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One-dimensional constitutive model of microcracked elastic solid 

M. BASISTA (WARSZAWA) and D. GROSS (DARMSTADT) 

A coNSTITUTIVE model is proposed to predict the quasi-plastic response of a brittle elastic 
solid undergoing internal damage in uniaxial tension. Following the experimental evidence 
and basing on a simplified reasoning as to the nature of damage process in the microscale, 
a functional dependence between the stress intensity factor and the microcrack length is intro­
duced leading to an evolution law for microcrack growth. Nonlinear constitutive relations are 
then derived accounting for the damage-induced hardening and softening effects observable 
in the overal material behavior. A single microcrack as well as systems of interacting micro­
cracks are considered. 

W pracy przedstawiono jednowymiarowy model konstytutywny spr~zystego materialu kruchego, 
kt6rego zachowanie w testach jednoosiowego rozci~gania rna quasi-plastyczny charakter, 
wywolany narastaj~cym uszkodzeniem struktury wewn~trznej. Opieraj~c si~ na wynikach 
doswiadczeil i przeprowadzaj~c uproszczone rozumowanie dotyc~ce mikroskopowej natury 
procesu uszkodzenia, wprowadzono fizykaln~ zalei:nosc funkcyjn~ mi~dzy wsp6lczynnikiem 
intensywnosci napr~zeil i dlugosci~ mikroszczeliny, otrzymuj~c w ten spos6b przyrostowe 
prawo ewolucji mikroszczelin. Wykorzystuj~c r6wnanie ewolucji wyprowadzono nieliniowe 
prawa konstytutywne uwzgl~dniaj~ce efekty wzmocnienia i oslabienia obserwowane w mak ro 
skopowym zachowaniu uszkadzaj~cego si~ materialu. Rozwai:ono wyizolowaJUl mikroszczelin~ 
oraz najprostsze uklady wsp6ldzialaj~cych ze sob~ mikroszczelin. 

B pa6oTe npegcraBJieHa ogHoMepHa.JI onpegennrom;an MogenL ynpyroro xpyiii<oro MaTepnana, 
noBegeHHe I<OTOpOrO B HCIIbiTaHH.JIX OgHOOCHOrO paCTH>I<eHHH HMeeT I<Ba3HnJiaCTWieCI<Hit 
xapai<Tep, BLI3BaHHbiH Bo3pacrarom;nM noBpemgeHHeM BHYTPeHHeii CTpYI<TYPhi. Onnpa.HCL 
Ha pe3yJILTaThi ~mcnepnMeHTOB H npoBOM ynpom;eHHoe paccymgeHHe, I<acarom;eecn MHI<poc­
I<onnqeci<oii npnpoghi npo~ecca noBpemgeHHH, BBegeHa <l:>H3Hlleci<a.JI <l:>ym<~oHaJILHa.JI 3a­

BHCHMOCTL Me>«gy I<03<i:><i:>H~HeHTOM HHTeHCHBHOCTH Hanp.H>I<eHHH H gJIHHOH MHI<poTpem;HHbi, 
nonyqan Tai<HM o6pa3oM 3ai<oH 3BO.TIJ{)~HH MHI<poTpem;HH B npnpocrax. 11cnoJIL3YH ypaBHeHHe 
3BOJIIQ~HH, BhiBegeHbl HeJIHHeHHhie onpegeJI.JIIQII.l;He 3ai<OHhi, Yl.JHThiBaiOII.l;He 3<l:><l:>ei<Tbl 
ynpol.IHeHHH H ocna6neHHn, Ha6JIIQgaeMhie B Mai<poci<onnqeci<oM noBegeHHH noBpemga­
rom;erocn MaTepnana. PaccMoTpeHhi H3onnpoBaHHan MHI<poTpem;HHa H caMhie npoCThie cnc­
TeMhi B3aHMOgeHCTBYIOII.l;HX C C060H MHI<pOTpem;HH. 

