle, it is tangent to one
surface of centres of curvature of the mirror.

X"
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50. As another application, let us take the case of parallel rays reflected by a combination
of two given mirrors. Let e, B, v, &', B, o/, be still the cosines of the angles which the last re-
flected and last incident ray, measured from the last mirror, make with the axes of coordinates ;
a",B”,+", the given cosines of the angles which the first incident ray, measured towards the first
mirror, makes with the same axes; #, ¥, 2, p, ¢, , s, ¢, the coordinates and partial differential
coefficients of the last mirror, and &', ¥', 2/, p’, ¢, 7', ¢, ', the corresponding quantities of the first.
We have then,

al+all+pl.('yl+'yll)=0, B,+B"+ql.(fy’+fyll)=0;

da'+p'.d'y'+(fy'+fy”).dp'=0,
AR+ .dy +( +").dg = 0;

and therefore

we have also
P g w+arpr’ yl =y o BIPI, zl =z+ 'Y,P’)

de' =dz+d.(p"), dy=dy+d.(Bp), dd=dz+d.(yp),
dp'=d . (da' —da) + B . (dy' — dy) + v . (d2' — d2),

p’ being the path traversed by the light, in going from the one mirror to the other; by means of
these equations we can find, for the quantities (de’ + pdy’), (dB’ + qdy’), which enter into (T),
expressions which may be shewn to be of the form

de’ + pdy’ = Adz + Bdy,

dB’ + qdy' = Bdz + Cdy,
A, B, C, involving p, q, p', ¢/, 7', &', ¢/, p’: and to determine the vertices, the axes, and the
principal foci, of the last reflected system, we shall have the following equations,

pAly+v).r+ A} =1+4+p*—(a+ )
p-{(y+v).8+ B} =pg—(a+q9p) (B+79), (Z)
p-Aly+9).t+Cl=1+¢—(B+vyg>

XI. On the vmages formed by marrors.

51. It appears from the preceding section, that when rays issuing from a luminous point
have been reflected at a given mirror, the two caustic surfaces touched by the reflected rays
intersect one another in a finite number of isolated points, at which the density of reflected light
is greatest, and of which each is the conjugate focus of an ellipsoid of revolution, that has its
other focus at the given luminous point, and that has contact of the second order with the
given mirror. It is evident that these points of maximum of density are the images of the given
luminous point, formed by the given mirror; and that in like manner, the image or images of a
given point, formed by a given combination of mirrors, are the corresponding points of maximum
density, to which the intersection of the last pair of caustic surfaces reduces itself, and which
are the foci of focal mirrors that have contact of the second order with the last given mirror.
And on similar principles are we to determine the image of a curve or of a surface, formed by
any given mirror, or combination of mirrors; namely, by considering the image of the curve or
surface as the locus of the images of its points.

52. Let us apply these principles to the investigation of the image of a planet formed by a
curved mirror, The image of the planet’s centre is the focus of a paraboloid of revolution, which

www.rcin.org.pl



38 I. THEORY OF SYSTEMS OF RAYS [62, 563

has its axis pointed to that centre, and which has complete contact of the second order with the
mirror. To find this image, together with the corresponding point of contact, or vertex on
the mirror, we have the equations
a+d +p.(y+9)=0, B+8 +q.(v+v)=0, A")

(y+9). pdp=da +pdz —(a + yp) (adz + Bdy + 'de),}

(v+9). pdg = dy + qdz — (B +vq) (edz + Bdy + yd2),
a, B, v, &, ', 9, being, as before, the cosines of the angles which the reflected and incident
rays make with the axes of coordinates, and (p) being the focal distance; the formule (B”) are
satisfied by every infinitely near point upon the mirror, and therefore are equivalent to three
distinct equations,® which contain the conditions for the contact of the second order between

the paraboloid and the mirror. Differentiating the equations (A’), in order to pass from the
centre to the disk of the planet, and eliminating (dp, dg) by means of (B"), we find

0=p.(da" +pdy')+de+pde +p.(dz + pdy) — (@ + yp) (edz + Bdy + ydz),
i 0=p.(dB" +qdy') +dy + pdB +q.(dz + pdy) — (B + 79) (ede + Bdy + vdz2),
O0=p.(de +pdy')+da+pdec — (¢ + yp) (eda + Bdb + ydc),
0=p.(dB +qdy)+ db+ qdec — (B +vq) (eda + Bdb + fydc),}

if we put (a, b, ¢) to represent the coordinates of the image, so that

(B)

(&)

a—x=ap, b—y=PRp, c—z=qp.

Differentiating also the three distinct equations which are included in (B”), and eliminating, we

shall get a result of the form
p.dy = Ada + Bdb + Cde, D"

A, B, C, involving the partial differentials of the mirror, as high as the third order. These
equations (C”), (D"), combined with the identical relation ¢’da’ + B'dB’ +o'dy’ = 0, and with the
following formula,
da,2+d/3’2+d’y'2= 0_2’ (E")
in which ¢ is the semidiameter of the planet, contain the solution of the question; for they de-
termine the image of any given point upon the disk; and if we eliminate da’, dB3’, dy’, between
them, we shall find the two relations between da, db, dc, which belong to the locus of those
images, that is, to the image of the disk itself.

53. To simplify this elimination, let us take the central reflected ray for the axis of (z), that
is, let us put @ =0, B=0, y=1. We shall then have by (A"),

2 _BI
P=1+,yn q=m,

and the formule (C) will become

4 _a'pd'y’ 4 2 ,B'Pd')"
pdd +da="FTh, pdg'+db="TE,

* [(2), with 4=B=(=0.]
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which give, by the identical relations
a2+ B2+ 42=1, o.de'+ B .dB +v'.dy =0,
pdy’ =d'da+ B'db,
o . (c'da+ B'db)

pda e da + 1+ 'y, y (F”)
o B (@da+gdb)
pdB = —db+ e T = :

Eliminating de’, d3’, dy', by these formulé, from the equations (D’) and (E”), we find, for
the equations of the image,
Ist. (A—-¢').da+(B—-p").db+ Cdec=0,
2d. da® + db? = p?. o2;

the image is therefore, in general, an ellipse, the plane of which depends on the quantities 4, B, C,
which enter into the 1st of its two equations, and therefore on the partial differentials of the
mirror, as high as the third order ; but the 2d of its two equations (G"’), is independent of those
partial differentials, and contains this remarkable theorem, that the projection of the image
of the disk, on a plane perpendicular to the reflected rays, is a circle, whose radius is equal to
the focal distance (p), multiplied by (o) the sine of the semidiameter of the planet.

(@)

54. The theorem that has been just demonstrated, respecting the projection of a planet’s
image, is only a particular case of the following theorem, respecting reflected images in general,
which easily follows from the principles of the preceding section, respecting the axes of a reflected
system. This theorem is, that if we want to find the image of any small object, formed by any
given combination of mirrors, and have found the image of any given point upon the object,
together with the corresponding vertex upon the last mirror of the given combination ; the rays
which come to this given vertex, from the several points of the object, pass after reflection
through the corresponding points of the image.

55. It follows from this theorem, that in order to form, by a single mirror, an undistorted
image of any small plane object, whose plane is perpendicular to the incident rays, it is necessary
and sufficient that the plane of the image be perpendicular to the reflected rays. This condition
furnishes two relations between the partial differential coefficients, third order, of the mirror,
which will in general determine the manner in which the object and mirror are to be placed
with respect to one another, in order to produce an undistorted image. Thus, if it were required
to find, how we ought to turn a given mirror, in order to produce a circular image of a planet ;
we should have the following condition,

dp=cadz+ 3'dy ++dz, H")

which expresses that the reflected rays are perpendicular to the plane of the image; o', &, o/,
being the cosines of the angles which the incident ray makes with the axes of coordinates; and
p being the focal length of the mirror, which by 49. is equal to half the geometric mean between
the radii of curvature; so that it is a given function of the partial differentials, first and second

orders, of the mirror, Pt
i K e g )
AT S e X
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the cosines (', B, ¢') may also be considered as given functions of (p, ¢, 7, s, t), because, by
49. the incident ray at the vertex is contained in the plane of the greatest osculating circle
to the mirror, and the square of the cosine of angle of incidence is equal to the ratio of the radii
of curvature. The two equations therefore, into which (H'’) resolves itself, by putting separately
dy =0, dz =0, will furnish two relations between the partial differentials of the mirror, up to
the third order; these are the two relations which express the condition for the image of the
planet being circular: they are identically satisfied in the case of a spheric mirror, for then
the first member of (H'') vanishes, on account of the focal length being constant, and the second
member on account of the incident ray coinciding with the normal; and accordingly, whatever
point of a spheric mirror we choose for vertex, it will form a circular image of a planet; but
when the mirrer is not spheric, these two relations will in general determine a finite number of
points upon it, proper to be used as vertices, in order to form an undistorted image. And when
we shall have found these points, which I shall call the Vertices of Circular Image, it will then
remain to direct towards the planet, one of the two lines which at any such vertex are contained
in the plane of the greatest osculating circle to the mirror, and which make with the normal, at
either side, angles, the square of whose cosine is equal to the ratio of the radii of curvature.

XII. Aberrations.

56. After the preceding investigations respecting the two foci of a reflected ray, or points
of intersections with rays infinitely near; and respecting the axes of a reflected system, each of
which is intersected, in one and the same point, by all the rays that are infinitely near it; we
come now to consider the Aberrations of rays at a small but finite distance: quantities which
have long been calculated for certain simple cases, but which have not, I believe, been hitherto
investigated for reflected systems in general.

57. When rays fall on a mirror of revolution, from a luminous point in its axis, the reflected
rays all intersect that axis, and the distances of those intersections from the focus, are called
the longitudinal aberrations. But in general, the rays of a reflected system do not all intersect
any one ray of that system; and therefore the longitudinal aberrations do not in general exist,
in the same manner as they do for those particular cases, which have been hitherto considered.
However I shall shew, in a subsequent part of this essay, that there are certain other quantities
which in a manner take their place, and follow analogous laws: but at present I shall confine
myself to the lateral aberrations measured on a plane perpendicular to a given ray, of which the
theory is simpler, as well as more important.

Let therefore, (2, 9/', 2") represent the coordinates of the point in which the plane of aber-
ration is crossed by any particular ray; these coordinates may be considered as functions of any
two quantities which determine the position of that ray; for example, of the cosines of the
angles which the ray makes with the axes of (#) and (y). They may therefore be developed in
series of the form

dX dX X a2X a*X )
a:-X+d ,+—E.B,+1}{da2 a,+2d 7k /B,+E.BE_B,2}+&C.
pRaip &Y &Y &Y ) "
y—Y‘F% B B’+%{da2 a2+ d d,B IBI dﬂ?' BIZI'*'&C'} (K)
, az &z &2
Z=Z+%.al+@-B,'l‘%{m.a,2+2m.a,ﬁ,+%‘2-ﬁlz}+&c.‘
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57, 58] I. THEORY OF SYSTEMS OF RAYS 41

X, Y, Z, being their values for the given ray, that is the coordinates of the point from which
aberration is measured, and (e,, B,) being the small but finite increments which the cosines
(@, B) receive, in passing from the given ray to the near ray. These equations (K') contain the
whole theory of lateral aberration; but in order to apply them, we must shew how to calculate
the partial differential coefficients of (X, ¥, Z), considered as functions of (¢, B). For this
purpose I observe, that a, 3, being themselves the partial differential coefficients of the charac-
teristic of the system, (Section V.), may be considered as functions of the coordinates , b, of the
projection of the point in which the ray crosses any given perpendicular surface ;

av av
=%: :8_ db »

da dzv a2V dc de sz_i_d“V @
da = da? da de'da’ db~ da.db " da.dc'db’

o o el A el @ do
da~ da.db™ db.de'da’ db~ d* " db.do db’

(¢) being the other coordinate of the perpendicular surface, connected with a, b, by the relation

V = const.,
which gives
LLAPRE LAY SHL LAY 1)
da de
that is,
ada + Bdb + ydc =

and if we represent by (p) the portion of the ray, mtercepted between this perpendicular surface
and the plane of aberration, we shall have

X=a+ep, Y=b+Bp, Z=c+p.
By means of these formulw, combined with the equations
e.dX + B.dY +.dZ =0,
. d’X +B.d*Y +4.d*Z=0,
a.d"X +B.d"Y+q.d"Z=0,

we can calculate the partial differential coefficients of the five quantities X, Y, Z, ¢, 3, con-
sidered as functions of (a, b); and if we wish to deduce hence, their partial differential coefficients
relatively to one another, we can do so by means of the following formulz,

dX dX

dX aX a2X ?X
X =7 ot gg PR+ Gy A+ 2 g 05 da. oz,sz+d/82 LB, &

together with the corresponding formlulaa for Y and Z.

58. As a first application of the preceding theory, let us suppose the distance between the
two rays so small, that we may neglect the squares and products of (¢, B,); let us also suppose,
that the perpendicular surface of which (a, b, ¢) are coordinates, crosses the given ray at the
point where that ray meets the mirror, and let us take that point for origin, the given ray for

HMP : 6
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42 I. THEORY OF SYSTEMS OF RAYS [58, 69
the axis of (2), and the tangent planes to the two developable pencils passing through it for the
planes of (#, 2), (y, z): we shall then have, 40.,
a=0, B=0, y=1, awm0,’ b=0, ¢=0," X =0, V=0, Z=p,
de=0, dp=0, dZ=0, dX=da+pde, dY =db+pdp,

d*V dxV azv da
e e e T T

d*V azv d:V db
dﬁ:m.da+@i.db+m.dﬂ——a,
dX dX dy dy

P e 1 E=0, =T ag=P P

p1, ps, being the focal lengths of the mirror; and substituting these values for the partial
differential coefficients of X, ¥, in the general expressions (K') for the lateral aberrations, we find

@=(p—p).a, y¥=(p-—p).B, (L")
p being the distance from the perpendicular surface at the mirror to the plane on which the
aberration is measured. These formulse (L'') are only the equations (E') of the IXth section,
under another form; and it follows from the principles of that section, that the whole lateral
aberration may be thus expressed,

V(@2 +y?) =0 . y(u? + &),

0 =/(¢}*+ B3 being the angle which the near ray makes with the given ray; (u) a constant
coefficient, depending on the position of the near ray, and determined by the equation

u=(py—pg).sin, L. cos. L

(L being the angle which the plane of (#, z) makes with a plane drawn through the given ray
parallel to the near ray, so that 8,=g«,. tan. L): and

8=p—(p1.cos®L + py.sin2L)
being the distance of the point where the aberration is measured from the point at which that
aberration is least. It follows also, that if we consider any small parcel of the near rays, the
area on the plane of aberration over which these rays are diffused, is equal to the product of
the distances of that plane from the two foci of the given ray, multiplied by a constant quantity
depending on the nature of the parcel.* If, for instance, we consider only those rays which make

with the given ray angles not exceeding some small given angle (6), these rays are diffused over
the area of an ellipse, having for equation

w’ﬂ 2 es
+ =06,
(p=p)* (p—po)*
and this area is equal to the product of the focal distances (p — p1), (p — p2), multiplied by = . 62,
7 being the semicircumference of a circle whose radius is equal to unity.

