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On the fluctuations of total pressure associated with a general type
of hydromagnetic turbulence

H.P. MAZUMDAR (TRONDHEIM)

CorreLATION of fluctuations of total pressure associated with a general type of MHD turbulence
is formulated in the wave number space. The resultant expression, as modified here for the
case of homogeneous and isotropic MHD turbulence, reduces to an elegant expression for

(eradw)?, @ being the total pressure.

Sformutowano zasady korelacji fluktuacji calkowitego ciénienia zwigzanej z ogélnym przypad-
kiem turbulencji magneto-hydrodynamicznej w przestrzeni liczb falowych. Wynik koficowy,
zmodyfikowany tutaj do przypadku jednorodnej i izotropowej turbulencji MHD, sprowadza

si¢ do eleganckiego wyrazenia dla (gradw)?, gdzie @ oznacza ci$nienie catkowite.

CdopmynupoBaHbl IPHHIHIIEI KOPPEJALHH GJYKTyallHH IIOJHOIO [OABJICHHS, CBA33HHON
C o0LWM CcIydaeM MarHHTOTMAPOAMHAMHYECKOH TypOYJIEHTHOCTHM B NMPOCTPaHCTBE BOJIHOBBIX
yuces1, OcTaTouHblil pe3yibTaT, MOARGALMPOBAHHbIN 3[eCk IS CIIy4as OJHOPONHOH M M30-
TPOIHOH MATHHTOTMPOIMHAMHYECKOX TypOyJIEHTHOCTH, CBOIMTCS K OJIETAaHTHOMY BbIpa-

kenuio uis (grad @)?, rae o 00O3HAUAET IIOJIHOE NaBJIEHHE.

1. Introduction

IN MANY hydrodynamical problems it is important to know the distribution of pressure
fluctuations in addition to velocity fluctuations and their correlations. The study of fluc-
tuations of pressure in ordinary hydrodynamic turbulence were initiated by OBUKHOV
[1] and HeiseNBERG [2]. Batchelor [3] gave a detailed analysis of pressure fluctuations
in the case of homogeneous and isotropic turbulence and obtained an expression for
(p—p)? in the wave number space, which is analogous to Heisenberg’s expression for
(gradp)? (cf. MonNIN and YAGLoM [4]). Useror [5] studied both theoretically and experi-
mentally the quadruple velocity correlations associated with the correlations of pressure
fluctuations in homogeneous turbulence). CHANDRASEKHAR [6] worked out a few cor-
relation functions involving fluctuations of total pressure in the case of homogeneous
and isotropic MHD turbulence. His calculation for the double correlation of the fluctu-
ations of total pressure in MHD turbulence is a straightforward generalization of BAT-
CHELOR’S [3] calculation for pp’ in ordinary homogeneous and isotropic turbulence.

In the present paper our aim is to derive the spectral equation for the double corre-
lation of the fluctuations of total pressure associated with a general type of MHD turbu-
lence as pictured in Sect. 2. The theory of such a general type of turbulence for the case
of a turbulence velocity field and for the case of turbulence scalar fields (e.g. temperature
and pressure) has been discussed respectively by GHosa [7] and by the present author
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[8, 9]. The spectral expression for the correlation (double) of fluctuations of total pressure
associated with the MHD turbulence, as obtained herein, is simplified for the case of
homogeneous and isotropic turbulence.

2. Spectral formulation of the correlation of fluctuations of total pressure in MHD turbulence

The equations governing viscous, incompressible hydromagnetic turbulent flows are

du, d o 5
2.1 7'{'?;“(”!“1“"!”!) = —a—x"""'vxui... s
oh ]
2.2) a—:‘ + a—x‘(htul-ulhl) = AV}h; .,
314, Bh, _
) T

where #;, h; denote respectively the turbulence components of the velocity and magnetic

fields at the point P(X, ¢7); » the kinematic viscosity; 4 the magnetic diffusivity ;o = % +

1 — ; ; ;
+E|h|2 the turbulent fluctuation of total pressure; p the turbulent fluctuation of static

pressure and g the fluid density. Taking the divergence of Eq. (2.1) and multiplying the
resultant equation by »’ at P’(X’, t), we obtain on averaging

2 1(0), (0) # 2
4 EEESUREN e, X - R ),

where
FOUQX, X', 1) = &0
FUPQ(X, X', 1) = wu0';
FGPIQ(X, X, 1) = hiho'

The equation for u; at the point P'(X’,¢) can be written as

@.5) LB a—f‘: (W uly—HL) = — g—‘; +V2, u).