1. Introduction 

THE PRESENCE of microdefects such as microcracks, voids, inclusions and other stress 
concentrators in the brittle materials during the process of straining influences their 
mechanical properties and reduces considerably the ultimate strength. The micro­
structural damage is externally observed as a macroscopic inelastic deformation. In order 
to be able to predict the behavior of these materials under a variety of different loading 
circumstances, a rational theory must therefore reflect the influence of the type, arrange­
ment and kinetics of the internal microdefects on the material response in the macroscale. 

It is known that the concrete, ceramics and certain rocks exhibit pronounced strain 
softening in the compression tests. If the tests are performed in very rigid loading devices, 
even the concrete-like materials in the direct tension manifest distinct quasi-plastic behavior. 
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FIG. 1. 

This can be seen in Fig. 1 which demonstrates the complete stress-strain curves for concrete 
in tension, obtained experimentally by EvANS and MARATHE [1] in a series of precisely 
conducted, strain-controlled uniaxial tests. An elastic or nearly elastic, hardening- and 
softening portions of the curve in question may be observed. Above the stress level which 
corresponds to the indicated commencement of the process of microfissuration, micro­
cracks grow progressively with deformation resulting in the stable and unstable inelastic 
behavior of the specimen. Asymptotic character of the presented curves at large strains 
should be also mentioned. The growth and coalescence of microcracks lead to the nucleation 
of the macrocrack which brings the strained specimen into the final fracture while tra­
versing across the entire cross-section. 

The problem of proper analytical modelling of a material that suffers internal micro­
fracturing when strained has been treated in the literature in a twofold manner. First, 
a description of an overall material behavior is conceivable without going into fine details 
of the damage proc~s in the microscale. Such an approach, known as the Continuous 
Damage Mechanics, involves formulation of a phenomenological model based on the 
quantities called damage variables, characterizing structural changes in an average sense. 
Usually, the damage variables of scalar, vector or tensor character are being linked up 
with t~e damage-caused effects like: diminishing of an effective load-carrying cross-sec­
tion due to nucleation and gradual evolution of microdefects [2, 3, 4], degradation of the 
elastic constants [5] or dissipation of the energy imparted to the body in a static and 
isothermal process of loading [6]. Extended surveys of the existing continuous damage 
theories can be found elsewhere [7, 8, 9]. Ignoring the physical nature of the problem, some 
theories have been proposed [10, 11, 12] in the framework of the Continuum Damage 
Mechanics that describe the damage indirectly through the effect it produces on the strains. 

An alternative approach to the modelling of damage consists in embodying in the 
constitutive equations the most essential microstructural features of the process of damage. 
To this end the model derived in [13] should be mentioned. 

The objective of this paper is to propose a workable constitutive model for predicting 
the time-independent stress-strain relations of damaged conrete-like materials subjected 
to uniaxial tension. 
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ONE-DIMENSIONAL CONSTITUTIVE MODEL OF MICROCRACKED ELASTIC SOLID 589 

Although a phenomenological description of the material behavior in question is 
aimed here, we shall base, however, on some microstructural observations for an isolated 
microcrack as well as for systems of interacting microcracks. It seems therefore reason­
able to employ some suitable notions borrowed from the Brittle Fracture Mechanics 
which proved to be a successful tool when accounting for the phenomena governed by 
a single, well-developed macrocrack. It is hoped that the intended approach combining 
the conventional continuum formulation and simplified microstructural reasoning will 
give a somewhat deeper insight into the nature of the phenomenon, and can be helpful 
in the identification .of material parameters. 

2. Theoretical setting 

Consider an infinite, isotropic, elastic plate in uniaxial tension, Fig. 2. It is commonly 
accepted that microcracks in the tensile test nucleate and grow in the direction perpen­
dicular to the load axis. This assumption is firmly supported by all of the experimental 
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FIG. 2. 

data published so far (cf. [3]). Imagine now that the plate consists of a multitude ofu.1it 
cells and each cell contains one or more microcracks. The unit cell is meant to be a micro­
crack-attached characteristic area of a size LIA being limited by a condition t_hat no inter­
action between adjacent cells takes place. Moreover, it is assumed that the behavior of 
the individual cell is representative of the behavior of the whole body. 