(M")

59. As a second application, let us take the case where the plane of aberration passes through
one of the two foci of the given ray, for example, through the second, so that p=p,. In this
case the formule (L") become

o =(pa—pr). e, y'=0,
* [cf 43.(I')]
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59] I. THEORY OF SYSTEMS OF RAYS 43

so that if we continue to neglect terms of the second order, the points in which the near rays
cross the plane of aberration, are all contained on the axis of (2'), that is, on the tangent to the
caustic surface. But if we take into account the aberrations of the second order, that is, if we
do not neglect the squares and products of ¢,, 8,, which enter into the general expression (K")
for 4', then the rays will cross the plane of aberration at a small but finite distance from the
axis of (2"); that is, ¥’ will have a small but finite value, which we now propose to investigate.
For this purpose, that is, to calculate the coefficients in the expression

Y o a*y ?Y "
y=4{Tr ot 2 s b+ I 1), )
I observe that the general formula, 57.,
s dY ay Y d ' Y
@Y =—— . d*a +d/3 d“B+da2 de? dad,@ de. d'8+d/32 . dpe,

(in which e, B, Y, are considered as functions of the independent variables (@, b), and which is
equivalent to three distinet equations) gives, in the present case,

@z , &Y @Y &Y &Y , &Y
d2 =PV Qa2 da.dB” PP da.db dpRT P @
because
dy dy da db
il sl e T2 i
da " dp ey o P2

Again, the equation ¥ = b + Bp gives d*Y = p,. d?8, when we put
d2b=0) /3=0) dP=O, P=pP2;

e - 0 i - A 9 i

da® =P e dadb™ P da.db’ dr TP a

and the question is reduced to calculating these partial differential coefficients of (8). Now, the
equation :

we have therefore

a2V sz dV
. d“V
2y — ' R L
gives, (When we put d?a=0, d* =0, dc=0, & dz—0’>
bl .4 % @3BV a2V
d2,8—-——-——l 2.dy'da' +2. R da.db+ dyp 5« db?,

and therefore
P SR - RIS MR - I
da?  da®.dy’ da.db dz.dy?’ dB?  dy®’
(V) being the characteristic of the system' so that finally, the coefficients in the formula (N")
have for expressions
a2y RV Y P A Y 32V
dad PP dy’ de.dp” PP du ay dp? vk
They may therefore be calculated, either immediately from the characteristic function (V'),
if the form of that function be given; or from the equation of the mirror, and the characteristic
of the incident system, according to the method of Section VI.

(0)

6-2
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44 I. THEORY OF SYSTEMS OF RAYS [60

60. The formula (N"'), which for conciseness may be written thus
y' =% (4de?+2Ba B, + CBp),

combined with the equation 2’ =<.¢,, in which (7) denotes the interval (ps— p;) between the
two foci of the ray, enables us to find the curve in which any thin pencil B,=f (e, is cut by a
perpendicular plane passing through a focus of the given ray; a question for which the formule
of Section IX. are not sufficient; since, by those formule, the curve would reduce itself to a
right line, namely the tangent to the caustic surface.* Suppose, for example, that all the rays
of the thin pencil make with the given ray some given small angle (@), in which case we have
seen that an ordinary section of the pencil is a little ellipse (M'"); we then have to eliminate
a,, B,, between the three equations

o' =1, y, =% (42 +2Ba,B,+ OB, a2+pB2=6"
and we find for the equation of the section
2%y = Aa'® + 2Ba’ . /(P — 2'2) + C (1262 — 2'?) ; 8

which evidently represents a curve shaped like an hour-glass, or figure of eight, having its node
on the axis of (y’), that is, on the normal to the caustic surface, at a distance =%C. 62 from the
focus, and bounded by the two tangents &'= +¢6. The area of this curve is the double of

the definite integral —2§ f V(P2 —2'?), 2'da’, taken from o' = 0 to &' =10 ; it is therefore
S=3.B.i.0 Q")

But we must not suppose that this area, like the area of the elliptic section (M"’), is the entire
space over which all the intermediate rays, that is, all the rays making with the given ray angles
less than (@), are diffused upon the plane of aberration; for it is clear that these intermediate
rays intersect the plane of aberration partly inside the curve (P'’), and partly outside it ; since
the focus itself, that is, the point 2’ =0, y' =0, is outside that curve. We must therefore, in
order to find the whole space occupied by the intermediate rays, investigate the enveloppe of all
the curves similar to (P’), which can be formed by assigning different values to (), and then
add to the area (2) of the curve (P") itself, the area of the additional space included between
it and its enveloppe. Differentiating therefore, the equation (P") for (€) as the only variable,
we find

kP ,_3C.62.(AC-B?)

“BEl T T

Bz £ C . \(?0?—a'?) =0, o2

so that the enveloppe sought is a common parabola, having for equation,

20..y' =(AC - B?).a"?, (R")
and the additional space (2'), included between it and the curve which it envelopes, being equal
to the double of the definite integral

1k / , '
- .f{Bm ~ O V(@) da,

* [These two lines, one for each focus, are known as “focal lines” or “image lines” (¢f. Southall, Geometrical
Optics (1913), p. 47). They are often associated with the name of J. C. F. Sturm (Comptes rendus, 20 (1845),
pp- 554 —560). See also the Third Supplement, p. 240, of this volume, where the lines are called “guiding lines.”]
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1.0.0
N(B*+ C?)°

S'=20.6% [ B+ (B + OV

taken from 2’ =0, to &’ = has for expression

so that the whole space over which the intermediate rays are diffused, has for expression
S+5=2i6. (B4 v+ 03 ("

In these calculations 4, B, C, 7, have been supposed positive: but the formula (S”) holds
also when all or any of them are negative, provided that we then substitute their numeric for
their algebraic values.*

61. To find the geometrical meanings of the coefficients 4, B, C, which enter into the pre-
ceding expressions for the aberrations measured from a focus, let us investigate the curvatures
of the caustic surface. The two focal lengths of a ray, measured from the given perpendicular
surface, are determined by the formula (Q) of Section VI.

o+ e+ ) -3 ="

; da da db db b i i
which when we make kol %=O, 5 =) d_,3=_ p2, p=ps, gives by differentiation,

dp=—d. ( d ,8) We have also, by the same section,

et iy A R
da? " df “\dw.dy)  ap= "'\ da? 'dw.dz)’
which when we put
[ N a2V 5
dadys o daude. o
B o AT 2 0 db
dwz == Pl’ dy P2, dﬂ_—Pz’
o S azv
d.(dﬂ)_ pet.d. ( y) =B.de+C.d,

and therefore dp = — (Bde + CdB). If then we denote by #,, y,, 2, the coordinates of the caustic
surface, considered as functions of ¢ and b, we have

a=0 g =1"dy =0

gives by differentiation

zg,=a+cp, y,=b+PBp, z=c+qp,
dz,=da+ pde=1de, dy,=0, dz,=dp=—(Bde+ Cdp),
d*y,= ps. d*B +2dB.dp=A . de? — C.dS?
so that the focus of a near ray has for coordinates
z,=10, y=4lda?—0B%, z=ps—(Be+0B);
' eliminating ¢,, B8,, we find for the approximate equation of the caustic surface,

27;20'3//”' {1.(z,— p2) + Bx,}Z—AO.w,2= 0,

* [The positive value of the radical is to be taken in all cases.]
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46 I. THEORY OF SYSTEMS OF RAYS [61, 62

which shews, that the radius of curvature R of a normal section of this surface, is given by the

following equation,
2C

R
(w) being the angle which the plane of the section makes with the plane of (yz). Making w=0,
we get R=C; and the maximum and minimum of R, are given by the equation
AR+ (B-AC+#).R-C.*=0;
from which it follows that C is the radius of curvature of the caustic curve, and that if we denote

by (w) the angle at which this curve crosses either line of curvature on the caustic surface, we
shall have

=1?.cos2w + 21B .sin.w.cos. o + (B*— AC) .sin2 o,

RR" e —
" R'coslw + R'sinlew’ R cos2w+ R sin2w’

1.(R'— R").sin. o . cos. (1)

B= .
R cos2w+ R'sin2w ’

R', R" being the two radii of curvature of the caustic surface. It appears from these formulae
(T""), that when the ray touches either line of curvature upon the caustic surface, (which is
always the case when the reflected system consists of rays, which after issuing from a luminous
point, have been reflected by any combination of mirrors of revolution, that have a common
axis passing through the luminous point), or when the focus is a point of spheric curvature on
its own caustic surface, then B vanishes, and the area (Q') of the little hour-glass curve is equal
to nothing. In fact, in this case, that curve changes shape, and becomes confounded with a
little parabolic are, which has for equation 2:®y’ = Aa'2+ C (4262 — 2'?), and which is comprised
between the limits 2" = + 16 ; this parabolic arc is crossed at its extremities by the parabola (R"),
of which the equation becomes 272y’ = A2'%*: and the whole space included between these two
parabolas, that is, the whole space over which the near rays are diffused, has for expression,

'=24.0.0 ")

62. As a third application, let us consider the case of aberrations from a principal focus. In
this case we have 1=0, and the expressions for =, 3/, vanish; we must therefore have recourse
to new calculations, and introduce terms of the second order, in the expresswn of &', as well as
in that of 3’. We find

azv a2V vV
wdak T s
b (d.z-" IR * T L o 7 ’9')
a2V a*V ;v
% 4l 3 phs e A 2
y =10 '(dxz.dy'“' PR A T s )
expressions which may be thus written
o' =(4a?+ 2Ba,B,+ 0B, }
Y = (Be? + 20e,8, + DBP),
A, B, C, having different meanings here, from what they had in the preceding paragraphs. And
if we eliminate ¢,, 3,, between these equations, by means of the relation

o+ B2 =

(VI')
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62] I. THEORY OF SYSTEMS OF RAYS 47

which expresses that the near rays make with the given ray an angle = 6; we find, for the curve
of aberration, that is, for the locus of the points in which those rays cross the perpendicular
plane drawn through the principal focus, the following equation,
4 {(B*— AC) 6*— By + Ca'} {(C* - BD) 6* + By’ — Ca'}
={Ad-0)y'+(D-DB)a'+(BC—-AD). 62,
which may be thus written
Allylz+ 2Bllwlyr + Cllwlz 2 (Dllyl + E".’b") 02 + FII < 04 5 0, (WH)
if we put for abridgment
A"=(A-CP+4B* B'=(A-0C)(D-B)—4BC, (C'"=(D-By+4C?

D'=(A4+0).B"+(D+B).A", E"=4+0C).C"+(D+B).B",

F"=(AD - BC)?— 4 (B*— AC) (C* - BD).
These values give
ArQ" — s pagy {C (A ey 0) L B (D _B)}z}
so that the curve (W"') is an ellipse ; the centre of this little ellipse has for coordinates
a"=§~(A+ 0)'02’ b”=1}(D+B).02,
S=t}m.(C.(C~4)+B.(B-D).0" &)

If now we consider those intermediate rays, which make with the given ray some given
small angle (6'), less than (), the points in which these rays cut the plane of aberration will
form another similar ellipse, having for equation

Allyfz + 2Bllwly’ + Cl!wlz b (Dllyl +Ellw’) 0’2 +FII : 6’4= 0;

and if (F'’) be negative, this ellipse is entirely inside the other, and all the rays that make with
the given ray angles not exceeding (6) are diffused over the elliptic area (X''). But if (/") be
positive, that is, if the focus be outside the little ellipse of aberration (W’’), then the interme-
diate rays are not all diffused over the area of the ellipse, but cut the plane of aberration partly
inside that area and partly outside it. To find therefore, in this case, the whole space over which
these near rays are diffused, we must seek the enveloppe of all the little ellipses similar to (W"’),
and then add to the area of that curve (W) itself, the area of the space included between it and
its enveloppe. This enveloppe has for equation

(Dllyl + El’wl)z PR 4.Fl/ 3 (Allyl2+ 2Bllw’y I+ Ollxlz); (YII)
when F"' is negative it has no existence, and when F”’ is positive it consists of two right lines
passing through the focus, which are common tangents to all the little ellipses, and which may

be called the Limiting Lines of Aberration ; the space included between them and the ellipse
(W"), has for expression

and its area is

=2 (tan. g - ¥, @)

3, being the area of the ellipse, and (y) an angle whose cosine, multiplied by the focal distance
of the centre of that ellipse, is equal to the semidiameter whose prolongation passes through the
focus; we have therefore

VF"

G(=4)+ BBE-Dy’ s S

tan, Y =
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48 I. THEORY OF SYSTEMS OF RAYS [62, 63

and the entire space over which the intermediate rays are diffused is*

S+ 3 = }[NVF + (r — ) (C(C—4) + B(B—D)}]. 6% (B"")

63. We have just seen, that in investigating the aberrations from a principal focus, it is
necessary to distinguish two cases, essentially different from one another. In the one case, all
the rays that make with the given ray angles not exceeding some given small angle (0), are
diffused over the area of a little ellipse; in the other case they are diffused over a mixtilinear
space, bounded partly by an elliptic arc, and partly by two right lines, which touch that elliptic
arc, and which pass through the principal focus.t The analytic distinction between these two
cases depends on the sign of a certain quantity F”/, which is negative in the first case, and
positive in the second. It is therefore interesting to examine, for any proposed system, whether
this quantity be positive or negative. I am going to shew that this depends on the reality of the
roots of a certain cubic equation, which determines the directions of spheric inflexion on the sur-
faces that cut the rays perpendicularly ; I shall shew also that the sign of the same quantity, is
the criterion of the reality of the roots of a certain quadratic equation, which determines the
directions in which the plane of aberration is cut by the two caustic surfaces.

First then, with respect to the caustic surfaces, it may be proved, by reasonings similar to
those of 61., that the two foci of a near ray have for coordinates

wm=a'+pe, y=y+pB, z=p+p,
@', ', being the coordinates of the point in which the near ray crosses the plane of aberration,
determined by the formule (V'’), and (p,) having a double value determined by the following

quadratic equation
(3p, + 4, + BB) (3p, + Ce, + DB,) — (B, + 0B,)* = 0,

in which 4, B, C, D, have the same meanings as in the preceding paragraph. The intersection
therefore of the caustic surfaces with the plane of aberration, is to be found by putting p, =0,
which gives ' =p, z,=4a', y, =1/,

(de, + BB)) (Ce, + DB)) — (Bey + OB, =0; (c")
the condition for the roots being real, in this quadratic (C'"), is
(AD-BCR—-4(B*—AC)(C*—-BD) >0, (D"

that is, ' > 0, so that unless this condition be satisfied, the caustic surfaces do not intersect
the plane of aberration; and when this condition is satisfied, the intersection consists of two
right lines, which are determined by the equation

(4y’ - Be') (Cyf Do) = (By — Ca' )", (E")
and which may easily be shewn to be the same with those limiting lines which we have already
considered.

* [This formula applies for all values of the constants consistent with #” > 0, provided that in (A’’) and
(B") the expression C(C'—A4)+ B (B- D) is replaced by its absolute value, and  is defined as an acute angle,
~F” in all cases having its positive value.]

+ [This phenomenon belongs to the type of aberration known as coma ; this word was used in this connection
by J. J. Lister (Phil. Trans. Roy. Soc., 1830, pt. 1, p. 193), who observed *“a faint light or coma” stretching out
from the image of a bright source formed by a microscope objective, but did not supply a theoretical explanation.
For this reference we are indebted to Mr T. Smith.]
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64. Secondly, respecting the surfaces that cut the rays perpendicularly, and which are given
by the differential equation
ada+ Bdb +yde=0
we have seen in a former section that the principal foci are the centres of spheres that have
contact of the second order with these perpendicular surfaces; and if we wish to find the
directions in which they are cut by those osculating spheres, we must express that the sum
of the terms of the third order in the development of the ordinate of the sphere, is equal to
the corresponding sum, in the development of the perpendicular surface. This condition, when
the ray is taken for the axis of (2), gives d®c == 0, that is, d®a. da + d*8. db =0, which produces the
following cubic equation, (see 59.)
0=F das+3. deI:z .da?.db+3. ddzz da db2+%z @ (F)
This equation determines the directions of spheric inflexion upon the perpendicular surface,
that is, the directions in which it is cut by its osculating sphere; and the condition for there
being three such directions, that is, for the three roots of this cubic equation being real, is
@V &V PV PV BV \* BV dV
{W ! d‘g]a"dxz.dy‘iim”.aﬁ} i '{(M.dy) ~ da? 'dw.dyz}
VLN etV Y L
{(dx.dy2> _dwz.dy'@"‘}<0’ il
that is, "' < 0. When, therefore, the principal focus is inside the little ellipses of aberration,
there are three directions of spheric inflexion on the surfaces that cut the rays perpendicularly ;
and when it is outside those little ellipses, there is but one such direction. It appears also, from
the formula (F"’), that the aberrations of the second order do not vanish, unless the surfaces
that cut the rays perpendicularly have contact of the third order with the osculating spheres
that have their centre at the principal focus; this condition is expressed by four equations
which are not in general satisfied: and for this reason I shall dispense with considering the
aberrations of the third order, because they only present themselves in some particular cases ;
for example, in spheric mirrors, the theory of which has perhaps been sufficiently studied
by others.

