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On Eulerian and Lagrangean objectivity in continuum mechanics 

R. W. OGDEN (BRUNEL) 

IN CONTINUUM mechanics the commonly-used definition of objectivity (or frame-indifference) 
of a tensor field does not distinguish between Eulerian, Lagrangean and two-point tensor fields. 
This paper highlights the distinction and provides a definition of objectivity which reflects the 
different transformation rules for Eulerian, Lagrangean and two-point tensor fields under an 
observer transformation. The notion of induced objectivity is introduced and its implications 
examined. 

Powszechnie uzywane w mechanice osrodka cillg}ego poj~e obiektywno8ci Oub niezalemo8ci 
od ukladu odniesienia) pola tensorowego nie rozr6mia p6l tensorowych eulerowskich, lagran­
zowskich oraz dwupunktowych. Praca niniejsza uwypukla te r6i:nice i wprowadza takll definicj~ 
obiektywno8ci, kt6ra odzwierciadla r6Znice praw transformacji w tych polach przy transformacji 
obserwatora. Wprowadzono poj~ie obiektywnosci wzbudzonej i przeanalizowano jego kon­
sekwencje. 

lloaceMeCTHo HcnoJIL3yeMoe n MexaHHI<e cnnonmoH: cpe.zn,t noHHTHe o6Dei<THBHOCTH (HJIH 
He3aBHCHMOCTH OT CHCTeMbi OTCqeTa) TCH30pHoro nom1 He pa3JIHqaeT 3itJiepOBbiX, JiarpaH>Ke­
BbiX H nayxToqe'UibiX TCH30pHbiX fiOJieH. HaCTOIDUa.H pa6oTa OTMeqaeT 3TH pa3HH~I H BBOJniT 
Tai<oe onpeneneHHe o6"LeJ<THBHOCTH, I<OTopoe OTPa>KaeT pa3H:Imbi 3ai<OHOB npeo6pa30Bamm 
a 3THX nomiX npH npeo6pa3oaamm Ha6monareJUI. BaeneHo noHHTHe aoa6ymneHHoA o6"bei<­
THBHOCTH H npoaHaJIH3HpOBaHbi ero CJienCTBHH. 

1. Introduction 

WITH THE MOTION of a deformable continuous body there are associated certain scalar 
quantities which can be regarded as intrinsic to the material constituting the body in the 
sense that all observers attach the same value to each such quantity. One example of such 
a scalar is the mass density of the material; another is the extension of an arbitrary line 
element of material. The speed of a material particle, on the other hand, depends on the 
choice of observer since different observers are in relative motion in general. These scalar 
quantities are measured in terms of scalar, vector and tensor fields which transform accord­
ing to certain rules under a change of observer (or change of frame of reference ct)). 

The purpose of this paper is to formalize the "observer indifference" of scalars described 
above by means of a definition which is reflected in the transformation rules of the associ­
ated vector and tensor fields under a change of observer. Fields satisfying this definition 
are said to be objective (1 ). An important consequence of the definition is that objective 
Eulerian and Lagrangean tensor fields have different transformation rules. Thi& is empha .. 
sized because previous definitions of objectivity have not distinguished between Eulerian 

(1) The terms "observer" and "frame of reference" are often used synonymously, as also are "objec­
tive" and "frame-indifferent". 
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and La.grangean tensor fields (see, for example, [4] and [5]). Before discussing the notion 
of objectivity in detail, we summarize some basic ideas relating to observers. 

Events (or phenomena) which occur in the physical world are manifested in space and 
time through the perception of what is referred to loosely as an "observer". We suppose 
that the space in which events are recorded by an "observer" is the (three-dimensional) 
Euclidean point space E (2) and that time is measured on the real lineR. We may regard 
an "observer" as being equipped to measure physical quantities and, in particular, to moni­
tor the relative positions of points in E and the progress of time in R. Formally, an 
observer, 0 say, is defined as a mapping (in fact, a homeomorphism) which assigns a pair 
{x, t) e Ex R to an event in the physical world, where x is the place and t the time of the 
event as perceived by 0 and E x R denotes the Cartesian product if E and R. 

