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Computer simulation of convection in floating zone melting(*) 

S. G. SLAVTCHEV and J.D. KOJUKHAROVA (BAS) 

SuRFACE-TENSION driven flow in a noncylindrical melting zone suspended between two rods 
has been investigated by a numerical solution of the Navier-Stokes equations with the Bous­
sinesq approximation and the heat transfer equation. The shape of the free surface is determined 
from the force balance on it, provided the fluid is in a quasi-equilibrium state. The gravity is 
taken into account. The influence of the convection and the zone geometry on the temperature 
distribution for different Marangoni numbers is shown. 

Przeplyw wywolany napi~iem powierzchniowym w niecylindrycznej strefie topnienia zawie­
szonej mi~zy dwoma prcetami zanalizowano, rozwi(lzuj(lc numerycznie r6wnanie Naviera­
-stokesa w przyblii:.eniu Boussinesqa oraz r6wnaoie przewodnictwa ciepla. Ksztalt powierzchni 
swobodnej okreslono z warunku r6wnowagi sil zakladaj'lc, i:.e plyn znajduje si~ w stanie quasi­
-r6wnowagi. Uwzglcedniono sily cicezkoSci. Pokazano wplyw konwekcji i geometrii strefy topnie­
nia na rozklad temperatury przy r6mych wartosciach Iiczby Marangoniego. 

Te'lleHHe, Bhi3Bamme noaepXIIOCTIIbiM HaTa:a<eHHeM B Hei..UlJIHH):q)H'lleCJ<oH: WiaBaiOmeA 30He, 
nonaemeHHoii Me:a<~y ABYMH crep>KHHMH, aHa.JIH3HpyeTca, pemaa lDICJieHHo ypaaHeHHH 
HaBLe-CToKca B npu6J1IDI<eHHH EycCHHecKa H ypaaHeHHe TeWionpoao,nHOCTH. <l>opMa cao-
6o,w~oH: ITOBCpXHOCTH onpe~eJieHa H3 YCJIOBHH paBHOBCCHH CHJI, npeJJ;IIOJiaraH, 'liTO >I<Jmi<OCTb 
HaXO~CH B COCTOHHHH KBa3HpaBHOBCCHH. YtfreHa CHJia TH>I<CCTH. IlOKil3aHO BJIHHHHC 
KOHBCKI.Urn H reoMeTpHH WiaaaromeH: 30Hhi Ha pacnpe~eJieHHe reMnepaTyphi, npu pa3HhiX 
3Ha'lleHHHX 'liHCJia MapaHroHH. 

Nomeaclature 

Greek symbols 

ar, a9', a: functions defined in Table J , 

A aspect ratio of the zone, 
b9' function defined in Table 1, 
~ function defined in Table 1, 
F dimensionless equation of the free surface, 
g acceleration due to gravity, 
L half zone length, 

p 0 constant, 
r dimensionless radial coordinate, 
r transformed radial coordinate, 

R zone radius, 
T temperature, 

T mu maximum temperature at the free surface, 
T. temperature of the rods, 

L1T Tmu-Ts, 
z dimensionless axial coordinate. 

<X temperature coefficient of the surface tension, I :; I , 
p thermal expansion coefficient, 

(•) Paper given at XVI Symposium on Advanced Problems and Methods in Fluid Mechanics, Spala, 
4-10 September, 1983. 

http://rcin.org.pl



242 

1. Introduction 

s. G. SLAVTCHEV AND J.D. KOJU.KHAROVA 

y 1 , Y1 contact angles at the lower and upper rods, 
0 dimensionless temperature, 
ii dimensionless temperature at the free surface, 
v kinematic viscosity, 
e density, 
a surface tension, 
rp function defined in Table 1, 
X thermal diffusivity, 
tp dimensionless stream function, 
w dimensionless vorticity. 

A FLOATU~G-ZONE technique is widely used to produce high purity crystals for special 
electronic devices. For example, the floating zone melting is used to grow silicon and 
germanium crystals [1]. It is of some importance for the growth of high melting point 
materials such as W, Mo, Al 2 0 3 etc. 

i 
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SlNG4E CRYSTAL"\ 

POLY CRYSTAL 

FIG. 1. 