65. I shall conclude this section by shewing that the conditions for contact of the third
order between the perpendicular surface and its osculating sphere, which, as we have just seen,
are the conditions for the aberrations of the second order vanishing, are also the conditions for
contact of the third order, between the mirror and the osculating focal surface (Section VIIL);
and that the sign of that quantity (F*’) which distinguishes between the two different kinds
of aberration from a principal focus, and which, as we have seen, depends on the number of
directions in which the perpendicular surface is cut by the osculating sphere, depends also on
the number of directions in which the mirror is cut by its osculating focal surface.

To prove these theorems, I observe that if we denote by (p", ¢’) the partial differential
coefficients, first order, of the focal surface, that is, of the surface which would reflect accurately
the rays of the given incident system to the focus (X, ¥, Z), the condition that determines the
directions, in which this surface cuts the given mirror, with which (by Section X,) it has com-
plete contact of the second order, is

d?p" . da +d?q" . dy = d?*p .dz + d?q . dy, (H")

HMP g 7
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50 I. THEORY OF SYSTEMS OF RAYS [65

and that this same equation, when it is to be satisfied independently of the ratio between da, dy,
resolves itself into four distinct equations, which are the conditions for contact of the third order,
between the given mirror and its osculating focal surface. Now, if we represent by ", 8", v"
the cosines of the angles which the reflected ray would make with the axes, if it came from the
focal surface, and not from the given mirror, we shall have (Section II.)

all +al + (fy” + 'yl) pll P O, BII+ BI + ('Y” + 'YI) qll it 0,
and therefore

da" +da' +(dy" +dy').p" + (' +v').dp" =0,

dB" +dB’' + (dy" + dv').¢" + (v" + ) . dg" =0,

B+ P+ (P + B P+ 2@+ ) A+ ) B =0,

PR+ BE + (@ + PY). g+ 2@+ ) A+ (6 + ) B =0,
o, B, v, being the cosines of the angles which the incident ray makes with the axes; in the
same manner, we have for the given mirror,

e+ +(y+9).p=0, B+B +(y+v).q¢=0,
da +de +(dy+dy)p+(y+9)dp=0,
dB +dB + (dy +dy') g+ (v ++v') dg=0,
dPa + d*d + (Py+ d*y)p+ 2 (dy+dy)dp +(y+v') dPp=0,
d*B+ d*B + (PPy + &) g + 2 (dy + dy') dg + (v + &) d*¢ =0,
and, because of the contact of the second order, which exists between the two surfaces, we have
p'=p q'=q o'=e pB'=B o'=9,
dp" =dp, dq¢'=dq, da’=da, dB’"=dB, dy'=dy,
(y+9) (" .de+ d*q"” . dy) + 2 (dy + dy') (dp . dz + dq . dy)
+d (@' +d). de+ BB +8).dy+d*(y' +v').dz=0,
(y+9) (@ .da+d?q.dy)+ 2 (dy + dy') (dp . da + dg . dy)
+d*(e+d). de+d*(B+B).dy+d(y+9').dz=0
the condition (H"’) may therefore be thus written,
d*a” .da+ d*B" .dy + d*y" . dz=dPe . dz+d?B.dy + d?y.dz: 1)

besides, when the given ray, or axis of the system, is made the axis of (z), and when we take for
the two independent variables the two quantities (a, b), that is, the coordinates of the projection
of the point in which the ray crosses the perpendicular surface, 57., we have, from 59., and from

"

the nature of the functions ", 8", ",
d2a11=0’ d213”=0’ d2 ”=d2'7, da:dw db:dy,

v dV BV
@Y ﬁV @y
dzB_lz.dy'dwz+2'dw & .dz.dy +dy3
so that (I'"”) becomes
dV dV d3V dV 1
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this then is the cubic equation which determines on the given mirror, the directions of focal
inflection, that is, the directions in which it is cut by the oscnlating focal mirror; and comparing
this with the cubic equation (F'"’) which determines the directions of spheric inflexion on the
perpendicular surfaces, we see that the planes which pass through these directions of spheric
inflexion, and through the axes of the system, pass also through the directions of focal inflexion
on the mirror; so that the number of the latter directions is the same as the number of the
former. If then there be but one direction of focal inflexion on the mirror, that is, if the cubic
equation (K”’) have two of its roots imaginary, the principal focus is outside the little ellipses
of aberration, and the caustic surfaces cross the plane of aberration, in those two limiting lines,
or tangents to the little ellipses, which we have considered in 62.; but if there be three directions
of focal inflexion, that is, if the three roots of (K'’) be real, then the limiting lines of aberration
become imaginary, and the principal focus is inside the little ellipses. And if the equation {K'”’)
be identically satisfied, that is, if the mirror have contact of the third order with its osculating
focal surface, then the little ellipses themselves disappear, and the aberrations of the second
order vanish.

XIII. Density.

66. Malus, who first discovered that the rays of a reflected system are in general tangents
to two caustic surfaces, has given in his Traité D’ Optique, (published among the Mémoires des
Savans Etrangers*) the following method for investigating the density of the reflected light at
any given point of the system. He considers two infinitely near pairs of developable surfaces
formed by the rays; and as he believed himself to have demonstrated that the two surfaces of
such a pair are not in general perpendicular to one another, when the rays have been more
than once reflected, he concludes that the perpendicular section of the parcel of rays comprised
between the four developable surfaces, will be in general shaped as an oblique angled parallelo-
gram, whose area is equal to the product of the two focal distances of the section, multiplied by
the sine of the angle formed by the two developable surfaces of each pair. He then compares this
area with the area over which the same rays would be diffused, if they had proceeded without
interruption to an equal distance from the luminous point; and he takes the reciprocal ratio of
these areas for the measure of the density of the reflected light, compared with that of the direct
light. The calculations required in this method are of considerable intricacy; and the most
remarkable result to which they lead, is that along a given ray the density varies inversely as
the product of the focal distances, being infinite at the caustic surfaces, and greatest at their
intersection. The same result follows from the theorem which I have pointed out in 43. re-
specting small parcels of rays bounded by any thin pencil, of whatever shape; and that theorem
furnishes a general method for investigating the density of the reflected light, at points not
upon the caustic surfaces, which appears to me simpler than that of Malus, and which for that
reason I am going here to explain.

Suppose then that rays issuing from a luminous point have been any number of times
reflected by any combination of mirrors; let us put A to represent the density of the direct
light at the distance unity from the luminous point, and let us put (s) to represent the space
over which any given small parcel of that light, bounded by any thin cone, is perpendicularly
diffused at that distance. Then, if we represent by (p) the first side of the polygon, that is, the

' * [See Appendix, Note 2, p. 463.]
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portion of any given incident ray comprised between the luminous point and the first mirror,
the perpendicular section of the incident parcel, at that distance from the luminous point, will
have its area 3 =p2.s; and the space over which the parcel is diffused upon the mirror, has
p2.s
cos. [’
will again have its perpendicular section = p®.s =3 ; and if we represent by Fy', Fy', the two focal
lengths of the first mirror, that is, the distances from the point of incidence to the two points
where the first reflected ray touches the first pair of caustic surfaces, we shall have by 43. the
following expression for the perpendicular section of the reflected parcel, at any distance (p’)
from the first mirror ;

for expression I being the angle of incidence. Immediately after reflexion, the parcel

,_2.(p’—Fll)(p'—F2') : : £ 11
3= 7 Fy , in which 3 =p?.s. @)
Now let p' be the second side of the polygon, that is, the path run over by the light in going
from the first mirror to the second, and let (#y”, Fy'’) be the two focal lengths of the second
mirror; we shall have, in a similar manner, for the area of the perpendicular section of the
parcel, after the second reflexion, at a distance p” from the second mirror,
*el 21 ; (P” D Fl,l) (pII & an) . R
2 R FIII.F2II 3 (M )
and so on, for any number of reflexions. Having thus got the space over which the reflected
rays are perpendicularly diffused, the density is obtained by this formula

g LA "
AP = A (N"")
For instance, if the rays have been but once reflected, then the density is
s.A A F.Fy

N — = . 1' ’2 ~, o

S TR )6 D S
a formula which agrees with that of Malus; after two reflections, the density is

A” S.A= A .Fl .F2 (PIII)

< i ?T (P” o Fll') (PII o qu) ’
A’ being the density immediately before the second reflexion: a formula which is different from
that of Malus, and which appears to me to be simpler.

67. The two preceding methods, namely, that of Malus, and that of the preceding paragraph,
fail when the density is to be measured at the caustic surfaces; for they only shew that the
density at those surfaces is infinitely greater than at other points of the system, without shewing
by what law the density varies in passing from one point of a caustic surface to another, This
question, which has not been treated by Malus, appears to me too important to be passed over,
although the discussion of it is more difficult than the investigation of the density at ordinary
points of the system.

Let us then, as a first approximation, resume the formulz of 60.
@ =, Yy =%(Ae?+2Be,pB,+C0B2),

', y' being the coordinates of the point in which a near ray crosses the plane of aberration, that
is, a plane perpendicular to the given ray, passing through the focus of that ray; e,, 8,, small
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but finite quantities, namely, the cosines of the angles which the near ray makes with the axes
of (') and (y'), the former of which axes is a tangent and the other a normal to the caustic sur-
face; A, B, O, coefficients depending on the curvatures of that surface, and on the interval ()
between the two foci of the ray. To find by these equations the space over which the rays,
that pass through any given small area on the plane of aberration, are diffused upon another
perpendicular plane, which crosses the given reflected ray at the point where that ray meets the
mirror, we are to employ these other formule (see 58.)

a=-—p;.Q, b=—P2-B;;
a, b, being the coordinates of the point in which a near ray crosses this latter plane, and py, ps,
the distances of that point from the two caustic surfaces, that is, the two focal lengths of the
mirror. In this manner we find, that to any given point («/, ") on the plane of aberration,
correspond two other points on the other perpendicular plane, determined by the equations
RO bl b=—g,%..(Bw' F V203 + (B*— AQ)2'%); Q")

?

understanding however that these two points become imaginary, when the quantity under the
radical sign is negative, that is, when the point (', ') is at the wrong side of the enveloping
parabola (R"), 60.; which parabola, within the small extent in which it is taken, may be con-
sidered as confounded with the normal section of the caustic surface made by the plane of
aberration. Now, if we consider any infinitely little rectangle upon this latter plane, having for
the coordinates of its four corners

1st. o', o/, 2d. o' +do, o, 3d. ', ¥y +dy, 4th. o' +do’, v + dy,

the rays which pass inside this little rectangle are diffused over two little parallelograms on the
other perpendicular plane ; the four corners of the one having for coordinates,

db

1st. a, b, 2d. a+da, b+ i da’,
db y 4 db ’ éb_ !
3d. a,,b+a§;.dy, 4th.a+da,b+d7.dm+ y,.dy,
and the four corners of the other having for coordinates,
18t @z b 2d. a+ da, b + d—b—, .dz’,
dx
’ db' ’ ’ db’ 7 @_’ ?
3d. a,b+d—y,.dy, 4th. a+da,b+d7.dw+dy,.dy,

b, V', being the two values of (b) given by the formule (Q''). The areas of these two parallelo-
grams are each equal to (da, 3 % : dy'), that is to

pl.pz.dﬁl.dy’ %
V{20 + (B*— AC) %)’
~ and the area of the little rectangle on the plane of aberration is da’.dy’; if then we denote by

A® the density at the mirror, we shall have for the density at the point &', 3’, on the plane
of aberration, the following approximate expression

2 P1:pP2. AW -
V203 + (B —AC)d%’

Al@) =

(RIII)
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an expression which shews that at the caustic surface the density is infinitely greater than at
the mirror; and that near the caustic surface the density is not uniform, but varies nearly
inversely as the square root of the perpendicular distance from that surface; so that we may
consider this density as constant in any one of the little parabolic bands comprised between two
infinitely near parallels to the enveloping curve (R") 60.

68.* To treat this question, respecting the variation of density upon the plane of aberration,
in a more accurate manner, let us take into account the remaining terms of the developments
of 2’ and ¥', as given by the general theory, which we have explained at the beginning of the
preceding section. For although we were at liberty to neglect these terms, when we were only
in quest of approximate formule to represent the manner in which certain of the near rays are
diffused over the plane of aberration; yet, when we are returning from this latter plane to the
perpendicular plane at the mirror, it is not safe to neglect any term on account of its smallness,
until we have examined whether, in thus returning, its influence may not be magnified in such
a manner as to become sensible.

Let us then resume the general series (K') 57.
dX aX d*X a2 X
=X+ %+38" B+3. {daz 2+2?i—dﬁ'“'5’+d—,82'3'2}+&c"
e dY ay 0l ary
Y+ +%'BI+%'{W +2da dﬁ /Br de ﬂ/}

in which we have at present;

AL il ay ay
X=0, Y=0, T E=O, %=0, m=0:
&eX @BV X BV X BV
@ =P GE Gudg PP gE gy dE PP g
&Y A BV BY B3V

7 Rl A P O g I gl
V being the characteristic function ; so that
TX &Y | PX_ @
de.dB  da®’ dp? de.dB’

We have in like manner,

de d?a d?*c .
- a+db e {d“’ 420 gy B8 b2}+&c.,
d£ dap a?p d:p d*B
B"— a+db b"l"‘% { a2+2d—m.ab+ W‘-bz}"‘&c.,
in which, at present,
de 1 da_o dB_, d8_ 1
da . mliodh A8 db_—Pa

da_&BV  dPa PV da_ PV
@ d®’ da.db da*.dy’ B dw.dyt’

@B_ BV BB BV BB DV
da® “da?.dy’ da.db dz.dy’ db® dyt’
* [See Appendix, Note 3, p. 465.]
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And if we substitute these expressions for ¢,, 8,, in the two series for &’ and y’, we shall get two
other series of the form

, _da da’ § d2a’ a2’
w_%"”'db b“{daﬁ RS e b}+&c" ™
r_dy 2 dz y dz:'/
=30 b+%{da= a+2 o= b+db= b3}+ &e.,
in which, at present,
dof U L
P Tl R e N Y
B BY P BT R BT
da? =P ded da.db PPdat dy’ db® TP de. dy’
a2y BV dy BV a2y BV

da? =P da? dy’ da. db TP Gn dyp A T PR s
and in which the other coefficients can also be calculated by means of the characteristic function.
This being laid down, let us put &’ =r.cos.v, ¥’ =r.sin.v, and let us develope (a) and (b),
according to the powers of (r). The developments will be of the form
a=1r u+r™ .9+ ' +........ ! 3
pa y ’ " 7 } (T' )
b=r% w1 w4 il
m, m', m'" ...n, ', n'’ ... being positive and increasing exponents, which may or may not be
fractional, and w, ', u"’ ... w, w’, w” ... being functions of the angle (v): which functions, as well

as the exponents of the terms that multiply them, we have now to determine. Substituting
therefore the values (T""") in the series (S'") we find the following equations :

d2

3 v ]
;| . 0=—r.cos. v+d-£ (™. u+. )+1} 5 (™ot

LESE N YRR Y S RS SR
+da, db 1 ane . P .dbz . . ses oy

2d.......0=—r,sin.v + §. dz(r’” RTE T a2 d“‘yb (™. u+..) (% w+..)

+%.d—g;.(r".w+...)“‘+&c.