Let x and x 0 be points in E. Then the point difference x-x0 is an element of the vector 
space, denoted E, which is called the translation space of E. The distance between the points 
x and x0 is denoted lx-x0 1. Similarly, if t and t0 are times in R, then t-t0 is a time inter­
val in R (which niay be positive or negative). Thus the events recorded by 0 as (x, t) and 
(x0 , t0 ) are separated by distance lx-x0 1 and time t-t0 • 

In continuum mechanics it is stipulated that different observers should agree about 
(a) the distance between events, (b) time intervals between events and (c) the order in 
which events occur. This means that lx-x0 l and t-t0 are preserved under a mapping 
from Ex R to Ex R which corresponds to a change of observer. Thus, if the events re­
corded by 0 as (x, t) and (x0 , t 0 ) are recorded by a second observer, 0* say, as (x*, t*) and 
(x~, t~) the most general one-to-one mapping from Ex R to Ex R which satisfies these 
requirements is specified by the equations 

(I. I) 

(1.2) 

x*-x~ = Q(t)(x-x0), 

t* = t-a, 

where a e R is a constant and Q(t) is an orthogonal (second-order) tensor which can be 
regarded as a linear mapping from E to E (3)). Note that no preferred choice of origin 
for E is involved in Eq. (1.1). 

The mapping from Ex R to Ex R characterized by Eqs. (1.1} and (1.2) is called an 
observer transformation and corresponds to a change of observer from 0 to 0*. It is assumed 
that Q(t) is suitably smooth. Essentially an observer transformation merely changes the 
description in Ex R of an event. 

For future reference we note that Eq. (1.1) may also be written as 

(1.3) . x* = Q(t)x+c(t), 

where c(t) is an arbitrary vector in E with x and x* now interpreted as the position vectors 
in E of the points x and x* relative to an arbitrary choice of origins in E for 0 and 0*, 
respectively. 

(2) Here E is taken to be the same for all observers, but we note that more abstract work does not 
require such a restriction [6]. 

(3) A more general treatment (see [6] and the comments in [4]) assumes that the Euclidean point space 
in which events are observed, E,, is different for each distinct instant of time t. With each instantaneous 
Euclidean point space E, is associated an instantaneous translation space E,. 
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2. Some fields associated with the deformation and motion 

As is usual in continuum mechanics, we regard a body consisting of continuously 
distributed material as a smooth three-dimensional manifold, B say, whose points are called 
material points. 

A configuration of B (as observed by 0) is a homeomorphism x : B -+ E which takes 
material points to the places they occupy in E. We identify a generic material point in 
B by the label X so that 

(2.1) x = X(X), X E B, 

where x is the place occupied by X in the configuration X· It is assumed that X and its 
inverse x- 1 have sufficient regularity for our requirements. 

We write f!4 = x(B) = {X(X): X E B} for the region of E occupied by Bin the con­
figuration X· Since no confusion should arise, we also refer to f!4 as a configuration of B. 
As the body moves and deforms, the region it occupies in E changes continuously, and 
a motion of B is defined as a one-parameter family of configurations Xr : B -+ E, where 
the subscript t identifies the time as parameter. 

Let f!4 r = Xr (B) and write 

(2.2) X = Xr(X) = (X , t), X E B, 

generalizing Eq. (2.1). (Of course, t may be restricted to some subset of R, but this need 
not be specified here.) 

For reference purposes, it is convenient to identify a certain fixed (but arbitrarily 
chosen) configuration of B so that material points are labelled during motion by their 
places in that configuration. Let Xo denote such a fixed configuration and write 

(2.3) - X = Xo(X) , 

where X is the place of the material point X in the configuration Xo· Also set Xo(B) = £f0 • 

The subscript zero may, but need not, correspond to t = 0 in Eq. (2.2). 
A fixed configuration 140 is called a reference configuration and f!l, the current configu­

ration of the body in the motion specified by Eq. (2.2). 
On eliminating X between Eqs. (2.2) and (2.3), we obtain 

(2.4) X = X {X0' 1(X), t} = x(X, t) = x,(X), 

where the one-parameter mapping Xr : £f0 -+ f!lr thus defined specifies the deformation 
from the reference configuration f!4 0 to the current configuration £fr. The definition of 
x, of course, depends on the choice of reference configuration. 