The density of the complementary energy stored in the damaged plate consists of two 
terms, namely that of the complementary energy density iie for the virgin elastic material 

Llii* . . 
being solely a function of stresses, and that of the change Llii = LlA m this energy due 

to appearance of the microcracks depending both on the stresses and the microcrack 

length 

(2.1) ii(a, a)= ne(a)+Llii(a, a). 
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The complementary energy density (2.1) is supposed to be the Gibbs-potential, i.e. a scalar 
function of stress tensor whose derivative with respect to stress component determines 
the corresponding strain component: 

(2.2) an j 8=- =G(a,a). 
oa a=const 

The length of microcrack is considered as a hidden state variable that reflects locally a cur­
rent level of an internal microcracking; thus it may be treated as a damage variable. The 
damage variable should be provided with an evolution law (damage law) which would, 
in this case, be a direct condition for the microcrack growth. 

At this point we postulate that the microcrack starts to grow if a certain scalar function 
g dependent on the stress, the microcrack length as well as on other possible parameters 
recording for example a geometrical configuration of microcrack pattern is satisfied: 

(2.3) g(a,a, ... ) = 0. 

There will be no microcrack growth if g < 0. 
In order to sppcify the condition (2.3}, we put forward a following hypothesis justi­

fied by the findings of the Brittle Fracture Mechanics: a microcrack begins to move if the 
corresponding stress intensity factor K at the microcrack tip reaches some critical level Kc 

(2.4) K= Kc. 

The stress intensity factor K describes the loading of a crack and depends on the stress 
state as well as on the configuration of the microcracks in the unit cell. It can always be 
expressed in the following form, no matter how complex the geometry of microcrack 
system is: 

(2.5) K = aynaf(a, b, c, ... ), 

where b, c, ... stand for the necessary geometrical parameters. Basing on the sound micro­
structural premiss [14] we assume now that the Kc in the damage law (2.4) is, in general, 
not a material constant but a function describing the resistance of material against the 
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FIG. 3. 
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microcrack growth, and it depends essentialy on the change L1a of microcrack length. 
As far as the shape of the function Kc(Lla) is concerned, various possibilities are left, 
Fig. 3, according to the type of material considered. A physical motivation for choosing 
one of the displayed functions will be given later on. If the Kc-function is specified, we 
may insert it together with (2.5) into the damage law (2.4) and solve (2.4) with respect to 
the microcrack length: 

(2.6) a = F*(a). 

Equation (2.6) combined with the general constitutive relationship (2.2) makes possible 
the elimination of the internal parameter a; thus it leads to a nonlinear material law 
a- E accounting for the presence and evolution of microcracks. It is obvious, however, 
that this cumbersome procedure is applicable if both the material function Kc(L1a) and 
~e corresponding stress intensity factor (2.5) are simple enough. In general it is difficult 
or even impossible to get rid of the damage parameter a in form of (2.6}, mainly due to 
complicated transcendental equations encountered. 

Reciprocally to (2.6) we have 

(2.7) 1 a= F(a), 

or 

(2.7h g = a-F(a) = 0, 

which is straightforward on account of the algebraic structure of (2.4) and (2.5). In order 
to overcome the formal difficulties mentioned above, an incremental formulation of the 
problem at hand could be employed. An apparent gain of such an approach consists 
in the fact that the increment dais always derivable from the damage law (2.7h in contrast 
to the parameter a itself. With the notation used in (2.2) and (2. 7), we obtain 

aG ac 
(2.8) de = -- da +- da oa oa ' 

oF 
(2.9) da = -da oa ' 
whence 

(2.10) 
de = ( ~~ + ~~ · ~= ) da. 