In order that these two equations should be identically satisfied, we must have, in the first
place, for the exponents of the lowest powers of 7 in the developments (T""')

m=1 n=%};
and for the corresponding coefficients, (u, w),

da'
L) 0-—cosv+d u+ i, db““wz’

(2)...0=—sin. v+«} ‘zbz w?,

www.rcin.org.pl



56 I. THEORY OF SYSTEMS OF RAYS [68

that is, in the notation of the preceding paragraph,*
2p1p2. €08 ¥ + 2ipy . u =B . w? u
2p% . sin.v =C . w LK

In a similar manner we find for the next greater exponents, m'=§, n'=1; and for the cor-
responding coefficients, u’, w’,

. ol e s die d2a’ W L)) 2
(1)...0—%.1& +muw+%“,—.ww +6.W.w’*,

;L gm h RE
()0 = gt o+ G ' g g W

And so proceeding, we can find as many of the exponents and coefficients of the developments
(T""), as may be necessary ; the exponents forming the two following series,

m=1, m'=§;, m'=2 ..... mt = ——,

R e G B o SRS nt =——

and the coefficients being successively determined by equations of the following form,

(1)0...0 = %f”'— u + %b—; w. w0 + £,
dz : ('VIII)
(2)(”--. = —dﬁ o Wi w‘” + k'( )

i+2 i+2

KD k). r e, representing for abridgment the sums of the known terms of the dimension
(tiz-g) in the expansions of 2’ and ¥', according to the powers of r, obtained by substituting
in (S"') the assumed developments (T""’) in place of @ and b. The quantities kD, &), are there-
fore rational functions of the preceding coefficients u, o', ..... cu w W, ... w1, and
therefore finally of % and w; and these functions do, or do not, cha.nge sign along with w,
according as ¢ is an odd or an even number. Hence it follows, that the developments (T""’),
which represent the coordinates of the points, where the near rays passing through any assigned
point upon the plane of aberration are intersected by the perpendicular plane at the mirror, are
of the form
a=r.(ut+r. ' +2.d"+ . )k (@ A ),

b=.iri'.(w+1~.'w”+'r2.'w””+...)+r.(w’+r.'w'”+...),
the coefficients of the fractional powers being real or imaginary, according as w is real or
imaginary, that is, by (U"’), according as (%—'v) is positive or negative; or finally, by 61.,

according as the assigned point (7, v) upon the plane of aberration, is, or is not, situated at that

o Vol ¢ 1A 4 9 22 3 By
=P da*dy = p? dadb =Pt dad?
v dza’ dty
B = p1pg’ dxdy? TPP2 s T P1P2 g0 g
sB V. gAY

C=py ayF =pd’ dvt
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side of the tangent plane of the caustic surface, towards which is turned the convexity of the
caustic curve. However, when the polar angle (v) approaches to (0) or (180°), that is when the
right line joining the focus of the given ray to the assigned point upon the plane of aberration,
tends to become a tangent to the caustic surface, the numeric value of (sin. v), and therefore
of (w), diminishes indefinitely ; and consequently the coefficients which contain negative powers
of that quantity, increase without limit, so that the series (T""’) become at length illusory. In
this case, therefore, it becomes necessary to have recourse to new developments, which will be
indicated in the succeeding paragraph. But abstracting for the present from this case, which,
in examining the variation of the density of the reflected light upon the plane of aberration,
may usually be avoided by a proper choice of the focus from which the aberrations are to be
measured : it may easily be shewn, by reasonings similar to those of the preceding paragraph,
that if we consider any infinitely small polar rectangle upon the plane of aberration, having its
base =r.dv, and its altitude =dr; the rays which pass inside this little rectangle, are, at the
mirror, diffused nearly perpendicularly over two little parallelograms, whose areas are

(,;) da db da db

2 (dv ‘dr dr’ d'v) dn.. dv, W)
w _(da’ db' dda' db’
= “(‘d?'%‘dv dr) Rt

a, b, ', b', being the coordinates of the two points, determined by the series (T""’). Substituting
for these coordinates their values, we find that the two areas (W’”) are the two values of the
following expression,

du du du'"" du’ du'"’
=1 ik o i (2% AL
SWw=21 % dr.dv. { & e Ay o +okr '(dv+r' o +)}

x{w+8.r. w0 +5.72. 0"+, +2.0F8 (W +2.r. 0" +..))

—‘}.r*.dr.dv.{(iz—”+ d;u +72 d_'tg__*_ +r} (dw +7r dw +)}

d d v
X{2.(u+2.r. 0" +8. 720" +..) £ B+ 5w )

du du'’ "
=%.ri.dr.dv.{<%+r.m +...)(w+3.r.w +...)

dw dw" "
-2 (dv +7r. W+...)(u+2.r.u + )}

dul dulll
3 i £ ’ 1"
+%.r.dr.dv.{2.(dv+r. dv+...)(w+2.r'w +...)
! ; duw’ dw'"
—(%- +1”.———-dv

i%.r.dr.dv.{(d—u+r'.(%—+...)(w+3.r.w"¥...)

dv
‘ r—(d—w+r.§—w— )(3 w4s.r.ou+. )}

+...)(3.u’+5.r.u”'+...)}

dv dv
tr.dr.dv. {(oallu+ d; +. )(w’+2.r.w"'+...)
dw' dw'"’ "
_(E?fr,.—d—v—+...)(u+2.r.u +...)},
HMP : 8
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which is of the form
SO=3. (UO+UO.r+ T2 .12 +...... ).dr.dv

+3.7.(UD. +UPL.r+UP. 02 +...... ). dr.dy, (X"

the coefficients U@, U®, ... U (:”, U (,”, ... being functions of the polar angles (v). The densities
of the reflected light, at these little parallelograms (W’"’), have for developments

) ()
A1=A0‘)+d'd2 .a,+d'dAb b A ,1

w AW
d.dt .a’+d—d%—.b+ ...... ]
A® being, as in the preceding paragraph, the density at the point @ =0, b=0, that is, at the
point where the given ray meets the mirror: and substituting in these developments (Y"’),
the values of a, b, a’, V', given by the series (T""’), we find that the two densities A;, A,, are the
two values of the following expression :

(YIII)

A2= A‘l‘) +

A=Am+d'dim froutr.u’ +.)x0t (@ +r.w"+.))
w
+d'd§ (gt (wHr.w" +.)+r. (@ +r.w” +..)
+ &,

which is of the form
A=A0+ AP . r+AD .24 ..
trh. (A + Al r+..), ‘ )
the coefficients being functions of the polar angle (v).
Similarly, if we denote by 1, s, the cosines of the angles which the two near rays, passing
through the two points (a, b), (a’, '), make with the axis of (z), that is, with the given ray, these
cosines will have developments of the form

da.db’ db?
=14+T®, r4T@ o2,
+rd (V. r+ TPt 40, (A"")
the coefficients being also functions of the polar angle (v); and the whole number of the near
reflected rays, which pass within the little rectangle (».dr.dv) upon the plane of aberration,
being equal to the sum of the two values of the product .A.%®, will be expressed by a
development of the form

QW=rt.dr.dv.(QU+QY.7r+Q®, r2+...), (B

where QO =A® O, and the other coefficients @, Q®, ... are other functions of the polar
angle (v), which may be determined by the formule (X'), (Z"’), (A""’). Confining ourselves
to the first term of this development, and dividing by 7. dr. dv, that is by the area of the little
polar rectangle upon the plane of aberration, we find the following approximate expression for
the density of the reflected light at the point (7, v) upon this latter plane,

2 2 2
7=1+%{%-“2+2A ab+ﬂ.b”}+...

(a)
A® = r.vi_ — Q(O} c ,,.—}; (Cun)

www.rcin.org.pl



68] I. THEORY OF SYSTEMS OF RAYS 59

which nearly agrees with the formula (R"’) of the preceding paragraph, because, as we have seen,
du dw A® , py. pa
0 =AW, JO = AW e e POV P il 2 L0 <
OF w0 T ("’ ok dv) T VG0, 80 )’
and therefore
AW,
0 oed o O P8
i 1.N30 .y

More accurately, the density A® being equal to the sum of the two quotients obtained by

dividing the quantity of light corresponding to each of the little parallelograms (W'’), by the

space over which that quantity is perpendicularly diffused at the point (», v), has for expression

) ( ()
TR o B0 W, . Ayl .l e

yi.r.dr.dv " yp.r.dr.dv r.odr.dy

==t (O U . r4..) AW +A% . r+..)

+or . (TP+UDrs )AG+AG. 7+ ("""
The first term of this development being the same as the approximate expression (C'"’), and
therefore agreeing nearly with the formula (R'’) of 67., we see, by this method, as well as by
the less accurate one of the 67th paragraph, that the density upon the plane of aberration
varies nearly inversely as the square root of the perpendicular distance from the caustic surface:
a conclusion which might also be deduced from the general theorem 43., that along a given ray
the density varies inversely as the product of the distances from its two foci. But the present
method has the advantage of enabling us to take into account as many of the remaining terms

of the density as may be necessary, by means of the formula (D”"); it gives also, by integration
of the formule (B'"”") and (X'"’), the whole number of the near reflected rays which pass within

A@ =

any small assigned space f r.dr.dv, upon the plane of aberration, and the whole corresponding

space on the perpendicular plane at the mirror; since this latter space is expressed by the sum
of the following integrals :

g =H(2‘;"+ z‘;’)=HU(°).ri.dr. &

+ j f U .ok, dr. dv + &, (B
and the corresponding quantity of light is expressed by this other sum,

Q® =fo‘“’=fo’°’.r}.dr.dv
+J-fQ“’.r*.dr.dv+&c., (F'""")

the integrals in these developments being taken within the same limits as the given integral
f f r.dr .dv, which represents the assigned space upon the plane of aberration, and the extreme

~ values of (v) being supposed such as not to render the series (T""") illusory. These series (T"")
serve also to correct the approximate expression of the preceding paragraph, for the first term
of (a) ; which first term was there taken as X
a=-P%, @) (67)
8-2
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whereas by employing the remaining terms in the development of #" and y’, we have now found
it to be

a=u.r=(sz.sin.'v—.Cpl.cos.v)r___sz_y'_qpl.ay’
C.1 C.e

a value which differs from the preceding, by the addition of (B (f E;y ) And if, by means of
this corrected value, and by using as many of the remaining terms of (T'""), as the question may
render necessary, we eliminate (r) and (v) from the polar equation of any given curve upon the

plane of aberration; for example, from that of the boundary of the space f f r.dr.dv, for which

we have already determined the corresponding quantity of light, and the area over which that
quantity is diffused on the perpendicular plane at the mirror; we shall find the approximate
equation of the boundary of this latter area, and thus resolve a new and extensive class of
questions respecting thin pencils, for which the formule of Section IX. and those of the 60th
paragraph would be either inadequate or inconvenient.

As an example of the application of the reasonings of the present paragraph, let us conceive
a small circular sector, upon the plane of aberration, having its centre at the focus of the given
ray, and having its radius () so small, that we may confine ourselves, in each development,
to the lowest powers of that radius. Let () denote the semiangle of this sector, and let (v"') be
the polar angle which the bisecting radius makes with the axis of (z); then v — 4, v + 4,
will be the extreme values of the polar coordinate (), while the corresponding limits of the radius
vector will be (0) and (). Denoting by (S@) the whole space occupied on the perpendicular
plane at the mirror, by the rays which pass within the given little circular sector, and by (Q©)
the number of these near reflected rays; the formulae (E""’) (F"""’) give, for these quantities

@ =fo<°>.r%.dr.dv=§.ri.fsz).dv,

Qw)=fot°).r%.dr.dv=§.r¥.th°udv,

or, substituting for U@, Q© their values,
S =2'P1f‘°2i¥. dv_ ‘
8.1.43C JWsnw @y
Q(c)=2'pl'p2'Aﬁ'ﬁ. ﬂ)_, '
8.1./3C Vsin.v
the integral in each expression being taken from v=1v" —, to v=12" +; so that we have the
relation

Q(c) =AM S, (H””)
If the semiangle of the sector be so small that we may neglect its cube and higher powers,

the definite integral f U®© , dv, being the difference of the two developments

dau® 2 U9 3
© AR R E e,
U0 .+ W9 + W .2.3+...,
dUO 2 @2UO 3
o g
UO .+ W9 T .2.3+...,
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is nearly equal to 2, U® . 4r; and the quantities S©, @, may be thus expressed,

Se = 4.p1-ps ¢ .y e 4’~P1-P2~3”_
3.1.¥}0 Wsinv" 8.7i.¥}C.y"’
4.p].Pg.A0‘) T*.lp‘ =4.p1.pz.Au‘).8"
8.1.43C "Wsinv” 8.5.W3C.y" ’
&' being the area of the little circular sector, and y" being the projection of its bisecting radius
upon the normal to the caustic surface; so that if the sector were to receive a rotation in its
own plane round its own centre, that is, in the plane of aberration round the focus of the given
ray, the area at the mirror (S§©) and the quantity of light (Q©) would vary nearly inversely
as the square root of the cosine of the angle, which the bisecting radius of the sector made with
the normal to the caustic surface. If, on the contrary, without supposing the angles (v"') or (y)
to vary, we alter the length of the radius, or transport the centre of the sector to any other
point on either of the two caustic surfaces, so as to produce another sector, similar and similarly

situated; it follows from (G"’) that the quantities S©@ and Q© will vary as the following
expressions,

(IIIII‘)
Q(c) =

pl.pg.ri.i‘l.a‘i, p;.pg.A”".ﬁ.i".C’*};

so that if the centre of the sector be fixed, they vary as the sesquiplicate power of its radius;
and if the radius be given, but not the centre, then they vary, the one as the product of the two
focal lengths of the mirror, divided by the difference of those two focal lengths and by the square
root of the radius of curvature of the caustic curve; and the other, as this latter quotient, multi-
plied by the density of the reflected light at the corresponding point of the mirror, These latter
theorems, being founded on the formulae (G''”’), do not require that we should neglect any of the
powers of 4, that is of the semiangle of the circular sector; they may even be extended, by
means of the equations (E'"") (F""""), to the case of similar and similarly situated sectors, bounded
by lines of any other form. If, for instance, we suppose any small isosceles triangle, having its
height =%, and its base=2.k.tan. 6, to move in such a manner that its summit is always
situated on one of the two caustic surfaces, while the ray passing through that point is perpendi-
cular to its plane, and the bisector of its vertical angle is perpendicular to the caustic surface;
and if we put Q@®, S%, to denote, respectively, the number of the near reflected rays that pass
inside this little triangle, and the space over which those rays are diffused, on the perpendicular
plane at the mirror; we shall have the approximate equations, '

Q(")=fo(0)_7-i'dr'd,v_Pl P2 A“" ﬂ’r* dr. dv’

'\/smv

5 b odr . dv

S‘“=fo‘°’.*.d _d=P1Pz ff" ool 4
D, G 1T 1 ) T

in which the integrals are to be taken from » =0 to 'r—g——, and from v=%.7m—6,tov=4.7+86.
Performing these integrations, we find
4.p1.py. A®  hE 4.py.ps. AW, g0
(i)"—'——ﬁ_.tan.B: 2— ,
¢ 3.1.V3C 8.1.¥3C.h
8 =4.P1.p2.hi Nk 0_4‘ P1-P2 s
3.1.43C . 8.5.M3C.h’

(KINI)
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62 I. THEORY OF SYSTEMS OF RAYS (68

s being the area of the little isosceles triangle ; expressions analogous to those which we found
before, for the case of the circular sector, and leading to similar results.