The technique is shown schematically in Fig. 1. A molten zone is established between 
two rods, a charge (or feed) rod of pol:vcrystalline material and a crystalline rod, and 
held by capillary forces. Heating is concentrated at the middle equator plane. By moving 
the crystal up, the zone travels through the crystal. 

Convection in the zone is generally driven by buoyant forces , surface tension forces 
due to temperature gradients existing along the free surface, movement of the zone through 
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the solid and rotations of the rods. It plays an important role in impurity distribution 
in crystals purified by the zone melting method and has been intensively studied both 
experimentally [2-13] and theoretically [14-22] in the last decade. A critical review of 
results obtained has been done by ScHwABE [23]. 

In the case of no rotation the model experiments with NaN03 [3, 5], KCl [5] and 
methyl alcohol [8, 10] and the numerical calculations [17-19] show the importance of 
surface tension forces, e.g. of Marangoni effects. The thermocapillary flow is dominating 
over the buoyancy-driven flow for small liquid zones and the zone movement has a negli­
gibly small influence on the convection. For small temperature gradients the flow patterns 
observed are qualitatively the same as calculated. For larger gradients experimental results 
(see for example, [3, 9]) differ from theoretical ones (say [14, 15, 19]). At larger values of 
Marangoni numbers the axisymmetric numerical calculations predict the development 
of secondary vortex cells, while the experiments show a nonaxisymmetric distortion and 
oscillation (or rotation) of the primary cell formed in a half-zone [4, 9]. This difference 
might be explained by the limitation of the numerical results in their applicability by the 
assumption of an ideal cylindrical zone and idealized temperature distributions along 
the melt surface. Moreover, the experiments were performed using a half-zone heated 
above instead of a full zone heated in the middle. As it is first pointed by CLARK and 
WILCOX [18], the difference between temperature conditions in experiments and calcula­
tions might prove crucial. Forced convection due to crystal rotation has been numerically 
studied in [16, 20, 21]. 

In the present paper a convection flow due to surface tension and buoyant forces in 
a noncylindrical zone is theoretically investigated. The shape of the free surface is approxi­
mated by a static meniscus and the axisymmetrical domain is transformed into a cylin­
drical one. Then, transformed steady state equations for momentum and heat transfer 
are solved by the integra-interpolating method [24]. Calculations are carried out for 
a parabolic temperature profile at the free surface of the melt corresponding to radiant 
heating in the zone equator plane. 

It is shown that the gravity has a negligible effect on the convection as well as on the tem­
perature distribution in the small zones considered. The convection flow influences strongly 
the temperature field. Due to the stronger vorticity of the liquid in an axisymmetric zone, 
the temperature distribution differs considerably from that in a cylindrical one, especially 
in the core. The convective heat transfer dominates at larger Marangoni numbers and/or 
larger Prandtl numbers. 

2. Mathematical model 

An incompressible axisymmetric steady state flow in the liquid zone placed between 
two rods is assumed, with constant properties. Under the gravity the shape of the free 
surface is not cylindrical but it is approximately axisymmetric. We assume that the shape 
deviates slightly from that in the case of equilibrium state, without crystal rotation. 

Let the radii of the rods be equal to R and the zone length be 2L. In a cylindrical co­
ordinate system r, z (Fig. 1) the dimensionless governing equations in the stream function 
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1p and the vorticity m variables and the equation for the temperature () = (T- T8 )/LJT 
are as follows (all symbols are defined in the table of nomenclature): 

(2.1) ,2 [ ~ (; a~)_ ~ ( ; ~:)I 

__ 1 J ~ [rJ ~ (!!!_)] + __! [rJ _!__ (!:!_)ll + Gr _ r2 !JO = 0, 
Re \ oz oz r or or r Re2 or 

(2.2) (1) = . - [~ (__!_ 01p) + ~ (__!_ -01p )] ' oz r oz or r or 

(2.3) a ( a'l' ) a ( a1f') 1 [ a ( ao ) a ( ao )] oz () ar - Br () Tz - Pr Re oz r Tz + ar r Tr = O. 