Taking the divergence of Eq. (2.5) and multiplying the resultant equation by wu;u,’, we
obtain on averaging

2
(R Gt FUEPE X, X 1)
¢ ——a (1) (11), (1) d (1).(22).(1) | e
= o o, {FPIPPX, XX, =-FP92OX X, X, 1),

where #} is the turbulent velocity component at the point P”(X”, t);

1), (11).(1 oW ol 2(22).(1 LY S
FQu @ X, X, X, 1) = wujupu,,  FO:G20OX, X7, t) = uhjh,uy .
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Similarly, taking the divergence of Eq. (2.5) and multiplying the resultant equation by
h k', we get on averaging

Qn - - 33 j F-©@.aX’, X', X", 1)
ai ax {F(Z) ALy X' X", 1)— F(zj (22) (2)(x X', X", t )}
]

where &, is the turbulence component of the magnetic field at P”(x", )
FP QX X, X", 1) = ho'ly/,
FQG0 R X, XL, X, 1) = hjuphy',
FOG0- DX, X', X", 1) = hhjh,hy .
Now, introducing Fourier transforms of various correlation tensors as in [7], we obtain
the reduced versions of Eqs. (2.4), (2.6) and (2.7) respectively in the wave number space as
(2.8) K@ O(K,K',t) = —KKypiP: QK K, 1)+ K Ky QK K, 1),
where
POOE, K, 1),y QK K1)
and
piD QK K, 1)
are respectively the Fourier transforms of F(Q (9(X, X/, 1)
(2.9) FOPQX, X',t) and  FOPQ(X, X', 1),
K20 PR, K K 1) = =K Koyt 0 (K, K, K, 1)
+K Ky P52 VK, KL K, 1),
where
yOQPE KL K1), PG P(K KL K 1)
and
P ‘},.2."‘1’(1_(., K, ﬁu, )
are the Fourier transforms of
FP X X, X1, FPUDPX XX 0
and
F(l) (22) (1)(X xr n )
respectively;
(2.10) Klz (2) (0) (2)(K K,K' t)= —K;K lp("’) (11)'(2)(K K, K", 1)
+K; K, : 3D @YK, K, K", 1),
where
P OPEK, KL K ), v PR (K, KL K 1)

7>
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Yy G0 P K, KL K 1)

are respectively the Fourier transforms of
FR:QPX, X, X", 1), FP:U2PX X, X", 1)

and

P98 P, X, X", 1).
At this stage we take an extended view of the lemmas introduced by GHosu [7] for the
present case and obtain two important relations that will be used in the subsequent analysis.
Let Y;, Y, and ¥, be the respective components of fluctuating variables (it may well be
velocity fluctuations for magnetic vector fluctions or their combinations, no matter)
at P(X, 1), P'(X,¢) and P"(x", t).

Then, following GHOsH [7] we set for the merger of P” with P a relation of the form

(2.11) [ %0,y (K=K", K, K", 1)dK" = 24 ,(K, K', 1),
where
"t.j.k(k, k', k", t)

is the Fourier transform of the correlation tensor Y;Y; ¥’ (X, X', X", #). Let us consider
a fourth point P"’(X', t) and the fluctuating component (velocity or magnetic) at this
point for the instant ¢z. The quasi-normality hypothesis due to MiLLIONSCHIKOV [9] can
then be represented in the wave number space as

(2.12) Riggkt = K gtk 0 %
where
%K K, KK ), X (K K,t), X, (K,K"1t) et
are respectively the Fourier transform of
Y.Y Y (X, X, XX 1),
Y Y(X, X, 1), Y/Y(X,X"1) etc.

Accordingly, when the fourth point P’ coincides with the first point P and in addition
the third point P coincides with the second point P’, we obtain

@213) s wE K, ) = [ [ pa (K=K, K =K, ) (K", K™, 1)
+u (K=K, K, ), K =K', K", ))dK"dk"" + sy (K, )5 (K, 1).
Now, employing Egs. (2.9) and (2.10) and making use of the relations (2.11)-(2.13) we
derive two expressions
P O(K, K1) and  yi2 (K, K, t),
which, when substituted in Eq. (2.8), yield the desired spectral equation for the correlation

(double) of fluctuations of total pressure associated with a general type of MHD turbu-
lence as

(2.14) p Q- O(K,K', t) = H (K, K, 1)+ H,(K, K, 1),
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where
H(K, K, 1) = K‘K' K’K [] | (2 PE=K" K=K, )y DK K, o
4y (K=K K", )y P(K =K, K", 1)} dK"dK"’
- fj {w‘}’;‘f’(j(_——l_("”, K =K', n)p@ (K", K", 1)
+p D OK-K", K", )y P (K=K, K", 1)}dK"dK"”’
[ [ e &R K=K 0y P K 1)
@ OK=—K", K", )y (K —K", K", 1) }dK"dK"”
+ [ [ o p =R KR, 09 PR K7, )
+yp P OK—K", K", )P P(K ~K", K", 1)}dK"dK"
and
oK, K ) = S B b, Oy, 1)

—pAD(K, Dy GR(K, )=y DK, DpSP (K, 0+ K, DGR (K 1)