Returning to the case of the sector, we have yet to determine the boundary of the space (S©)
on the perpendicular plane at the mirror. For this purpose, we are to eliminate () and (v) by
means of the following expressions, (T"""),

a=u.r=(Bpy.sin.v — Cp;.cos.v).171.C1.7,
b= iw.r*=ip2."/§.0'*.\/r.s—in.6,
from the polar equations of the boundaries of the sector, namely
‘ Ist. v=0" =1,
IId. v=9"+y=w,,
ITId. r =7,

of which the two first represent the bounding radii, and the third the circular arc. Putting for
abridgment,
pz.\/2.0‘§=4/e, Bps.171.C1t=¢.P, Cpy=Bp,.tan.?',

conditions which give e=2p,?.C~%, P=2i.p,. B~'; and supposing, for simplicity, that /e is
real, and that o < =, that is, supposing €' and tan. " positive, a condition which may always

be satisfied by a proper direction of the positive portions of the axes of %’ and 2’ ; our expressions

for a, b, become
a=¢. Pl r.sec.v .sin.(v—v'), b==4/(e.r.sin.v), 18 ik

and we find the following equations for the boundary of the space S©,

1st. P.a=b?.sec.v’. cosec. ;. sin. (v, — '),
2d. P.a="b%sec.v . cosec.v,.sin. (va— v'), M)
3d. P.a=0Ftan. v’ .4/(e®.72—D%). ‘

The two first of these equations represent parabolic arcs, having their common vertex at
the origin of (@) and (b), that is at the point where the given ray meets the mirror, and having
their common axis coincident with the axis of (#) or of (a), and therefore parallel to the tangent
of the curve in which the caustic surface is cut by the plane of aberration. It is, then, in the
points of these little parabolic arcs, that the rays which pass through the bounding radii of
the little circular sector, are intersected by the perpendicular plane at the mirror; and from the
manner in which their parameters depend on the inclination of those bounding radii to the
tangent of the caustic surface, it is evident that any intermediate radius of the sector has an
intermediate parabola corresponding. The ends of these little parabolic arcs are contained on
two equal and opposite portions of a curve of the fourth degree represented by the third of the
three equations (M"""’); it is then in these two opposite portions of this third curve, that the rays
which pass through the bounding arc of the sector are crossed by the perpendicular plane at the
mirror. With respect to the form of this third curve, considered in its whole extent, it is easy
to see that it is in general shaped like a heart, being bisected, first by the axis of (@), which we
may call the diameter of the curve, and secondly by a parabola

B®=P.q, (N"""")
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68, 69] I. THEORY OF SYSTEMS OF RAYS 63

which we may call its diametral parabola, and bounded by the four following tangents,
Ist. b=+Ve.r; 2d. b=—We.r;
3d. a=—e.r, Pt taniv s 4th. o=e.r,. P, sec.9 ; (0 °)

of which the two first are parallel to the diameter, and the two last perpendicular thereto. We
may remark that the diametral parabola, (N'""’), corresponds to the rays that pass through the
axis of g, that is, through the normal to the caustic surface; and that the two points where it
meets the curve, are the points of contact corresponding to the two first of the four tangents
(O"""). The point of contact corresponding to the third of these tangents, is situated at what
may be called the negative end of the diameter; and the fourth touches the curve in two
distinet points, whose common distance from the diameter is b= + 4/(e.7.cos.?’), and which
may be called the two summits of the heart. The curve has also another tangent parallel to the
axis of (b), which touches it at the point

a=+e.r. P tan.v', b=0, (R

that is, at the positive end of the diameter; and which crosses the curve in two other points,
equally distant from the diameter, and having for coordinates,

ga=¢.r.P1.tan v, b=+4/(e.r. 510, 20)
And the whole area of this heartlike curve is equal to the following definite integral,

Il = 4P, tan.?' .fd(e“ .12 —b%.db, Q")

the integral being taken from b=0, to b=+e.7. In the next paragraph we shall return to this
definite integral, and shew its optical value.

69. But the preceding calculations only shew how the density varies mear the caustic
surface; to find the law of the variation at that surface, we must reason in a different manner.
For if the infinitely small rectangle on the plane of aberration, which we have considered in the
preceding paragraph, have one of its corners on the caustic surface, we can no longer consider
the density as uniform, even in the infinitely small extent of that rectangle. But if we consider
the rays that pass within a given infinitely small distance (dr) from a given point upon the
caustic surface, for example, from the focus of the given ray, we can find the space over which
these rays are diffused upon the perpendicular plane at the mirror; and this space, multiplied.
by the density at the mirror, may be taken for the measure of the density at the given focus,
not as compared with the density at the mirror, but with the density at other points upon the
caustic surface.

To calculate this measure, let us consider the following more general question, to find the
whole number (@) of the near reflected rays which pass within any small but finite distance (r)
from the focus of the given ray, and the space (S®) over which these rays are diffused, on the
perpendicular plane at the mirror. This question evidently comes to supposing the little circular
sector (r2. ) of the preceding paragraph completed into an entire circle, and consequently may
. be solved by integrating the formule (E"") (F'""') of that paragraph, within the double limits
afforded by the equation of the circle on the one hand, and by that of the section of the caustic
surface on the other; since it is easy to see that only a part of the little circular area (m.r?%) is
illumined, namely, the part which lies at that side of the caustic surface, towards which is turned
the convexity of the caustic curve.
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64 I. THEORY OF SYSTEMS OF RAYS [69

But as the formule of the preceding paragraph were founded on the developments (T""')
which, as we have before remarked, become illusory when the polar radius (r) approaches to
become a tangent to the caustic surface, (a position of that radius which we are not now at
liberty to neglect,) it becomes necessary to investigate other developments, and to transform
the double integrals (E"”"') (F'""") of 68. into others better suited for the question that we are
now upon. And to effect this the more clearly, it seems convenient to consider separately the
four following problems: 1st, to find general expressions for the coefficients »®, w®, which
enter into the developments (T*’), and to examine what negative powers they contain of the
sine of the polar angle (v); 2d, to eliminate these negative powers, and so transform the two
series (T""") into others which shall contain none but ascending powers of any variable quantity ;
3d, to effect corresponding transformations on the integral formule (E'’") (F"""") of the preceding
paragraph ; and 4th, to perform the double integrations within the limits of the question.

In this manner we shall obtain developments proceeding according to the ascending powers
of the little circular radius (r), to represent the optical quantities which we have denoted by
Qn, 8" ; it will then remain to suppose (r) infinitely small, and the resulting expressions
Q, 8@ which must evidently satisfy the relation

Q(dr) =AM, S(dr)’ : (R"")

A® being the density at the mirror, will each serve to measure the density at the caustic
surface in the sense that we have already explained.
(L) First then, with respect to the coefficients u®, w®, of the series (T""’),
t+2
a=ur+urd ... ub . r? ...,
41

b=wrt+wr+... w0 .72 +...;

it is evident that if we differentiate these series with respect to s/r, we shall have, supposing
A/r to vanish after the differentiations,

da d*a d3a p
d_f\/;‘=0, m-——2.u, m=2.3.u, ey
db d2b " d3b r
m:w, (iv—rz=2'w’ m—2.3.w 9 seey
and in general
ﬂ p— [8]0 u(ﬂ—z) ﬂ — [3]8 Iw(l—l) . (S"”)
d 7 : > dr* i :
[s]* expressing, according to the notation of Vandermonde,* the factorial quantity 1.2.3......

(8—1).s. If then we differentiate, with respect to 4/r, the equations
r.cos.v=a', r.sinv=y,
considering #’, y', as functions of @ and b, and these as functions of 4/7; the resulting equations,
d’.r.cos.v_df.a' df.r.siny _df.y
dyrt dyre’ dyrt  dyrt’
will serve, with the help of the formule (S"’'), to determine successively the coefficients «’, w’,
u’, w”, ... u®, w", as functions of those which precede them; observing that the partial
* [See Appendix, Note 4, p. 468.]
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s o dw' dw' d’w’ dy’ dy' a? y' . : 1" £
differentials Ja’ db’ da®’ " da’ db’ dad’ e the coefficients of the series (S”’) of 68.,

and are to be deduced from the characteristic function of the system in the manner there
described. To develope these equations (T'"""), we have, for the first members,

d.r.cos.v d.r.sin. v Uik 3
W=2~/r.cos.v, v — =2a/r.8in, v;
d“.'r.cos.v__2 U dz.r.sin.v_2 Li
N A R P RS Sk
d".r.cos.v_o ds.r.sin.v_o.
T n AR N AT i
and in general, when s > 2,
d‘.r.cos.v_o d’.r.sin.v__o.
g L a0
and for the second members,
d.a it
avr " MU e A )y
sy X dEat+2By/ 0,
T =12 i M
if we put for abridgment,*®
da \*1 [ d®a \* d*a \% db \Br [ d?b \P: d?h \Ps
(8) — A
M= (g7 '(d«/r’) (ggm) (dw) (zam) (ave)
x ([0 1P, ([0] 2y ... ([0]7%)% x ([0]-*)Pr. ([O]2)P ... ([O] )
x [OF% . [0] % ... [0]% x [0]# . ([0]F .. [0]#; (V')
@y, @y, ... &, By, B2, --- Bs, being any positive integers which satisfy the following relation,

S=a1+ 2a2+3a3+...
+B1+2Bs+3Bs+ ...

and 3, being the symbol of a sum, so that

&, 0o

S.Bs; (WII'I)

Se=a;+e%+...0 ZB=p1+B+...08:

Developing in this manner the equations (T""”), and observing that by our present choice of
the coordinate planes, we have, 68.,

de’ _ dy dy . da

R0 das) B TIE TR

we arrive again at the same equations which in the preceding paragraph we deduced by substi-

tuting in (S8"’), for the components a, b, of aberration at the mirror, their assumed developments

(T"""), and by then comparing the corresponding powers of r, that is, of the aberration at the

caustic surface. Thus, if we make s=1, the equations (T'""") become identical ; if s=2, they

= ()

become
somyade Po B b B Y, B b B P (b
T dadayrr’ db dar: T da?’ dVr) “da.db dar dar " db? \dyr)’
. _dy d*a dy d*b  d* (da\? d®y  da db | d*y (db\?
ke ot e e g e Bl < (d’%) 2 g 3%y e W‘(dw>’
Lo} =Eh 1 See Appendix, Note 4, p. 468.]
HMP 9
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that is,

! ’

dz d?x P,
2cos.v-d— L 2u + diE "

; il )
2810, v = dbz'w’

as in the formulee (1), (2), or (U""’) of 68.; if s =3, they become after reductions, -

da' d3a a?a’  d?a  d*2’ d?b db d3z’ / db \3
U 3'(da.db'wr2+W'dw2)'m+d-bs'(d—w)’
% @y  da  dy &b\ db Py [ db\?
s 3‘(da.db'dw+aﬁ'dvﬂ>'m+dba'(d—w)
that is, 41y i e 455
Vo 4 z
O=6.(E.u +3 (d db 2u +db2 2w>.w+*dﬁ.ﬂ)3,
o dz dzy d3 ! &
0 3. (d Lo+ Sk 2w) w5,

as in the formule (1), (2) of the same paragraph; s = 4 gives
O_d_x’ d*a (d”w’ d?a +c?_w’ d"b)i
T da'dyrt T T '\da.db dyr® " db® dyr) dyr

+3.(3_;;'.(§%>2+2~df.”§b-;’3‘:z-53’ia d,,z( iv4))
d

0= (s durs* T ) vy
+8.(5% - () + 2 0 s+ b (2gm))

(Gt g+ b -age)- (dar) + (i)

that 1s, i oy, st
& '’ W’ ;
1) ...0=24.5 . +24(d Ot + ") ew
da’ d2 ' LA
d3a’ B’ v d*a’
a g (d B +Tb3'w>'w2+%i"w4’
" 3 dzy d*y
(2) ...0_24.(d Lo+ w )w
2,/ 2,1
+12. (‘jlyz uwr+ 2. dd ydb u.w +ofﬂ:)y~ .'w’2)
>y’ dsy dy
i (d Ty ) Wi+ g -
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and generally, if we make the differential index s=1+2, and divide by the factorial quantity
[¢ +2]¢+2 we shall reproduce the equations (V') 68. under the form

da’ & dSa+38

(1) .. 0___’5 m+?lb£ w.wt +3. s dbfﬂ pt,
& 3

@)...0= dlf/z w.wh+3. 2 hdbi’, uo,

where

t) — (u)y= (u')s (ult—l))ﬂtu (w)r (w')Pe (iv(‘—l))‘h
[ag]“g'[aa:la’ [at +1]"“ [/31]31 [ Bz]ﬂ’ oy [ ﬂt]a‘ g

Se=ay+ag+... 0y, 2B=B1+B+...0:,
and @y, @3 ... By, B ... are any positive integers which satisfy the following relation :
t+2= 2ag+3a3+ e (t+ l)a¢+1+,31+ 2Ba dvae tﬁg. (X””)

It is easy to see, that if by these equations we calculate successively the coefficients u®, w®, as
functions of » and w, and if we eliminate u by the assumed relation

w= z‘wz, ('YIIII)
z being a new variable ; the resulting expressions will be of the form '
w=u .t U =uy . wh . u =y Wt
w=w . wt w' =wy.wd ... wh =fwt.'w‘+1,}
ug, wg, being rational and integer functions of 2z, not exceeding the ¢ dimension; so that we
may put

(ZIIII)

U= ’ut,o+ U1+ 2 ki i U,z » 22+ eoe Ug gt s 2t b o Ug, ¢ .Zt, } (A_(5))
w¢='w,,o+'w¢,1. z +'w,,2 . 22+ wos Wy g e 2t + ... We,t Zt,
Ug0y Ug 1y +or Wio, W1, -.. Deing constant quantities, not containing the polar angle v, and

depending only on the position of the given ray, and on the nature of the reflected system.
In order therefore to complete our determination of the polar functions «®, w®, it is sufficient

to calculate general expressions for the constants u, ., wy y, considered as functions of the in-
de’ da’ d?a’ dy' / ] \

dices ¢, ¢, and of the partial differentials — da’ b’ dat’ " dg o Sinee these differentials may

as we have before remarked, be deduced from the differentials of the characteristic function of

the system.

To calculate these constants, the method which first presents itself, is to substitute in the
equations (1)®, (2)®, in place of ', w”, w', w", ... their values (Z'""’), (A®), and to compare
the corresponding powers of z. Thus, if we confine ourselves to the constants u, ;, wy ¢, which
multiply the highest powers of z, as the most important in our present investigations, because
when w diminishes z increases without limit; we are to retain only those values of u® which
give terms multiplied by 2%, and it is easy to see that these terms are distinguished by the relation

2+ ay=23a+ 38; (B®)
putting them, then, under the form g, ,. w**2. 2!, we have when ¢=1,
d2a+25 m’ daa;' d2¢+ zﬁy' dz 4

‘dazedb® P11 T dg db’ % dadb 1T da. db db ’
9-2
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when ¢t =2,
d2et3By a2z’ d2a’ d2a’ i
2 Gamqgp =Y g + g mat e G e
st g AR Mk ..¢ ) AP CY 2
E'da,z"‘dbzf’ %‘ da” +da db w1,1+&. d—bi.'wl’]_ 5
and, when ¢ > 2, .
de+3Bg! a2z’ 2o
X * daedbe Pt = g b Wne t . R 2 We s Ws, 1,
dZat38,y’ a2’ a2y
E'da.zu—deﬂ'/l’ht:‘Zal—:y(i_b'wt—l,t—l-'-%-d_gz’tzowa,g.wg_s't_s,

the sums in the second members being taken from s=1,to s=¢—1: and since the equations
(1)®, (2)®, give, by comparison of the highest powers of z,

0=%.ut,,+%.w,,,+2.%.m,u
0= %’.wt,t+2.£;%—;.ﬁt,c,
we have successively

(15 5 0=%%' u11+‘§b2 '?”1'1'*'%5’
@h1... 0= %.wl,1+%,
1)a2-. 0=%.u2,2+% .w22+1}(§a2 d:i: b w1t %, ﬁ;.wl,l",
(2),2... 0= %.w2,2+§%2%+%.w1,1+é.%:.wl,lz,
(1)s5... 0=¢2—ﬁ.u3,3+§b€'.w3 3+dd2xdb w22+‘%;b; W1, Wa,2,
ks 0= ‘f;bz, ’ll)33+dd2 o'lb W, 2+OZI§/; Wy,1. W, 2,

the two last of which equations reduce themselves, by means of the two first, to the following

form :
Ugg = Uy 1. Wy s, Wss=0;

a similar reduction gives in general, when ¢ > 3,
Wy wp=1r1,1. Wi, 41,
(2)t,t--~ 0=wt.t+%02-ws,a-wt—s,t-—u

the sum being taken from s =2, to s=¢—2; so that the four first constants uy , wy ;, Uy 9, Wa 2,
being determined by the four equations (1)1, (2)1,1, (1)32, (2)s,2, all the succeeding constants
of the same kind, us 3, 14 4, ... Ws 3, Waa, ... are given by the following general expressions,
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which may be deduced from the formule (1), (2),,¢, either by successive elimination, or by

the calculus of finite differences ;*
War, 20 =27 [3]. [0] " (w3,2)"; Wari1,2042=0; }
Ugr41, 2r+1 = U1, 1+ War,2ry  Ugri2,2r42 = 0;