Here Gr = g{JIJTL3 /v2 is the Grashoff number, Re = a.ATL/v2e the Reynolds number 
and Pr = vfx the Prandtl number. The coordinates, stream function, vorticity and tem­
perature are related to L, aLl T L2 /ve, aL1 T/(!1' L, AT= Tmax- Ts, respectively. The bound­
ary conditions are: 

a) z = ± 1 (at the rods) 

(2.4) 

b) r = 0 (axis) 

(2.5) 

c) r = F(z) (free surface) 

(2.6) 

01p 
1p = Tz = 0, () = 0; 

()() 
--- = o· or ' 

1f' = 0' () = 0( z)' 

(1 + F' 2
)

112 oO 2 o21p 4F' [ o2 1p 1 01p] 
-w =- 1-F'2 az+ -F· oz2- + F(1-F'2) oroz -2£-az. 

Here a prime denotes differentiation with respect to z. The thermocapillary convection is 
characterized by the Marangoni number Ma = aA T Lfevx = RePr. The ratio between 
the buoyant force on a volume and the surface tension force on the surface element in the 
volume is called the dynamic Bond number , 

(2.7) Bodyn = Gr = eg{JL 2 

Re ex 

and Bod,n < 1 is a criterion for the dominance of the thermocapillary convection. 
When the fluid is in an equilibrium state under gravity the zone length is limited and 

depends on the balance between the surface tension forces and the hydrostatic pressure. 
The maximum stable length as well as the stable zone shape depends on the static Bond 
number Bo,,., = egL2 fa, which is the ratio of these two forces. The shape of the molten 
quasi-static zone is determined from the Laplace equation 

(2.8) 
F" 1 0 0 

F(1 +F'2)1f2 +p -BOstatZ = ' 
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where p0 is an unknown constant. The boundary conditions for the equation are 

F= A, 
F' 

at z = -1, 

(2.9) 
F' 

-(T+fi'l)i/2 = cosy2 at z = l. 

At given y 1 , y2 and A the shape and the radius of the upper rod depend on the static 
Bond number. Stability of liquid zones with different radii of the rods is studied, for 
example, in [25]. The book [26] is partially dedicated to problems connected with the 
equilibrium shape of a liquid. 

3. Computation 

The momentum and heat transfer equations are solved by the integro-interpolating 
method (see, for example, [24]). First, the zone is transformed into a cylinder by the trans­
formation 

(3.1) - r 
r = F(z) · 

In the new coordinates r, z Eqs. (2.1)-(2.3) can be presented by a model equation 

(3.2) a. [ :z ( pa,~~) -a, :, (p ~~)]+a. [a,:; ( pa, ~~)-a, :; (a,p ~~)] 

Here 

(3.3) 
I 

a,.= F(z)' 
r F'(z) 

- F(z) 

and the functions p, a'~~, b'~~ and d'~~ are listed in Table I. 

Table 1 

___ '!:___ l _ _ ::__.:__b_(/1 _ ____.:_ ___ 4 

I 
Re 

0 

0 
RePr 

Gr ... 2 ao 
--T-
Re2 ar 

(l) 

r 

0 

- ------ - -------------
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Equation (3.2) and the boundary conditions (2.4)-(2. 7) are approximated by employing 
the finite difference form obtained for the equation by integrating it over a control volume 
around every grid point. A grid system of 21 x 41 grid points was used to cover a half 
of the zone that is symmetrical about the axis. The corresponding nonlinear algebraic 
system is solved by iteration. Convergence was tested by the difference of computed values 
of each parameter in the successive iterations. 

Equation (2.8) for the zone shape is solved by successive integrations starting from 
the exact solution for the zone with a very large radius compared with its length. 