Thus far we have related the motion to a single observer 0. Under an observer trans­
formation whose spatial part is written as Eq. (1.3) the motion Eq. (2.2) itself changes 
according to 

(2.5) x*(X, t*) = Q(t)x(X, t) + c(t), 

where x* = x*{X, t*) is the description by 0* of the motion observed by 0 as Eq. (2.2). 
We remark that if Q(t) is restricted to being proper orthogonal, then Eq. (2.5) may be 
interpreted as a motion recorded by 0 consisting of a rigid-body motion superposed on 
the motion (2.2). We return to this point later. 
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In the following we examine some specific scalar, vector and tensor fields associated 
with the motion in order to distinguish those which depend intrinsically on 0 and those 
which are essentially independent of 0. 

First, the velocity i(X, t) = ox(X, t)fot of the material point X transforms according 
to 

(2.6) i*(X, t*) = Q(t)j:(X, t)+c(t)+Q(t)x(X, t) 

under an observer transformation. Clearly, the velocity is directly linked to the choice 
of observer through the relative motion of observers implicit in c(t) and Q(t). Similar 
remarks apply to the acceleration x(X, t). 

In this paper it is assumed for simplicity that all observers select the same reference 
configuration so that the particle X is allocated the same reference point X in E by each 
observer. This assumption affects the details but not the principle of our subsequent 
argument (4). 

From Eqs. (2.4) and (2.5) we see that the deformation gradient (5) 

(2.7) A(X, t) = Gradx(X, t) 

has the transformation rule 

(2.8) A*(X, t*) = Q(t)A(X, t). 

It follows that 

(2.9) detA* = ±detA, 

the sign on the right-hand side of Eq. (2.9) being+ (-)if Q(t) is proper (improper) ortho­
gonal. In Eq. (2.9) and for the remainder of this Section we omit the arguments from 
tensors (which may be regarded as fields over either ~0 or ~t through Eq. (2.4)). If Q 
is proper orthogonal, then Eq. (1.1) represents a rotation of vectors in E. 

It is usual to adopt the physically sensible convention that relative orientation of triads 
of material line elements is preserved under deformation. This means that 

(2.10) detA > 0 

and this convention is preserved under an observer transformation provided Q is proper 
orthogonal. We adopt this convention here for all observers and therefore rule out what 
may be regarded as physically unrealistic deformations in which a material becomes a mirror 
image of itself (6

). 

(4) If 0 and 0* select different reference configurations so that the material point X is allocated points 
X and X* in E by 0 and 0* respectively, then 

X~= QoX+co, 

where c0 is a constant vector and Q 0 is a constant orthogonal tensor. 
(

5
) Grad (with upper case G) and grad (with lower case g) denote the gradient operation relative to 

X and x respectively. 
(

6
) This viewpoint is not accepted universally and many authors admit improper orthogonal Q in 

Eq. (1.3). However, new light on the problem has recently been shed by MuRDOCH [3) who regards the 
space E* in which 0* records events as distinct from E. He assumes that the sign of det A is the same 
for all motions recorded by any given observer, allows different observers to disagree about orientation, 
and concludes that the implications for material response functions are independent of whether Q is proper 
or improper orthogonal, Q being a linear mapping from E to E* (the translation space of E*). 
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From Eq. (2.8) it follows that the right and left Cauchy-Green deformation tensors 
AAT and AT A satisfy 

(2.11) 

(2.12) 

A*A*T = QAATQT, 

A*TA* = ATA, 

respectively. Similarly for the respective inverses BBT and BTB of AAT and AT A, where 
B is the inverse of AT. 