(©®)

7 being any integer number >0, and [{], [0]~", being known factorial symbols.t In a similar
manner we might calculate general expressions for the other constants of the form u, ,, wy 43
but it seems preferable to employ the following method, founded on the properties of partial
differentials, and on the development of functions into series.
To make use of these properties, I observe that if we put
riwt =N g =iC.0% Lhaan. 0, (D®)
and substitute for u®, w® their expressions (Z"""’), (A®), the series (T""") will take the form
E=2+ (u,0+u1,1.2). 0 + (Ugo+ U 1.2+ Us2.2%) . P+ ... +uyy.2". 0"+ &c., #
n=1+(wio0+wy1.2). 0+ (Wao+ws 1.2+ Wws2.2%). O+ ... 4wy p.2". 0 +&c.,} =
equations which give by differentiation
(% = . [EF e e 4 T84 11 [EF o teane - O L TEF . [ + 1F . v, gz 2 + o,
drtt'y
deét.dz"
and therefore, when 8 =0, z=0,

. ot e " L, dttty
u,,¢:=[0]‘.[0] t.m', wt,y:‘[O]t.[O]t.‘W;

in order therefore to obtain general expressions for the constants w,,, w, y it is sufficient to
calculate expressions for these partial differentials of & 7. Now, if from the two equations (S"),

68., we subtra.ct‘. the two others
da’ d?y’
=T vt db2 Aot o % Bugle (0

which result from the formula (U’"’) of the same paragraph; if we then eliminate b* — w?r, and
put for abridgment,
d*y’ d*y’
b G g

d*z’ a2z’ d%x' 4 da’
iR P (a,b)+3%. da a“‘+d b ab+1. d“ a”+&c—-—-aa~.lr’(a,b);

=[] [t) we+ [t + 1) [E) . wega,e . O+ (8] [ + 1] . wy ¢4 . 2 + &ec.,

(F9)

ay/
—%/5 .® (a, b),

3 -
ab+%. d3 a+&c—- d

we shall have the two following equations,

a=ur+F, b=uw’r+29; (G®)
which, when we put
u=zw? wr=02 a=¢&0?% b=nb,

* [If N=wy, g2+ w5 3£+ wy 4 £+ ..., where g is a variable, we have by (2),},

= -2\ + 2102 2 52
Hence

14+ A= (142052},

from which the first line of (C®) follows by equating coefficients. ]
t [See Appendix, Note 4, p. 468.]
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become
E=2+f(Em 0), 2°=1+2¢ (L n, 0); (H®)
/5 ¢, being functions such that
F=0.f, ©=0*.¢, a=)

and therefore

dy’ N w1 ‘ i
0=24 ¢ +3. [0 [0} T g g gumims
6)
da’ a2’ , gmtmiy! ) ; (K )
oo E(; .f=—dF. ¢+ 2 [O]‘m[O]—‘m .m'éﬁn.nm _02m+m-—2,

m, m’, being any positive integers which satisfy the following relation
2m +m' > 2. (L)

If then we eliminate ¢ 7, between the equations (H®), so as to find expressions for those variables
as functions of z and €; it will remain to differentiate those expressions, (¢) times for 6, and (¢')
times for z, and to put after the differentiations 6 =0, z = 0; since the partial differentials thus
obtained, multiplied by the factorial quantity [0]~t.[0]*, will give, by (F®), the general
expressions that we are in search of, for the constants w ¢, wy .

To perform this elimination, we may employ the theorems which Laplace* has given, in the

second book of the Mécanique Céleste, for the development of functions into series. Laplace has
there shewn that if we have any number (r) of equations of the form

z=¢(t+az), =Y +a7), '=I1{"+a"2"), &,

in which z, 2/, 2, &c. are functions of #, ', 2/, &e. and if we develope any other function u of the
same variables, according to the powers and products of e, ¢, ", &ec. in a series of which the
general term is represented by g w,a,.. e".e™ .a'""" &c.; we shall have, to determine the
coefficient ¢y »,n, ..., & formula which may thus be written,

" o dntn+n"+..—r dru]
Tt = LT[0 O o s e (s

u, being a function formed by changing in w the original variables =, 2/, 2", ... into other
variables determined by the following equations

z=¢ (t+az"), o=@ +a'2"), &' =I{" +a"2""), &,

the functions ¢, Y, II, 2, 2/, 2", &e. retaining the same forms as before, and @, ¢, &, ... being
supposed to vanish after the differentiations. Laplace has also shewn, that when there are but

o
two variables «, @', the partial differential ( ‘%7—) , determined in this manner, reduces

itself to
didw, \ g ory f ddu e (@27 (du w (- Z'™\ (du
(dade)= 27" (Gar) * 7 () (@) + - ) (@)

in which Z, Z’, u, represent the values that z, 2/, u, take, when we suppose @ = 0, ' =0. If then
the original equations are of the form

z=t+az, o = +a'7),
* [@uvres, t. 1, p. 194.]
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and if we change the function u to « and 2’ successively, we find the following developments for
those two variables, according to the powers and products of ¢, &';

i B s dnt+n'—2 ™ d.Zn
@=2[0] -[W”-““"-W(mﬂ—ﬁ,),

e A ok dn+n’—-2 AL d. Z'n'
& =3 [0]". [0]™ . a"a .dt”_l_dt,n,_l(zw,. i)

in which Z, Z’ are formed from z, 2/, by changing @ to ¢, and 2’ to 4/t’. Applying these results to
the equations (H®), which are of the form

E=z+af, n=N(Z+d'¢);

we find the following expressions for ¢, 7, as fanctions of z and 6,

dn+n'—2 4 t(n,n')

dev 1, dg'v1’

dn+n'—2 . (n,n’) (M(S))
den L. do/nL’

, SR 8 4 ) Y 15
cm’m=§¢7z"d4/iz” "("'")=2f4z" df i (N®)

¢=3.[0]™".[0]". 2",

n=3.[0]".[0]" .2,
in which

f, ¢, being deduced from the formule (K®) by changing & to 2z, and 7 to 4/2’, and in which we
may make after the differentiations 2’ =1. And differentiating these developments (M®) in the
manner already prescribed, we find, finally, the following general expressions for the constants
Uty We's '

dt+t’+ntn'-2 i {‘”' n’)
oY Tk gfgfw-1 ¢

dtt+t’+n+n'—2 # 7)("’ n')
"6t detHL w1

e =[010.[0] . 5. [0] . [0 2¢

(0®)
wi,e =[O [0F . 3. [0]". [0] . 2

n, n', being* any positive integers, and (6, z, 2') being changed after the differentiations to
(0,0, 1). It may be useful to observe, that by the formule (N®), and by the nature of the
developments, we are to make

d—l ; C(o,n') Py d?t. 1’(1;,0)

di =% g =0

I A SUPWAE . St L L o P®
7= alhe i = S WAl T
d—2 J g(0,0) ; d—2, 1)(0,0)

& dr =Y G dga Y

These expressions (O®), may be put,under other forms, some of which are more convenient for
calculation. If, for abridgment, we write them thus,
up=3. 1y, wye=3. 0", Q®)

* [zero or]
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u(tnt” ’), ’w?t” ), denoting the terms of wuyy, wy v, which correspond to any given values of the

integers n, n’; we have, by (0O®),
dH-t +n+n'—2 C(n,n )

(n,n) =[0].[0]*.[0]™. 1) gl e dOtdzt iy w1 5

drtEnn—2 (B®)
( ,) & a0 o W n+n'—; ’7"’")
iy di [O] ¢ [0] [0] e [0] % 2 detdzg +"—1dZI" 1
and if in (N®) we change /. ¢, to their values (I®),
f=072 F(a,b)= 0" F(6%,07),
¢=02.D(a,b)=0"2.D (0% 047),
we find the following developments,
g =3, 6050 M =S, (8)
in which i i
oL i ((I)"'. % df'ﬂ)
(i o) VRO —m —m’  g2mAm/H1-2ntn) gm0 2
Conw =%-[0]™.[0)™. 6 e P
. (T®)
¢ d.ov
iy dm+m (Fn. d )
ol 2 S B IOF . JOf e s o N2 PRI BC et |

a, b, being supposed to vanish after the differentiations, and m, m’, being any integer numbers:
but the only values of these integers which do not make the partial differentials

dtHt+ntn'—2 g(" n)  Jettntn -27’(” ')
m, m’

Bt 1" =¥ dOtdt g w1’

vanish when 6 =0, z = 0, are those for which, in ¢ (”1: Z’),

t=2m+m' +1=2(n+n), t'+n—1=m,
(nn)
and, mn

t=2m+m'+2-2(n+n'), ¢ +n—-1=m;

we have, therefore, when 6 =0, z =0,

t+t'+n+n"--2 g(n,n’) ¢+¢+n+n—2 (n,n")
d C d é"t’+n—1 t+14-2n' - 28
dftdzt+n1 dz"n'—l dOt dzt+n—1 g, n'—1
U(ﬁ))
t+t'+n+n'—2 ) (n, n') t+t'+n+n'—2,, (1, n) (
d i =d N +n—1, t+2n 28’
dOtdzt+n—1d/"—1 dOtd 1 g /w1

in which the second members may be calculated by (T®). In this manner, the expressions (R®)
become, after reductions,

N o dt—t+n+2w’ (  d. " )
u(;f;»” )= [0F. (0] [0)™ . 2% .{0]e+hean=an), [T +n'- t’] * dattn-1 dbt+1+2n‘%-b2t :
$ (V(G))
i dt—t +n+2n'—1 (Fn d. (I)”)
(n n’) 2 —t’ —n -n' 9n’ — (t+1+2n'—2¢" da .
[o]~.[0]".[0]™.2".[0] ) [ g tn hig.d ] dat T
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and substituting these expressions in the developments (Q®), we get new developments for the
constants u, ¢, Wy, ¢, in which we have only to differentiate for the two variables (a, b) instead of
the three (6, z, 2’).

Again, if we observe that by the nature of the functions ¥, ®, we have when a =0, =0,
dF dFr d*F

F=O, d—a=0, —d—b-=0, E—b§=0, 1
dd d® d*® Nl
(I)=O, %—=0, %=O, —Jl—)—g=0;

we shall easily deduce relations between the integer numbers ¢, ¢', n, »’, which reduce the
summation of these developments to the addition of a finite number of terms. For we may prove,
either by these equations (W®), or by the condition (L®) which contains them, that the partial
differentials*

s (@) g (P ),

which enter into the formula (T®), vanish, unless in the first

m+m'+2>2n+n"); 2m+m' +2>3(n+n');
and, in the second,
m+m' +2>2(n+n'); 2m+m' +8>3(n+n').

Hence, by (V®), the partial differentials which enter into the expressions for ut("t’,”'), 'wi"’t,”'), vanish
unless in the first

n<t—t'+2; n+n' <t+1; (X®)
and, in the second

n<t—t +1; n+n <t+1. (Y®)
Thus, in calculating the constants u, ¢, w, ¢, by the formule (Q®),

Ut v = Eu("' ”'), 'WQ’ v= zw(”' )

4t 4F

we may reject all values of n, #/, which are too great to satisfy these relations (X®), (Y®); we
may also, by (V®), reject not only all negative values of the same integers n, n’, but all for
which the factorial index ¢+ 2 + 2n" — 2¢' is negative in u(tt"t,'"), ort+1+2n" —2¢ in wg't "): and
by (R®), (P®) we may reject the value n =0 in the former, and »’ = 0 in the latter. Finally, we
may remark, that since a factorial vanishes, when its base is less than its index, if both be positive

4 ’ : . 12 IR
integers, the expression (V®) for »" vanishes if ¢ be even, and ¢’ > %2; and similarly the

expression for w;'g,"” vanishes if ¢ be odd, and ¢’ > E—;—lz from which it follows, that if the

developments (T""’) of the preceding paragraph, be put by (Y""") (D®), (E®), under the form
=34 .2 03=T u . u¥ WS 2 }
b=S.wp. 20 =3 wy p.ut Wt il

the negative even powers of (6) or of (w) will all disappear.

(z®)

Let us verify these general results, respecting the constants uyy, w: ¢, by applying them to
the particular case ¢’ = t, which as we have before remarked, is the most important in our present

* [See Appendix, Note b, p. 469.]

HMP . 10
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investigations, and which we have already resolved by an entirely different method. In this
case, when ¢ =1, we find by our present method,

w0 _ d°F © 1 _ d*®
L1 T e R

d d
1( o 2+1( 1
it q) F) o ((I) db @aF | BF D

dazdb—l il Gme 7 e b 7 s g L %

BB @RO . B\
(0 1) (0 2) )
rul? =353 da? o dPap =t g 1 <da. db) ;

ul, 1=1U.

when =2,

1,0 1,1
Ug 2 = ;,2)+u;’2)=%

Wo, 2 =

and when ¢ > 2, 1f we put

Ut,t = Ugrq1, 2r41, Wit = War, or,
(since uy,, vanishes if ¢ be an even number > 2, and w;,; if ¢ be an odd number > 2), we have the
following formule,

) L 0, 7). 6
Ugris,ari1 = 2 Ygrt+1,90+17  Warae 2. * W, a0 > (A©®)

the sum being taken in each from n’ =7, to n’ =27. We have also, by (V©),

A+l ‘jlif
(1, ') B — (271 —n’ —@n'—2r+1) 9n' [,/ __
“21+1,2r+1"[0] L [017101%  Rat n g " da¥ I (B®)
» —2r —n' — @n’'—2r n’ ’ a=, v
wies?  =[0]* . [0].[0-Ow—2+ 9% [’ — 7 4 §]v. T
in which, by (W®),
o’ v OF
2+ P Mg &F a2 v
da® 1, b2 T ). da. db " da® . dbw—2r’ (C®)
2 . or T ae on—ay (BEO\E [ d2D \'—2r
T (2T [P 2 (da2) (da.db) '
and, by the properties of factorials,
—@2n'=2741) [,/ __ n'  92n'=2r _ T —(n'—7)
[O-#4#0 [ ~ 7 4 . 2%~ 4] [0] ) g
[0 [ = 0] . [} |
thus the formule (A©) reduce themselves to
d o —(n'—7) 2(n'—1)
arssarnt= g (01 [T 3. [0 oo rpr (G5) 7 (2N
(E®)
$ ’ P\ (n'~7) 2(n’'—)
ae = 0PGSO e (TR ()
or, finally, effecting the summations,
d2F q, d2P \n\*
Uaria, e = g - [0]7 [T ( i 7))
gy (7o)
War, or o [0]—’.[%] ( (da, db))

www.rcin.org.pl



69] I. THEORY OF SYSTEMS OF RAYS 75

. & a2d P d&eF dJdEF y ;
and if we eliminate a2’ da-db’ da?’ da.db’ by the following relations
_&Y drwa ety
= dbdam, gt dam, dbm
e da' dm+m’F b d2a’ dm+m’(b dmtm’ gt

da " da™. db™ = db® " dam . db T dam, b

0

(G®)

in which m, m/, are any positive integers satisfying the condition (L®), we arrive again at the
same expressions for the constants of the form u, ,, w, ;, as those given by the equations (1)y, 1,
(2)1,15 (1)z,2, (2)2,2, (C®), which we obtained before by reasonings of so different a nature. It
results from these equations, that if in the developments (Z®), for the components of aberration
at the mirror, we confine ourselves to the terms of the form

Users, araa - UL, w2, /r2r 8, Way, gy« U WIET, p/p2rHL

which correspond to the greatest negative powers of w, or of the sine of the polar angle v; the
sums of these terms,* taken from =0, to 7= o, may be calculated by the binomial theorem,
and are thus expressed :

33 W0 0 =y S5 [OF . BT (R, utw-2r)r =yt + 2000009 } (H®)
2: < Ugr i1, 2741 urtlgyl—2r »\/7‘2'+3 =U,1.UT. \/('wzr + 2’11}2,2%27‘2).
We shall return to this remarkable result, and examine its optical meaning,

As another application of our general formule for the constants w, ,, wy ¢, let us take the

terms of the form "
Wari2, 2041 » u2rtl l—2r 0 ~/7.2r+3,

which correspond to the next greatest negative powers of w, or of the sine of the polar angle v,
in the development (Z®) for b, that is, for the aberration at the mirror measured in a direction
perpendicular to the tangent plane of the caustic surface, and considered as depending on the
polar coordinates » and », which determine the magnitude and direction of the aberration on
the perpendicular plane at the focus. We have, by what precedes,

b (0, n) : (1, n)
Warye,ern =2 Wy /) oty + 2. Wy o o1y

d. o
2n/'+1 { Ppn’ ey A
d ( " 4 F. ] )

da2r+1 A db%n’—Zr

= [0]%+1. 5. [0} 2 [0]- =243 [o' — 7 4 ¥ ; (1)
and the summation here indicated, with reference to the variable integer n’, may be performed
by partial differential and factorial transformations, similar to those which we have already em-
ployed in finding the sums of the expressions (B®). Thus, we may eliminate the variable n’ from
the partial differential index, by putting, in virtue of (W®),+

'

* [The series are convergent, and have the sums given in (H®), if the point lies on the concave side of either

of the parabolas
y"sin' = + 22 (40 - B%)[22C,

using the notation of (AM). The same remark applies to (S(©).]
t [See Appendix, Nete 6, p. 470.]