4. Results 

The convection flow pattern and temperature field in the zone are calculated for radiant 
heating which is approximated by taking a parabolic temperature profile along the melt 
surface 

(4.1) 

It is supposed that R = L = 2 · 10- 3 m (A = 1). The calculations are carried out for 
molten silicon (Si) and sodium nitrate (NaN03). For the physical properties of silicon 

Ma=68.848 
Pr=0.023 

FIG. 2. 

BodiJn = 0.036 
.1T= 1K 
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near the melting point, namely, e = 2.5·103 kgm- 3,v = 3.52·10- 7 m2s-•,x = 1.53x 
x I0- 7m 2s-•, {3 = 1.6 · I0- 4 K- 1 , u = 7.2 · to-• N m-t, ~ = 4.3 · 10- 4 Nm-•K- 1 , the 
numbers are as follows: Bodyn = 0.036, Boscac = 0.136 and Pr = 0.023 [14]. The Ma­
rangoni number additionally depends on the temperature difference and changes line­
arly with it. For .1 T = 1 K and 10 K the number Ma is equal to 63.848 and 638.48, 
respectively. The numerical results for the cylindrical zone of molten silicon are presented 
in Figs. 2 and 3. The stream lines are drawn in the left half of the figure and the isoterms 
are in the right half. 

Ma=638.48 
Pr=0.023 

FIG. 3. 

Bodyn = 0.036 
.1T=1K 

There are only two toroidal convection rolls for the temperature differences considered. 
It is obvious that the gravity has a negligible effect on the liquid motion and the tempera­
ture distribution. The upper roll is a little stronger than the lower one because the former 
is driven by combined surface tension and buoyant forces near the free sufrace while 
in the latter both forces act in opposite directions. The temperature field is approximate­
ly symmetrical about the middle equator plane. It depends strongly on the convection. 
The role of convection increases with the temperature differences, i.e. when the Marangoni 
number grows. 

There is a layer on each rigid wall in which the temperature increases from zero to 
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-----:------ ----- --- ---

some maximum value in the z direction away from the rods. The temperature field is 
nearly homogeneous out of the layers in the zone core. 

The convection heat transfer has a considerable effect on the temperature distribution 
for larger Prandtl numbers, as it is seen in Fig. 4 showing the results for sodium nitrate 

Ma=1080.46 
Pr=B.9 

FIG. 4. 

(e = 1.904 · 103 kg m- 3 , , = 1.48 · 10- 6 m2 s-t, x = 1.67 · to- 7 m2 s- 1, {3 = 1 · 10- 4 

K- 1 , a= 1.2 · l0- 1 N m- 1 , a= 7 ·lo-s N m- 1 K- 1 , Pr = 8.9, Bodyn = 0.1 and Ma = 
= 1080.46 for Ll T = 1 K [6]). The isoterms in the zone core are very similar to the stream 
lines, so the heat transfers mainly by the fluid motion. 

The results obtained here are in good qualitative agreement with some experimental 
data [8, 13] and numerical solutions for cylindrical zones [17-19]. 

The calculations for an axisymmetric zone with a quasi-equilibrium shape were also 
performed. Typical results for silicon are shown in Fig. 5. The shape is determined for 
y 1 = 1.4 rad and y2 = 1.3 rad. These values of the contact angles approximate those obser­
ved in the experiments reported in [8] (see Fig. 6 taken from that paper). For these angles 
and A = 1 the upper rod radius occurs to be equal to the radius of the lower one. Compar­
ing the stream lines in Figs. 2 and 5 obtained at the same conditions, one can conclude 
that there is a little visible difference between them. The vortex centers in the axisymmetric 
case are only shifted to the domain corners. But the vortex strength really increases almost 
twice and, as a result, the warmer portions of the liquid near the equator are carried more 
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FIG. 5. 

FIG. 6. 
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intensively along the free surface and the rod wall. T~is leads to a considerable change 
in the temperature field. The thickness of the temperature layers '3ecreases about twice. 
Moreover, two domains of maximum temperatures are formed just out of the layers and 
the central core of homogeneous temperature is pressed. 

The flow patterns are very similar to those presented in Fig. 6. We expect that the 
forthcoming calculations for larger zones and temperature differences will confirm quanti­
tatively the experimental data. 
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