It seems also advantageous to work henceforth with dimensionless variables introduced 
in the following manner: 

(2.11) - (] 
(]=-, 

(]0 

- E 
E = -, 

Eo 

- a a=-, 
ao 

where a 0 , Eo are the values of stress and strain, respectively, at which the microcrack of 
initial length a0 begins to grow. Having established the basic equations in the incremental 
form (2.8) and (2.9) it becomes possible to develop various constitutive equations of 
(2.10) type, depending on what the geometry of microcracks pattern is like and what 
kind of the material function Kc(Lla) we adopt to account for the microcrack evolution. 
Some simple examples will be discussed in the next sections. 
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3. Examples 

3.1. Single microcrack in unit cell 

Suppose that the unit cell under uniaxial tension contains only one single microcrack, 
Fig. 2. The density of complementary energy can be expressed as follows 

(3.1) 

Assuming further that the microcracks placed in the individual unit cells are far enough 
one from another so that there is no interaction between them, we have a simple formula 
for the stress intensity factor 

(3.2) 

which brings the energy equation (3.1) into the following form 

(3.3) N a
2 

( 2na
2

) 
n = 2E 1+~. 

The next step consists in introducing a specific form of the damage law (2.4). In the case 
of the perfectly brittle material, the Kc-function should not depend on the microcrack 
length. A change in the internal energy due to the microcrack growth is entirely stored 
into the surface energy and no microplastic zone appears at the microcrack tip. The micro­
crack growth will occur if the stress intensity factor K reaches a threshold value Kc = c~m­
stant, 

(3.4) 

It can be shown that this equation is equivalent to the familiar Griffith criterion for the 
macrocrack growth. The equations (3.3) and (3.4), when substituted into (2.2) enable us, 
in this simplest case, to arrive at a closed analytical form of the constitutive law looked 
for 

(3.5) - 1 (- 1 ) c = 1 +x a+x-(13 ' 

where x = 
2;~5 is a material constant which, for the physical reasons, should be smaller 

than 0.1, [15]. 
Some numerical results are shown in Fig. 4. The material exhibits elastic behavior 

up to the point where K reaches its critical value and the microcrack starts to move. Then 
the material behavior becomes nonlinear. It can be seen that for physically reasonable 
values of the parameter x, the curves a- 8 go backwards. It should be understood that 
in a strain-controlled test the material would have manifested unstable behavior as a sudden 
jump in stresses down to the point from where the microcrack keeps on growing in the 
stable way. The first stable evolution of the microcrack would be observed foJ x = 0.33 
which is not acceptable, as no microcrack interaction is allowed. Apparently, it is a con­
sequence of such a simple damage law assumed. 

http://rcin.org.pl



ONE-DIMENSIONAL CONSTITUTIVE MODEL OF MICROCRACKED ELASTIC SOLID 593: 

0 • 
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The energy required for the microcrack growth in real brittle materials is larger tharn 
the pure surface energy needed to create the new surfaces since the process <?f microcrack 
evolution is accompanied by certain inelastic, energy-consuming phenomena occuring 
in front of the microcrack tip, such as: micro plastic deformations observed even in very 
brittle materials, nucleation of microvoids, etc. These phenomena depend on the history 
of deformation, and thus on the microcrack growth. Once Kc, (2.4) is meant to be a global 
measure for the microcrack evolution, it should therefore depend upon the microcrack 
length. This conclusion is experimentally well supported for various materials [14]. Con-­
trary to the case of idealized perfectly brittle materials, the stress intensity factor is no 
more constant but depends now on the microcrack size and it is larger for larger micro­
cracks. Due to the formation of microvoids around the microcrack tip, the critical stress 
intensity factor Kc takes initially the lower values, while it is an increasing function or 
Lla during the stable evolution of the microcrack. On the other hand, it does not seem 
reasonable to assume that the microcrack resistance will increase infinitely with the increase 
in the microcrack length, the more so as the process of microcrack growth manifests . 
a stationary character in its advanced stage. After a sufficient growth in the microcrack 
length, an asymptotic behavior of the curve Kc(L1a), Fig. 3, may therefore be expected .. 
We propose the following exponential form dependent on the initial microcrack length 
a0 for the material function Kc(LJa), Fig. 3: 

· L1a 
-TJ -

(3.6) Kc = Kcu-(Kcu-Kcl)e ao 

where Kcu, Kc1, r; are material constants. 

It should be emphasized that (3.6) is not characteristic of all the rock-like materials. 
undergoing internal damage. It is for instance conceivable to deal with a periodic form 
of the function Kc as well. This would correspond to the microcracks growth in a period-­
ically inhomogeneous material in which the microcracks move through the grams or 
along their boundaries. It is needless to say that we consider exclusively such materials 
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whose resistance to the microcrack growth can be approximated •by the specific function 
(3.6). Nevertheless, any other material function Kc might easily be incorporated if required. 