10-2
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@ (o 4 F. ‘%g})

da L, db¥ =2 =[2n' — 27 n"-ar

[o-#r+2 [0]-

dd
00 D
i REY 2P\ 18" 1 2P \¢ ( d)
x 3.[0]-*. [0]-6- [0]'“.[0]"("—1-w(g.—da2> ( pea db) s (K®)

the integers s, &, being new variables connected by the relation

s+s8 =2n' -2, (L®)
which gives, by the properties of factorials,
[2n' — 27 =2 [0]% =[2n — 27 =28 [n' — 7P + 22 [s]* [0 — 7]+, (M®)
observing that by (K@), s is included between the limits 0 and 8;* and, by the same properties,
[0]—(ﬂ'—1—8') = [O]—(f—-r') ['r - 'r’]'ﬂ'—r—8+1—r” } (N(G))
[O]-—204 22 [’ — 7+ } = (3" [ — 7]~ 2~ [0},

7' being an arbitrary integer; so that if we put

W [O]—(" i [7 i ]n TR (dzq)>2r—n +5—1 ( d2q) >2n’—2r—e,

da? da .db

i 0®)

i i dch 2r—n'+4s8—1 D 2n'~—2r—s

AR — (' —7—8+1 —! ==+l [ T
W' = [0 et [ e G e Bl
the expression (I®) resolves itself into the two following parts:
a@.(o+F. ‘2‘1’)
Wary2,2r41=2[4]" [ — 7T~ [0]-—") 2@ [0]# [0]-@-* da*db* ™ W
@.(®+F. ? )

i 9-1 [%]r [_% 59 ,T']r—r [O]— (r—1’) 2(&) [0]—(8-2) [O]— (8—s) da3_3 dba : Z(n’) W,, (P(s))

in which %), 3¢, denote summations with reference to the two independent variables #’ and s,
and which can be calculated separately, by making in the first ' =1, and in the second 7' = 0:
for this gives, by the binomial theorem,
’ d*D \¢ /d2P d*D \2\r-1
) W= b A (et §
A (da.db) (as (da.db) ) p

W =(o) (st o))

and reduces the expression (P®) to the following form,

dd
& (D+F,
d(I) dZ(I) 2\ 7—1 ( ) dzq)
Pk} il Iy ooy 8 (r—1) 8) —8 ~ (3—5
s == OT (G + () ) 20 107050 — (i 7)-
dd
3
a. (q>+F ) 2

+UT O (g + () ) - 30 P

da® da.db da®—= . db* (da..db) 1Ry

* [5=0, 1, 2, 3.]
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69] I. THEORY OF SYSTEMS OF RAYS 717

in which the first sum contains only four terms, and the second only two, however great may be
the value of (7). And if we multiply this expression (R®) by u?+!, w'=2r y/r¥+3 and sum with
reference to (7), from 7=0 to 7=o00, we find*

1 s, (q>+F ";‘I’) sl
7 ey S 4 Qg0 S0 [0 O] 80 0 (PO

i (®+F ( o ) (S)
da® . db® da.db) ’

2

)) We might easily extend the principles of these

d@)

~6-2) [)]~B~
+ ur {wr + 21,(,'2,2.1("7'2}i e ol it 2[0] :
20 (@0
da® * \da.db
summations, but it is better to make use of the results to which we have already arrived, for the
solution of our second problem.

(IL.) We proposed, first, to find general expressions for the polar functions u®, w, which
enter as coefficients into the developments (T"’), and to examine what negative powers they
contain of the sine of the polar angle v; and secondly, to eliminate these negative powers, and so
to transform the series (T'"’) into others which shall contain none but positive powers of any
variable quantity. The Ist. of these problems has been completely resolved by the discussions
in which we have just been engaged. We have seen that the functions u®, w®, are of the form

t ’ . t ’ 1e ,_
(e)=2(t,)0 Ug, v+ ut’. ,w¢+2—a¢ (t)=2(t’)0 Wy Jut 2t (T‘“’)

if we observe that ws s =} (

E(t,) o denoting a summation with reference to ¢’ from ¢ =0 to ¢’ =1; u, ¢, wy, ¢, constants, which
we have given general formulz to determme and u, w, functions, which in the notation of (1"""")

68. have for expressions
_€ sin. (v — ')

3 e w =+ 4/(e.sin.v), (U®)

v being thé polar angle, and ¢, P, v constants which enter into the equations of the curves
(M"""). Substituting these values in the series (T""") which may be thus written,

a=Z2,7 . ull oyl 4 4/r 2 T ulrtl .r’“,}
b = 2(7) w(21+1) rf+1 i V,r E( )0 *

and observing that as the negative powers of w are all odd, those of (sin.v) are all fractional, we -
find the following transformed developments :

(V®)

A P

. +1
a=3,,7 (ersin o)y *1. 3, " " ug, ¢

" ( sin. (v — ") )" )

cos. v’ . sIn. v

A 2r+1 e (S0 (v=2) \¥
13,0 (ersin o) 3.2, " ugp g, P (cos. v .sin.v) ’

(W)

4 ’
g L : 71 _y (80, (v —1")
b=2,7 (ersin.vy*. 2, "% wyriav . P (cos. v’ .sin. v
L sin, (v—2v')\
+ TN ol flosect sl 4
+ z,(f) o = (er sin. v)? Em o » Wer, ¢ R (cos. P oy v)

J

which have the advantage of exhibiting to the eye, the manner wherein the rectanguiar com-
ponents a, b, of aberration at the mirror, depend on the polar components 7, v, of aberration at

* [See note to (H®).]
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the caustic surface. To eliminate from these developments (W®) the negative powers of (sin. v),
without introducing those of any other variable, or the positive powers of any quantity which
(like the z of the preceding problem) becomes infinite when the polar radius r assumes a par-
ticular direction; let us resume the summations, expressed by the equations (H®). It results
from those equations, or from the formule (C®), (F®), on which they were founded, that if, in
order to begin with the greatest negative powers of (sin.v), we reject at first all but the greatest
values of ¢ in the developments (W®), namely ¢’ =27+1 in @, and # =27 in b, and denote by
a4, by, the sums of the terms that remain, we shall have

_ @F r.sin(v—=7) 3 e U ©
“=da.db’ P.cos.v °© e b=ghl; (5

in which
3 4 d*d 2P \2\ /4e.7.sin. (v —v')\? ®
G_T‘SID'v+<EE?+(da.db))( G ) ’ (%1

F, @, having the same meanings as in the foregoing problem. To find the optical meaning of
the binomial function (€), let us consider the points upon the plane of aberration for which that
function vanishes. It is evident that at these points (sin.v) is small; if then we change
r.sin(v—v’) to —7.sin. v/, the condition €= 0 becomes by (Y®)

2 2

0=sin. v+ (%g + (%) ) (e Pl tan. o', 7,
that is, in the notation of paragraph 61.,

220 .sin.v=(AC - B?)r, (Z9)
which, by the same paragraph, is the equation of the osculating circle to the section of the
caustic surface; from which it follows, that in this approximation, the function (6) is, for any
other point upon the plane of aberration, the distance of that point from the osculating circle
just mentioned, measured in a direction parallel to the normal of the caustic surface. More
accurately, if we put
r.siny=yg".sin.o, r.sin.(v—2v")=2".sin. 7', (A®™)
2, y", will be the oblique coordinates of the point 7, v, referred to two axes® in the plane of
aberration, of which one touches the caustic surface at the focus of the given ray, while the
other is inclined to this tangent at an angle = ¢"; and the equation (Y®) will become

— B2

€=vy".sin.v — (A—g;—goi> ' (B™)
which shews that (€) vanishes for the points of a parabola, which has its diameter parallel to the
axis of "', and has contact of the second order with the section of the caustic surface; and that
for any other point upon the plane of aberration, (6) is equal to the distance from this parabola
measured in a direction parallel to its own diameter, and then projected upon the normal. If,
therefore, in the developments (W®), we change r.sin. v, r.sin. (v —¢’), to their values 3. sin.?’,
&' .sin.v’ (A™); if we then eliminate %'’. sin. o', by changing it, in virtue of (B®), to the binomial
AC-BY

€+(—~—2i20 )x !
and develope every fractional power of this binomial according to the ascending powers of 2/,
and the descending powers of 6, we see that the new developments will contain no negative

* [The axis of #” is the negative axis of #/, and the axis of y” is inclined to the axis of #’ at an angle ¢'.]
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powers of this latter variable, except those which arise from the terms that we rejected in
effecting the summations (X@): and I am going to shew, that if in place of the parabola §=0,
which has contact of the second order with the section of the caustic surface, we take that
section itself, whose equation referred to the coordinates («’, ") is of the form 6" =0, in which*

v+3
el - g 2(:;) 4 [0]—(-+ )( ;m:'f;> uy+8 (y II) sin. vl, (C"”)

0" being the ordinate of the section, and &’ the distance from that curve, measured in a direction
parallel to the axis of y”, and then projected on the normal; it is sufficient to change the
fractional powers of y".sin.o’ to those of &'+, .sin,?’, in order to obtain developments for
a and b, which shall satisfy the condition of the question, containing no negative powers of any
variable quantity, but only positive and integer powers and products of z” and of /6",

To demonstrate this theorem, let us resume the equations (G®), putting them by (U®), (A®)
under the form

ePltan.v' .a"" =a—F(a,b); e.sinv' .y’ =0%—2P(q,b). (D®)

Conceive a parallel to the axis of 4", drawn through the point ", %", upon the plane of aberration;
this parallel will meet the section of the caustic surface in a point having for coordinates 2", y,",
and the ray which has that point for focus will cross the perpendicular plane at the mirror in

another point whose coordinates may be called ao, by; to determine these coordinates we have
by (D®),

eP1ltan. v .o =ag— Fp, esin v’ .y = b2 —2®,, (E@)

F,, ®,, representing for abridgment the functions F (ao, by), P (a0, by); we have also, by the
nature of ", y y
da’! d:l/ "o g dyl)” .' Fo)( q)o @) (_ig’
das o = Ty that is, (1~ 520) (B~ ) = G2

from which it follows that the locus of the point ay, by, on the perpendicular plane at the mirror,
has for tangent the right linet

)

d*d

= — = 4 7)
b= do. o = a tan. (v + ), @)
and that we can develope ay, by in series of the form
, gyt diag @ dPay @
ay=eP1tan. v .2 +d7%' 3 +da;”3 3 3+&c, o
AT A W'Y dPhy o®
bh=—¢.Pl. & dw,,‘; ot g g e

This being laid down, let us subtract (E?) from (D®); we find
dF, dF, d™m By (a—a)" (b—b)™
—ag=F—-Fy=-"L(a- o B B e 7’
ey i g e et i T
™ Dy (a—-ao)”'_(b—bo)""'
dao"‘ db™ " [m]™  [m]™

o (b=bo) +3.

%(bz—boﬂ—ee')=cp-q>e—dq’°(a )+dq)°(b bo) + 2.

* [For any point in the plane we have o
€-6=—73,; [0]-¢*Isinv (d.z”v?/fs) _,,"ws_]
+ [For a=b=0 (sec pp. 69, 56, 62),

Po By [P
dods= = s =~ PiBln0= ook’ ]
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80 I. THEORY OF SYSTEMS OF RAYS [69

and therefore, by (F®),
. d™™ Dy (@ —ag)™ (b—by)™
..
(b—b)=¢e6+2.3. dag™ . db™ " [m]™ " [m']™

dd,
. H_Eo_ dm+m’ Fo (a e ao)m (b ald bo)m’ o
+ N s dag dby™" [l [ (K™)
dag
in which m +m’ > 1,
qmt+m’ FO 3 dm+m’+m”+m”'F aom" bom’"

dag™. dby™ = =" dam g [ [
© s P s ittty BN S il
dag™. dbe™ 7 damtm”, dhmFmT [ ]m” [
a, b, being supposed to vanish after the differentiations in these second members: and it is easy
to see that by means of these equations we can develope @ — ag, b — by, and therefore also a, b,
according to the positive integer powers and products of '/, 4/6".* With respect to the coefficients
of these developments, they may be calculated by differentiating the equatlons that we have just
established; they may also be deduced from the coefficients of the series (T"""), by relations which
will be elsewhere indicated. +
In the mean time let us remark, that instead of measuring the distance from the caustic
section in a direction parallel to the axis of y”, we may measure it parallel to any other line
upon the plane of aberration. If for instance, to simplify our remaining calculations, we resume
the rectangular coordinates «’, y’, of which the former is a tangent, and the latter a normal to
the section; if from the point (2’, ¥') we draw a line parallel to this normal, and denote by
@y , Yo , the coordinates of the point where this line meets the section, and by & the intercepted
portion, so that

(L™)

o~ =0, Y —yi=38; (M)
if also we ecall ao, by, the coordinates of the point in which the ray that passes through (', %)
is crossed by the perpendicular plane at the mirror; we shall have the equations

da’ dmtm’ g gm  pm’

i TR PO e T LN
dm+m’ y’ am /% g (S ¥ ) 68.
¥ 2 Zam b [ [
,_da ol g By
W =g R [m]™ [m' ™’
- (N @)
- 5. ™™y gt b
i “dam. db™ [m]™ [m']™
_day day dmt™ g (@ — ag)™ (b— bo)™
S iy g A e (S A FG s B ARTE
d d o m b_b m’
yﬂ (a—ao)+ yO (b bo)+2 d s d:'gom (a[m:T”(’)‘) '([ml](:Z' i
da'o (iyo—' da:‘o dulo (P"”)
dao ¢ dbo dbo dao
* [See Appendix, Note 3, p. 465.] t [There is no further reference to this.]
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69] I. THEORY OF SYSTEMS OF RAYS 81

in which m+m’> 1; and by these equations we can change the developments (T"’) 68. into
series of the form*

da 3 o o' d*a

e = 4 idvs ’\/8+de2 9 ida:’ avs’ &' A8 +&e., i

& . db % o d% Q®
b=gg @ty a5 t g gve- @ V8 +&e,

which contain no negative powers of any variable quantity, and which we are going to apply to
the solution of the succeeding problems.

(III.) We must be more brief in the discussion of these remaining problems, namely to
transform the integral expressions of the preceding paragraph, and to effect the double integra-
tions within the limits of the present. Applying to the series (Q®) the geometrical and optical
reasonings of 68., we find for the quantities A@, S®, Q@ which were there represented by the
developments (D""*"), (E""""), (F"'""), the following transformed expressions:+

i, S _[[(8.de.dy" de’ dy .