3. Reduction of equation (2.14) for the case of homogeneous and isotropic models in MHD
turbulence

a) case of homogeneous turbulence:
In homogeneous turbulence, the correlation functions
F(g):(g)(xs X’; t)) F(g):(} )(X! X’y f), F(li):(})(xy x’9 !)
and
FGO(X', X', 1)

composed of fluctuations of relevant physical quantities pertaining to the points P(X, r)
and P'(X’, t) are not separately dependent on X and X’ but only on § = X’ —X. According-
ly, we may introduce a three-dimensional Dirac-delta function of the form J(K+K’)

for simplification of Eq. (2.14) to the case of homogeneous turbulence. The spectrum
tensors

p O O(K, K1), ¢ PE KL, I PE KD, e PE KL ) ete.
appearing in Eq. (2.14) are to be replaced respectively by
PO O(K, K, 1) )(K+K'), 9K, K, 1)d(K+K),
pDO(K, K, 1) 8(K+K), PP (K, K, )é(K+K)

etc. before performing integration over the whole of K, K'- spaces. Taking the above
into consideration, we obtain after usual calculation the simplified form of Eq. (2.149)
in the of homogeneous turbulence as
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a1 [y, -, )ik
KiVKIVKWKIV
= ff ;{MJ P (”(K —K, )p (=K', K, t)
+W(‘1):(;')(K’ K’ t)w(l) (U(_.K K t) .'P(l) (2)(K K t)w(z)'(l)(_xv Kr t)
— (i).(2)(K’ K’ !)1[-’(2)'“)(“'1( K t) w(Z)(”(K _K t)w(l) (2)( K' K’ f)
— yPIR(K, —K, P DK K, )+ y P DK, K, 0y P(-KL K, )
+yp@- @K, =K, )pP: P(—K, K, 1)]JdKdK' where K" = K+K'
It is to be noted that H,(K, K’, #) appearing in Eq (2.14) has no contribution in the sim-
plified case of homogeneous turbulence as this disappears when requisite integrals are
computed.
b) Case of homogeneous and isotropic turbulence:

In the case of homogeneous and isotropic turbulence, the convergences of the type
uh; (h being assumed skew) are to vanish identically because of reflexional symmetry
(cf. TaTsum [10]). To obtain the result in a suitable form, we multiply Eq. (2.14) by K>
and all through follow the same procedure as adopted in deriving Eq. (3.1), and obtain
in the case of homogeneous and isotropic turbulence, the equation

() [ K@K, ~K, 1)K

IV g1V g1V g1V
'J = KK:'(: s " [y K, K, )y V(=K K 1)
+yp P (K, K, Dy O(—K, K, D+ DK, K, NypR P, —K, 1)

+y@ (K, =K', 1)pP P(-K, K, 1)]dKdK".

Let us now introduce the isotropic forms for the spectrum tensors
POOK, K, 1), pPPE, -K, ) and P PE K 0),
respectively, as

3.3 w(g):(g)(x, -K, 1) = }2 E(O)(k 1),

EMN(k, t) K.K;
3.4 PP O(K, K, 1) = "4n(K2 2 { = iifi ,
and

E®(k, 1) KK, |
(35) V’(%):(}’(K’ —K« t) = 4.‘7!:K2 {6” Il(zj [9

where E@(k, t) is the spectrum for the total pressure; EV(k, t), E¥(k, t) are respect-
ively the kinetic energy spectrum and magnetic energy spectrum.
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Substituting Eqgs. (3.3)-(3.5) and expressions similar to Eq. (3.4) and (3.5) for the
second rank tensors appearing in Eq. (3.2), we obtain the reduced version of Eq. (3.2) as

(3.6) f KEO(k, 1)dk = f f f TeaveE LEW e, NEO(K, )+

+E®(k, ) ED(K't))dkdk’dp,

where the space integral dK has been replaced by 4nk?dk and the multiple integral dKdK
has been replaced by 4mk2dk - 2nk'*dk'du, p being the cosine of the angle between K
and K’, and Q has the symmetric form given by

G.7) Q = ké+ k"4 + KV - 2k2k'2 — 2k 2V? — 22KV,
Now taking
(3.8) (grade)? = [ K2EO(k, 1)dk

0

into account and effecting integration on the right hand side of Eq. (3.6) with respect to
u, the reduced version of Eq. (3.6) is obtained as

(gradw)® = f f {EM(K)ED(K")+ E@(K)ED(K') Ykk' (—) dkdk’,

where

- L P g3 1t -1 1 —1yap, LFS

o(s) = ¢ (—w) =~ (s )+-24 (s+s™ )+ 6 (s—s71) Iand e
Expression (3.8) for (gradw)? thus obtained may be considered as a generalization of
Heisenberg’s expression for (gradp)? e.g.

(3.9) (gradp)? - p? f f E“)(k)E‘”(k)kkgb( )dkdk’

to the case of homogeneous and isotropic MHD turbulence. Estimation of (gradw)?
might be desirable for analyzing certain aspects of fluctuations of total pressure associated
with the homogeneous and isotropic MHD turbulence; however, a comprehensive study
will be possible when much experimental information regarding measurements of fluctu-
ations of total pressure is available.
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