The damage law is readily obtained as 

(3.7) 

An explicit a- e relationship in a closed form is not derivable in this case, thus we ~uggest 
an incremental formulation of the basic equations as already discussed in Sect. 2. Com­
bining (2.10) with the energy equation (3.3) and the proposed damage law (3.7) after 
some effort we find that 

(3.8) 
I ( y-(y-1)e7J<1 -;> ) 

di = -- I + uiP + 4uiP ,.. da , 
1 +u (y-I)e"~< 1 -a>(2rJa+ I)-y 

where the tildas over e, a, a denote the dimensionless variables as defined in (2.II); u, 17 

d Kcu . I an y = -- ~ I are matena constants. 
Kc~ 

A numerical verification of the constitutive equation in loading (3.8) is presented in 
Fig. 5. It is worth noting that the curves depicted in Fig. 5 show a qualitative agreement 

FIG. 5. 

with those plotted on the basis of experimental data, Fig. 1. All the characteristic features, 
that is: linear, hardening and softening portions of the experimental curves as well as their 
asymptotic behavior at the advanced stage of straining are recorded in the theoretical 
curves of Fig. 5. In unloading, the Young modulus varies on every step of the process, 
depending on the actual value of the microcrack length. However, all deformation paths 
tend to the origin 0 and no permanent strain remains after unloading. There will also 
be no recovery inside the damaged material during unloading, what means that the damage 
process is considered to be dissipative since the structural changes are irreversible. It is 
motivated by an experimental fact that the microcrack faces are quite sharp and irregular 
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and for this reason they never close perfectly after unloading. Figure 6 is meant to give 
an impression how large the nonlinear part of the i1-8 curves can be due to variation of 
the material parameter y = KnJ Kct. 

3.2. Microcrack interaction 

Actually, the microcracks appearing in the material during the process of loading 
are not isolated one from another, but they necessarily have an influence on the adjoining 
microcracks. Therefore, the microcracks interaction should not be neglected if the pro­
posed model is to be realistic. In order to get familiar with the effect of microcrack inter­
action on the material behavior in the macroscale, we consider the case of a pair of collin­
ear microcracks inside the unit cell, Fig. 7. From the geometry of the problem the ratio 
a0 /c0 should be smaller than 1/4, where a0 denotes some initial microcrack length and the 
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distance c0 is fixed. We assume that these two microcracks affect each other but there 

is no interaction between the unit cells in question. It is intuitively obvious that the dan­

gerous zone for such an elementary microcrack sy.stem is the surrounding of the tip denoted 

by the plus sign. Calculations of the stress intensity factor K for this array of the micro­

cracks confirms that K+ is ~lways larger than K-. This significantly complicates the analy­

~is in its computational aspect since the middle points distance b varies with an increasing 

a. The stress intensity factor which includes intrinsically the interaction between micro­

cracks follows to be, [15] 

(3.9) K = (1JI naj(A), 

with 

b2 E1 (/2) 2 
2 E (I ) - a2 1 1 11 

(3.10) j(A) = 2 2 = 1+ - A2 +-,P+ -- ..1.4 + ... , (cf.[17]), 
a2 l/ b~ -a~ 2 2 8 

where a2 = ~ (b- a), b2 = ~ Co, /2 = VI -:~ and E 1 (/2), E2 (/2) are the elliptic integrals 

of the first and second order, respectively. 
The parameter A is given by 

(3.11) 

The complementary energy density for the solid containing infinite number of such unit 

cells can be expressed as 

(3.12) 

The damage law takes the following form 

(3.13) 