Next, the polar decomposition 

(2.13) 

yields 

A= RU = VR 

(2.14) V* = QVQT, R* = QR, U* = U, 

where R is proper orthogonal and U and V (the left and right stretch tensors respec­
tively) are positive definite and symmetric. 

The Green strain tensor 

(2.15) 

and the Almansi strain tensor 

(2.16) 

therefore transform according to 

(2.17) E* = E, F* = QFQT. 

Under the deformation a material line element dX based on the point X in 910 maps 
onto a line element dx at x in 11, according to dx = AdX. We refer to dX and dx, respec­
tively, as Lagrangean and Eulerian line elements. From Eq. (1.3) we see that Eulerian line 
elements transform according to 

(2.18) dx* = Qdx, 

while a Lagrangean line element dX is unaffected by an observer transformation (in accord­
ance with our assumption that all observers select the same reference configuration). 

If dX' denotes a second Lagrangean line element at X, then dx' = A dX' is the cor­
responding Eulerian line element and the strain tensors (2.15) and (2.16) are connected 
through 

(2.19) dX' · (E*dX) = dX' · (EdX) :o= dx' · (Fdx) = dx*' · (F*dx*), 

use having been made of Eqs. (2.17) and (2.18). We shall comment on this shortly. 

From Eqs. (2. 7) and (2.8) we obtain A = r A and A* = QA + QA, where r is the 
velocity gradient tensor grad v and v{x, t) = x(X, t) with X = x{X, t). It follows that 

the body spin n = ~ (r- rT) and Eulerian strain-rate E = ~ (r + rT) have transforma­

tion rules 

(2.20) 
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and 

(2.21) 

under an observer transformation. 
Time differentiation of Eq. (2.19) (at fixed X) now yields 

(2.22) dX' · (EdX) = dx' · (I!dx) = dx*' · (I!*dx*). 

The body spin, which is a measure of the instantaneous rigid rotation of a triad of 
(Eulerian) line elements, is clearly influenced by the rotation of observers through their 
relative spin QQT. Tensors such as E, E and I! are not affected in this way. These are 
measures of extension and rate of extension of material line elements and also of the 
changing angles between pairs of line elements. The scalars attached to these tensors 
through Eqs. (2.19) and (2.22) are independent of the observer and this "observer indiffer­
ence" is reflected in the transformation rules (2.17)1 and (2.21). 

It is important to notice the distinction between the transformation rules for Eulerian 
tensors, such as AAT and I!, for lAgrangean tensors such as AT A and E and for two-point 
tensors such as A. We regard each of these tensors as objective in the sense that each may 
be associated with "observer-indifferent" scalars as described above although the tensors 
themselves satisfy transformation rules of the form (2.17)h (2.17h or (2.8). (Note that 
dx' · dx = dx'. (AdX)). We now justify and formalize this terminology which, at first 
sight, appears to conflict with the usual convention. 

3. Eulerian and Lagrangean objectivity 

In the literature tensors are often regarded as real multilinear mappings over the 
translation space E, either explicitly as in [4] or, more commonly, implicitly. This means 
that the distinctions between Eulerian, Lagrangean and two-point tensors cannot be made 
clear. The difficulty can be overcome in two ways. First, by associating the reference and 
current configurations with distinct translation spaces, E0 and Et, respectively, so that, 
for example, a (Lagrangean) vector v0 in E0 is unaffected by an observer transformation 
while an (Eulerian) vector v transforms according to v* = Q(t)v. (Recall the footnote (3)). 
The second approach is more general in that it is appropriate for tensor fields. This we 
now describe. 

The set of Lagrangean line elements dX at a point X in the reference configuration 
&10 spans a (three-dimensional) vector space which we denote by Tx(f!40 ). It is called the 
tangent space of (the manifold) &10 at X. Similarly, Tx(f!41) denotes the tangent space of 
(the manifold) &It at x and is spanned by the set of Eulerian line elements dx. 

In general the tangent spaces Tx(BI0 ) and Tx(f11t) are distinct and they are also distinct 
from the translation spaces E0 and E,, respectively (although there are isomorphisms 
between these spaces). 