A(u)_%’ ,sw_f s o QW = ff ; (R™)
in which 8 is, as in (M @), the distance of any assigned point &', 3’ upon the plane of aberration
from the section of the caustic surface, measured in a direction parallel to the normal of that
curve; and D, S, Q, are rational and integer functions of 4’ and §, or of 2" and #’, which when those
variables vanish, that is, at the focus of the given ray, reduce themselves to the following values:

AW . py. ps _P1p2, A® ., py. pa
iVio 7 T T sk
A®, py, pa, 7, C, having the same meanings as in 68. If then we integrate the two last of these
expressions (R@) within the double limits afforded by the equations
8=0, a?+y?=13 (T™)
of which the former represents the caustic section, and the latter the circular circumference, we
shall have the required expressions for the quantities that we denoted by S”, @, at the be-
ginning of the present paragraph. ]
(IV.) To effect these double integrations, let us put the functions S, ¢, under the forra
Bu Sua .0, Qm3, Qnw o™, (Um)

and let us change the differential product dz’.dy’ to dz’.ds, which is permitted, because in
forming this product 3’ varies independently of ’. In this manner the expressions (R?) become

j 2d /3 f Sde, f 2d4/8 f Qds,

in which o> o
m rm
[ 8dat =3 S L
m+ 1
A A,
a:'mﬂ pm+1 k
[de’ 2 Qm,m' —*1___ . am,
m+ 1
* [See Appendix, Note 3, p. 465.]
+ [See Appendix, Note 7, p. 472.]
1 [p63]
HMP ' I

www.rcin.org.pl



82 I. THEORY OF SYSTEMS OF RAYS [69

@y, @y, being the extreme values of &', corresponding to any given value of 8, that is, the
abscisse of the points where the little circular circumference is crossed by any given parallel to
the section of the caustic surface. To determine these values, we have the equation

&+ (g + 8 =12, (W)

9o being the ordinate of the section, and » the radius of the circle: and putting this equation

under the form i
@ 4 yo'?= 82— 2y,'8, in which & =+Vr?-&, X"

‘we can, by Laplace’s theorem, develope '™+ according to the positive integer powers of 8, &, the
term of least dimension being 8™+!; from which it follows that the integrals (V®) may be put
under the form

f Sda’ =288 =238, . VW,
(Y)

[ Qda! =28 Q =25, Q. V5 H,

in which

- S'o,0="="00, Q0,0=0,0, (Z)

So,05 @o,0, being the values of S, @, assigned by the formule (S®). Multiplying (Y®) by 2d 4/,
integrating with reference to 8 from & =0 to =1, and putting for abridgment

1
i j (1= 2+ s, (A®)
0
we find finally

S0 =dok 3. 80w Ly 1™,
UEAES (B®),
QN =do. 3. Qpw. Ly w1,
and therefore when we suppose 7 infinitely small,
$ 1
Sdn = 4;5"0,0. Io,o- (d'r)i - 4_‘—"—,’1 '.F:;idr) f NT=22, dyz,
A¥RL 0y (C®)

4AW py . pa. (dr)t

V30
values which satisfy the relation (R”"”") at the beginning of the present paragraph; and which
shew, by the principles there laid down, that the density at the caustic surface* is proportional
to the following expression :

1 rakbd ot
QU7 = 4Q/o,0. Zoo.(dr)} = [[vi=F.dys,
0

AW ,p;. pg

A2 _L1-P3. ®)
that is, in passing from one point to another upon such a surface, or from a point upon one
caustic surface to a point upon the other, the density of the reflected light varies directly as the
density at the mirror multiplied by the product of the two focal distances, and inversely as the

* [Diffraction phenomena restrict the physical importance of the calculation by geometrical methods of
density in the neighbourhood of a caustic surface (cf. 76.), but from a geometrical point of view we have here a
definition of the ““density” of a congruence at a focus, the density on a given surface (e.g. the perpendicular plane
at the mirror) being assigned. In fact, this “density” may be defined as the limit of the quotient obtained by
dividing by 7# the number of rays passing through a circle of radius r, lying in the plane of aberration and having
its centre at the focus.]
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69-71] I. THEORY OF SYSTEMS OF RAYS 83

difference of these distances multiplied by the square root of the radius of curvature of the
caustic curve.* We see also that the definite integral (Q'"’), which represents the area of the
heartshaped curve that we considered in 68, is equal to the first term of the development (B®)
for S,

=4t d P2 tan. v f W e s S sy, oL (E®)
0

on which account we may call that curve a pycnoid,t because if » be given, its area is proportional
to the density at the caustic surface divided by the density at the mirror.

70. The expression that we have just found for the density at a caustic surface, becomes
infinite in two cases, which require to be considered separately; namely, first when ¢ =0, that
is, at the intersection of the two caustic surfaces, which, as I have shewn, reduces itself to a
finite number of isolated points, the principal foci of the system; and secondly, when C'=0,
that is, when the radius of curvature of the caustic curve vanishes. A point at which this latter
circumstance takes place, is in general a cusp upon the caustic curve; and the locus of these
points forms in general a curve consisting of two branches, each of which is a sharp edge on one
of the two caustic surfaces. These cusps are also connected by remarkable relations, with the
pencils to which the caustic curves belong; on which account we shall reserve the investigation
of the density at such a cusp, until we come to treat more fully of the developable pencils of the
system.

71. Let us then consider the points where the interval (¢) vanishes, that is, let us investigate
an expression for the density at a principal focus. In this case we have by the XIIth. section,
the following approximate formulae:

@ = Aa®+ 2Baf + 0B, = — pe,

y = Ba? + 2Cef + D2, b=—p,8,}
(z, y) being the coordinates of the point in which the near ray intersects the plane of aberration;
(a, b) the coordinates of the point in which it intersects the perpendicular plane at the mirror;
(p) the focal length or interval between these two planes; (e, 8) the cosines of the angles which
the near ray makes with the axes of (#) and (y), the given ray being the axis of (2); and
(4, B, C, D) coefficients calculated in 62., which have not the same meanings here, as in the
four preceding paragraphs. These formule give, by elimination of @, the following biquadratic
equation,

F".p-232.{2(B2—~ AC)(By— Oz) + (AD - BC)(Ay — Bz)} + (Ay — Bx)*=0, (G®)
in which F"' =(AD — BC)*—4 (B*— AC)(C*—BD); when F" is negative, that is, when the
principal focus is inside the little ellipses of aberration, 62., this biquadratic (G®) has two of its
roots real, and the other two imaginary; but when F"' is positive, that is, when the principal
focus is outside those ellipses, then the roots are either all real, or all imaginary; so that in the
first case, any given point (=, ), near the focus, will have two rays passing through it; whereas,
in the second case, it will either have four such rays or none. As these two cases are thus
‘essentially distinet, it will be convenient to consider them separately; let us therefore begin by
investigating the density in the case where the principal focus is inside the little ellipses of
aberration.

(F")

* [See 61. for this radius of curvature.]
+ [wukvés=thick, dense.]
1I-2
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84 I. THEORY OF SYSTEMS OF RAYS [72

Ist. CasE. F'"' <.

72. In this case, if we consider any rectangle upon the plane of aberration, having for its
four corners,
Ist. #,y; 2d. z+dz, y; 3d. o, y+dy; 4th. z+dz, y+dy;
the rays that pass inside this little rectangle are diffused over two little parallelograms on the
perpendicular plane at the mirror the corners of the one being

Vi e a+dw Al P

dz’
da db

8d. a+ dy, b+d dy,  4th. a+d_ o+ %9, db db

o dy, b+dx da:+d .dy,

and those of the other being composed in a similar manner of o', ¥’; a, b, @, V', being the two
points in which the two rays that pass through the point (z, y) are crossed by the perpendicular
plane at the mirror. The areas of these little parallelograms, have for expressions

da db da db da’ db' da’ db’
(dy “dz dz’ dy) s B0 (@ ‘de  da’ ) %0,
and they are equal to one another, because b’ =—b, a’ =—a; also the area of the little rectangle

on the plane of aberration is dz.dy; if then we denote by A® the density at the mirror, the
density at the point (z, y) will be nearly

da db da db

PR (dy de™ dz'd J)

and it remains to calculate the coefficient in the second member. For this purpose, I observe

that in general, when any four quantities a, b, «, y, are connected by two relations, so that a, b,

are functions of #, y, and reciprocally, their partial differentials are connected by the following

relation,

(H)

dy'dz~ dz’ dy)\da' db~ db’ da) =
it is sufficient therefore to calculate Zy flz 3‘% ga: Now, the equations (F®) give

3p*. do=(Aa+ Bb).da + (Ba + Cb).db,
3p*. dy = (Ba + Cb). da + (Ca+ Db). db,

(dy do _dy dm) (Ba + Ob)® — (Aa + Bb) (Ca + Db)

da’db  db'd
= p*. {(Bu+ OB — (da+ BR) (Ca+ DB)};
and if we put (Ba+ CB)*— (Aa + BB)(Ce+ DB)= M, we have by the same equations

1.p

M.a=(Ba+0,3)-?/—(C“+DB)"’”} (K®)
=(Ba+0CB).z—(Ade+ BB).y;
we have therefore
2
AW = A(2“ ;"[p , M =y{(By— Cz)*+ (Ay — Bx) (Dz— Cy)}. (L®)

It results from this expression, that when the principal focus is inside the little ellipses of
aberration considered in 62., there exists another remarkable series of ellipses upon the plane

of aberration, determined by the eqnation
M = const. (M@)
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and possessing this characteristic property that along every such ellipse the density of the re-
flected light is constant. The ellipses of this series (M®) are all concentric and similar, having
their common centre at the principal focus, and having their axes situated on two remarkable
lines, which are perpendicular to each other and to the given ray, and form with that ray three
natural azes of coordinates passing through the principal focus.

73. Suppose then that we have taken for our axes of coordinates, the three natural axes
just mentioned, the ray from which the aberrations are to be measured being still the axis of z;
we shall have the relation

AD - BC=0, (N®)
and the expression for the density at a point (r, v) upon the plane of aberration will become
AW = ek R (0®)
V(B -40).sin2v + (C*— BD). cos2v}’

in which B?— A(, C* — BD, will both be positive, and proportional to the squares of the semi-
axes of the ellipses of uniform density. Multiplying this expression by . dr.dv, and integrating
from =0 to =17, and from v =0 to v =27, we find for the whole number of the near reflected
rays that pass within a small given distance (r) from the focus, the following approximate formula :

m

2 dv
(@) =2AW, 2 ®
UA wlemtdainamiia "’fo I = A0 snto (= BD). setn. .. €™
a transcendental of known form, which can be calculated either by elliptic arcs or by series.
And if we denote this transcendental by 7', and reason as in 69., we find the following ex-

pression for the density at the focus* itself, as compared with the density at another point of
the same kind, :
AW =AW 2 T, (Q®)

IId. Case. F" >0.

74. Let us now consider the case where F'' > 0, that is, where the principal focus is outside
the little ellipses, 62. In this case the points in which the near reflected rays intersect the
plane of aberration, are all comprised within the angle formed by the two limiting lines (Y"’),
62., namely, the common tangents to those ellipses of aberration; and if we take the bisector
of this angle for the axis of z, the relation (N®) will reappear,} and the equation of the limiting
lines will become :

vl L LV 5

@& AC-B 4 B (R®)
Moreover, the rays that pass inside any little rectangle dz . dy, within the angle formed by these
limiting lines, are at the mirror diffused nearly perpendicularly over four little parallelograms,

2

which are equal to one another, and have their sum = —p—%%ig , M being the same function as in
72.; we have, therefore, for the density at the point #, y, the following approximate expression,
A(I‘) g pz

Ar(a) = ) (S®)
* [Density at a principal focus is therefore defined as the limit of the quotient @)/2r, where Q) is the

number of rays passing through a circle of radius 7, lying in the plane of aberration and having its centre at the
focus.]

t [In fact, =0 is the equation of this pair of lines; cf. (E”), p. 48.]
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and the lines of uniform density are still given by the equation

M = const.,
which now represents a series of concentric and similar hyperbolas, having the principal focus
for their common centre, and the limiting lines of aberration for their common asymptotes.
And if we multiply this expression for the density A,® by rdrdy, and integrate from 7 =0 to
r=7, and from v=—-19', to v=+419', v' being the semiangle between the limiting lines, and

consequently
tan. v’=«/§=\/§; (T®)

we find for the whole number of the near rays that pass within a given distance r from the focus
f A® .rdrdy=2AW. g2 T, (U®)

and, therefore, for the density at the focus itself as compared with that at another point of the

same kind,
A = Aw pZTH (Ve)

T, denoting the transcendental
dv

% =fo V{(C*=BD).cos v — (AC — B?).sin2v} "

75. The preceding expressions may be put under other forms, some of which are simpler.
Thus, if we still suppose the axes of coordinates to coincide with the natural axes determined by
the equation (N®), so that the axis of the reflected system may be the axis of z, and the

common transverse axis of the lines of uniform density the axis of z; if also we denote by

i— the density of a point upon this latter axis, and by éy— or I ft

(W)

the density of a point upon

the axis of y; we shall have by (O®) (S®) the following approximate expressions for the density
at any other point upon the plane of aberration,
-
(£nt o) *=arrr - sinzo)h, (X®)
7, v being the polar coordinates of the point, and e the excentricity of the ellipses or hyperbolas*
at which the density is constant ; and the formule (Q®) (V®) for the density at the principal
focus become

m

A«t)-_—A’,fz_d”_,
0 (1—e2.sin2v)}
(V®)

N gl
4 0 (1 — ¢ sin2v)? ’

e being less than unity in the first and greater in the second. With respect to the value of
this excentricity, it is equal to the cosecant of the imaginary or real angle v" determined by the
formula (T®); it is also connected with the position of the ellipses of aberration, 62., by this
remarkable relation, that the segments into which the principal focus divides that diameter of
such an ellipse upon which it is situated, are proportional to the squares of the semiaxes of the
lines of uniform density; in such a manner, that when the principal focus is situated at the

9 "9
* [In the case of the hyperbolas, ¢? denotes ﬂA— .
] A2
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centre of the ellipses of aberration, the excentricity e vanishes, and the lines of uniform density
become a series of concentric circles; and when on the contrary, the principal focus is on the
circumference of the ellipses of aberration, then e becomes equal to unity, and the lines of
uniform density become a set of rectilinear parallels to the axis of y, which axis in this case
coincides with the common tangent to the little ellipses of aberration, drawn through the
principal focus. When this latter circumstance happens, the two expressions (Y®) for the
density at this principal focus, coincide with one another, and become

"I’
A 2 dv
o COS. ¥

=0} (Z®)

in this case therefore, we should be obliged to have recourse to new calculations, and to intro-
duce the consideration of aberrations of the third order. We may remark that the quantity #"’,
the sign of which distinguishes between the two chief cases of aberration from a principal focus,
becomes = 0, in the case which we have just been considering; and since, by Section XIL, the
sign of this quantity F"* determines also the nature of the roots of the cubic equation

3
LLPTERE APV L AP .4
which by the same section assigns the directions of spheric inflexion upon the surfaces of
constant action, and of focal inflexion on the osculating focal mirror; it follows that in the
present case this cubic equation has two of its roots equal, and therefore that two of the
directions of focal or of spheric inflexion coincide. With respect to the value of these equal
roots, we have from our present choice of the coordinate planes the equations 4 =0, B=0, and

dy*=0,

3 v
therefore by 62., % 0, dZZI; =0: thus the cubic equation becomes
Y V d? V

from which it follows that the two dlrectlons of inflexion which coincide with one another are
contained in the plane of #z, that is, in a plane passing through the axis of the reflected system,
and cutting perpendicularly the lines of uniform density.

76. Many other remarks remain to be made, in order to illustrate and complete the theory
of the present section ; but as we shall have occasion, in treating of refracted systems, to resume
this theory under a more general point of view, we shall only here add, that the function which
we have called the density, may differ sensibly in many instances from the observed intensity
of light; because in calculating this function, we have abstracted from all physical causes not
included in that fundamental law of catoptrics, which is expressed by our original equation,

cos. pl + cos. p'l =2 cos. I . cos.nl, (A), 1
or in the resulting formula
adz + Bdy +ydz=d¥,
@, B, v being the cosines of the angles which the ray passing through the point #, ¥, z makes with
the axes of coordinates, and V the characteristic function. To distinguish therefore that mathe-
matical affection of the system to which the preceding calculations relate, from the physical

intensity of which it is an element, we may glve to it a separate name, and call it the Geometrical
Density.
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