This is the set of basic equations for the problem at hand. The explicit algebraic form of 

the obtained incremental relationship is too lengthy to be presented here. The correspond­

ing diagram is shown in Fig. 8. Up to the point A there is a linear material behavior, 

then comes a slightly nonlinear (hardening) part AB- apparently due to small changes 

in the internal energy limited by the geometry of the microcrack array - finally the stresses 

drop to the softening part of the curve. This unstable microcrack growth observed as 

a sudden jump in the stresses BC in the strain-controlled test means physically that the 

microcracks have presumably joined each other forming a single microcrack which grows 

further on, already in the stable manner. 
Consider now an infinite row of equal, collinear microcracks, Fig. 9. It is assumed 

that there is one microcrack in the unit cell and each unit cell influences the adjoining 

ones. The damage law takes the following closed form 

l3.14) 
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since the corresponding stress intens1.. factor K is exact in this case, [16]. The density 
of complementary energy contained in the microcracked body is 

(3.15) n' = ~- - }:_a
2

b
2 

ln [cos ( na )] 
2E EL1An b . 

The incremental formula obtained for the constitutive law reads 

(3.16) di = { 1- n~:5 1n[cos(nA0)]H 1- n~:5 1n[cos(nA0 ii)] 

4" sin2 (nA0 a)[y-(y-l)e7J(1-a'>] } _ + -
1

- • _ _ da , 
1'lAo 'Y}(y-l)eTJ(l-a>sin(2nA0 a)-nA0 [y- (y-l)eTJ(l-a>] 

while in view of (3.14) the stress is related to the microcrack length as follows 

(3.17) a = [y- (y-l)eTI<t-a'>]-. / tg(nAo! ' Jl tg(nA0 a) 
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x, y, 1J are the known material constants defined when arriving at the formulae (3.5), 
(3.6), · (3.8), respectively, whereas A.0 is 

(3.18) 

Tj=1.5 
Y=2 

FIG. 10. 

Once Eqs. (3.16) and (3.17) are established it is fairly straightforward to plot the a-e 
curves looked for, Fig. 10. The two dashed lines bound an admissible region for the possible 
material behaviors which do not violate the geometrical requirements marked in Fig. 9. 

3.3. Cbange of material densitt 

It is known that, in general, the internal damage induces the reduction in the material 
density. The present constitutive model is capable to account for this phenomenon in 
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FIG. 11. 
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quite a simple way. What we intend to show refers to the linear theory, thus it should 
only be understood as a first approximation to the problem in question. 

Assume that the microcracks take the elliptical form after opening in the process of 
loading, Fig. 11. Denote by r/, eD the density of the undamaged and damaged material, 
respectively. The eD over e0 ratio for the unit thickness reads 

(!D L1A 
(3.19) e=-eo= L1A+S' 

where S can be calculated by taking advantage of the. formula for the microcrack opening 
displacement Vmas' [17] 

(3.20) 
_ _ 2n 2 S- navmax- Ea a. 

Therefore: 

(3.21) 

or in the dimensionless form 

(3.22) - 1 
e = 1 + ~xa2a ' 

where x = -
1 
to is a new parameter with e0 being the strain at which the first microcrack 
+" 

starts growing. The specific value o( e0 is recognizable from the experimental curves, 
Fig. I. Illustrative curves computed from (3.22) with help of (3. 7) and (3.8) are depicted 
in Fig. 12, whereas e versus e ones are shown in Fig. 13. 

X= 0 0 5. lJ = 2 ' X = 9. 5 . 10"5 

.~--~~--L----~----~-~ o 400 n 
FIG. 12. 
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X=0.05 . 11=2 . X=9.5 ·10 5 

FIG. 13. 

4. Summary and conclusions 

In this communication a one-dimensional model has been proposed for the concrete­
like materials undergoing irreversible changes of their internal structure due to progressive 
microcracking. 

• Though much attention has been paid to analyze the behavior of individual micro-
crack, the developed theory deals in fact with damaged continuum that contains the multi­
tude of microcracks to be continuously smeared throughout the material volume. This 
has been accomplished by introducing a notion of a damaged unit cell whose behavior 
is considered to be characteristic of the overall behavior of the material. 

The basic assumption of the present model concerns the form of the so-called damage 
law relating the increments in the stress da to the microcrack growth da. Motivated by 
the microscopic oqs::>JA"Bl!OUS of the growth of isolated microcrack in brittle materials, 
a functional dependence between the proper stress intensity factor at microcrack tip and 
the microcrack length has been postulated leading to an implicit relationship between the 
increments da and da. 