Let Tx(&10)m x Tx(&lt)n denote the Cartesian product 

Tx(f!lo) X ... X Tx(f!lo) X Tx(f!lr) X ... X Tx(f!lt), 
m times n times 
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and 2( Tx(£!10 )"' x Tx(£!1,)", R) denote the set of real (m +n)-multilinear mappings over 

Tx(f110 ) and Tx(fflr). 
A Lagrangean tensor of order n at X is defined to be a member of the space 

!l'(Tx(!110)", R). Similarly, an Eulerian tensor of order nat xis a member of fi'(Tx(rllr)", R). 
A two-point tensor of Lagrangean order m and Eulerian order n is contained in !l'(Tx(r110)"' x 

X Tx(!!lr)", R). 
Lagrangean and Eulerian vectors at X and x, respectively, constitute the spaces 

fi'( Tx(ffl 0), R) and !l'( Tx(ffl,), R ). Strictly these are the dual spaces of Tx(f110 ) and Tx(alr). 
respectively, but, in order to avoid unnecessary complication, we do not distinguish between 

vector spaces and their duals in this paper. Note that Tx(f110) is unaffected by an observer 

transformation but Tx(f111) changes to Tx•(ffl~·), where fJI~. ~ X~·(B). 
Let T(x, t) E fi'(Tx(r111)", R) denote an Eulerian tensor of order n at x. The correspond­

ing multilinear form may be written 

T(x, t){dx< 1>, . .. , dx<">), 

where (dx(l>, ... , dx<">) E Tx((JA,)" and dx<k> E Tx(PAr) (k = 1, . .. , n). 

We say that T(x , t) is an objective Eulerian tensor of order n if its value T*(x*, t*) 

observed by 0* is such that 

(3.1) T*(x*, t*)(dx(l>*, ... , dx<">*) = T(x, t)(dx' 1 >, ... , dx<">), 

where dx<k>* = Q(t) dx<k> and dx<k) is arbitrary (k = 1, ... , n). For n = l, this yields 

the transformation rule 

(3.2) v*(x*, t*) = Q(t)v(x, t) 

for an objective Eulerian vector, while for n = 2 Eq. (3.1) is reducible to 

(3.3) T*(x*, t*) = Q(t)T(x, t)Q(t)T. 

The relations (3.2) and (3.3) are common in the literature (see [4] and [5], for example) 

but there is no corresponding simple representation for n ~ 3. However, it is instructive 
to examine the component form of Eq. (3.1) with respect to a rectangular Cartesian basis, 
{e;} say. Then, with 

T(x, t) = T11k . .. (x, t)e1®e1®ek® ... , 

T*(x*, t*) = T1jk.Jx*, t*)ej®eJ®e:® .. . 

and ei = Q(t)eit the objectivity statement (3.1) becomes 

(3.4) T1jk ... (x*, t*) = T,1k ... (x, t). 

We now turn to Lagrangean tensors. Let T 0 (X, t) E fi'(Tx(f110)", R) denote a Lagran­

gean tensor of order n. It is said to be objective if 

(3.5) T~(X, t*)(dX< 1 \ ... , dX<">) = T0 (X, t)(dX< 1>, ... , dX<">) 

for all Lagrangean line elements dX<k> (k = 1, ... , n) (recall that X and dX<k> are not 

affected by an observer transformation). More simply, this is expressible as 

(3.6) T6(X, t*) = T 0 (X, t). 
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The Eulerian tensor T(x, t) is the value at x E ~t of the tensor field T( · , t) defined 
over fflt. This is the Eulerian description of the field. But, through the motion x = x(X, t), 
it may be given a Lagrangean description T {x(X, t), t} corresponding to a field defined 
over !!J0 • It remains, however, an Eulerian tensor field. Equally, through the inverse X = 

= x- 1(x, t) a Lagrangean tensor field may be given an Eulerian description. Thus it is 
important to distinguish between a Lagrangean (respectively Eulerian) tenso~ - ~~1~ and 
the ~agrangean. (resp~~tively Eul~rian) des_crip~i~.n. of a tensor field. 