Let us note the encouraging capability of the established analytical model based on 
the simple damage law in predicting all the response trends observed in the direct tensile 
tests for concrete. 

However, it should be emphasized that we are aware of some important experimental 
facts which are still to be accounted for. To this end the diverse modes of the internal 
damage in compression as well as the occurrence of the damage-related residual strain in 
unloading should be mentioned. 

An extended model incorporating these effects as well as its possible generalization 
for multiaxial stress states are the topics of current studies and will be reported in a sub­
sequent paper. 

http://rcin.org.pl



ONE-DIMENSIONAL CONSTITUTIVE MODEL OF MICROCRACKED ELASTIC SOLID 601 
--- -~~-~-

Acknowledgement 

This work has been completed during the stay of M. Basista at the Institut fiir Mechanik, 
Technische Hochschule Darmstadt, sponsored by the DAAD (Deutscher Akademischer 
Austauschdienst ). 

References 

1. R. H. EvANS and M.S. MARATHE, Microcracking and stress-strain curves for concrete in tension, Ma­

teriaux et Constructions, 1, 1, 61-64, 1968. 
2. JI. M. KAtiAHOB, 0 BPeMeHu pa3pytueHu.R 8 ycAOBU.RX noA3y'lecmu, lhB. AK. HayK CCCP, OT.ll;. Tex. 

HayK, Ho. 8, 26-31, 1958. 
3. D. KRAJciNOVIC and G. U. FoNSEKA, The continuous damage theory of brittle materials, Part I, II, 

J. Appl. Mech. 48, 809-824, 1981. 
4. S. MURAKAMI and N. 0HNO, A continuum theory of creep and creep damage, Proc. IUTAM Symp., 

Creep in Structures, Springer, Leicester U. K., 422-444, 1981. 
5. J. LEMAITRE and J. L. CHABOCHE, Aspect phenomenologique de Ia rupture par endommagement, J. Mec. 

Appl., 2, 317-365, 1978. 
6. M. KLISINSKI and Z. MR6z, Description of inelastic deformation and degradation of concrete, Int. J. 

Solids and Structures, (submitted) 

7. J. LEMAITRE, How to use damage mechanics, Proc. SMRiT 7, Chicago 1983. 
8. S. MuRAKAMI, Anisotropic damage in metals, Proc. Coli. Int. C.N.R.S., Failure Criteria for Struc­

tured Media, Villard de Lans, June 1983 (to appear). 

9. M. BASISTA. On continuous models of damage, IFTR Reports, 40, 1984. 
10. J. JANSON and J. HULT, Fracture mechanics and damage mechanics- a combined approach, J. Mec. 

Appl., 1, 1, 69-84, 1977. 
11. A. SAWCZUK and T. SADOWSKI, On anisotropic continuum damage of elastic-plastic plates in flexure, 

J. Engng. Struct., 5, 234-238, 1983. 
12. D. W. NICHOLSON, Constitutive model for rapidly damaged structural materials, Acta Mech., 39, 

195-205, 1981. 
13. J. K.ASPERKIEWICZ, Modelling of inhomogeneity in certain cement based composites, Int. J. Cement 

Composites and Lightweight Concrete, 5, 41-48, 1983. 
14. D. BROEK, Elementary engineering fracture mechanics, Noordhoff, 1974. 
15. D. GROSS, Spannungsintensitiitsfaktoren von Rissystemen, lng. Archiv, 51, 301-310, 1982. 
16. G. C. Sm, Handbook of stress intensity factors, Lehigh Univ., 1973. 
17. H. TADA, P. PARIS and G. IRWIN, The stress analysis of cracks handbook, Hellertown: Del. Res. Corp .• 

1973. 

POLISH ACADEMY OF SCIENCES 
INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH 
and 
TECHNISCHE HOCHSCHULE, DARMSTADT, FRG. 

Received May 5, 1985. 

3 Arch . Mech . Stos. nr 6/85 

http://rcin.org.pl