The situation is different in respect of scalar fields. If 4>( • , t) is a scalar field defined 
over Bit, the corresponding field 4> 0 ( • , t) over dl0 is specified by 

(3.7) ¢ 0 (X, t) = 4> {x(X, t), t}, X E dl0 

and conversely 

(3.8) ¢(x, t) = c/> 0 {x-1(x, t), t }, x E ~t· 

Hence, a Lagrangean (respectively Eulerian) scalar field is simply Lagrangean (respectiv­
ely Eulerian) description of a scalar field. 

A scalar field is objective if 

(3.9) 4>*(x*, t*) = 4J(x, t) 

or, equivalently, 

(3.IO) 4>6(X, t*) = 4J 0 (X, t) 

in view of Eqs. (3.7) and (3.8). We note that the scalar field detA is objective but the 
particle speed li(X, t)l is not. It follows from Eqs. (3.9) and (3.4) that the components 
TiJk ___ (x, t) of an objective Eulerian tensor are objective scalars. 

We have already noted that in standard texts such as [4] and [5] no distinction is 
made between Eulerian and Lagrangean fields and a field is said to be objective if it satifies 
the appropriate one of the (Eulerian) transformation rules (3.1 )-(3.3) or (3.9). It then 
follows that Lagrangian fields such as Ar A with the transformation rule (3.6) are, by 
default, not regarded as objective. On the other band, HILL [1] regards as objective only 
those fields for which the rule (3.6) holds. The distinction we have made between Eulerian 
and Lagrangean fields reconciles these two views which are essentially alternative mani­
festations of a single definition of objectivity. We shall expand on this point in Sect. 4. 

For two-point tensors a definition of objectivity intermediate between the relations 
(3.1) and (3.5) is required. With an Eulerian description we suppose T(x, t)E!e(Tx(!!Jor x 
x Tx(~1)", R). This is an objective two-point tensor if 

(3.11) T*(x*, t*)(dXCl>, ... , dX<m>, dx< 1 >*, ... , dx<">*) 

= T(x, t)(dX(l>, ... , dX<m>, dx(l>, ... , dx<">) 

for all dX<k> E Tx(~0), k = I, ... , m, and all dx<'> E Tx(!!Jt), I= I, ... , n, where dxrl>* = 
= Q(t) dx(l>. The definitions (3.1) and (3.5) are embraced by the relations (3.11) if we 
set either m = 0 or n = 0. It follows from the rule (2.8) that the deformation gradient 
A(X, t) is an objective two-point tensor corresponding to m = n = 1 in the relations 
(3.I1) (but note that A(X, t) is given a Lagrangean description here). 
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We remark that the characterization (3.11) of an objective tensor field is invariant 

under a change of reference configuration although the fields themselves change. 

In Section 2 we observed that the transformation (2.5) can be regarded by 0 as a rigid­

body motion superposed on the motion (2.2). Since we are restricting attention to proper 

orthogonal Q(t), it is appropriate to examine the consequences of this viewpoint in rela­

tion to the definition of objectivity. According to a single observer 0, the tensor T(x, t) 

is objective if it is invariant under a superposed rigid-body motion (1.3) in the sense that 

(3.12) T(x*, t)(dX< 1>, ... , dX<m>, dx< 1>*, . .. , dx<">*) 

= T(x, t)(dX< 1>, ... , dX<ml, dx<1>, ... , dx<">) 

with dX<k> and dx<'>* defined as for the relations (3.11). This approach is conceptually 

simpler than that involving changes of observer and is entirely equivalent to it provided 

Q(t) is proper orthogonal. A direct correspondence between the relations (3.11) and (3.12) 

is established by setting T*(x*, t*) = T(x*, t) with t* = t-a. 

4. Induced objectivity 

We have seen in Eqs. (3.7) and (3.8) that for a given motion and choice of reference 

configuration each Eulerian (respectively Lagrangean) scalar field is associated with 

a unique Lagrangean (respectively Eulerian) scalar field. Lagrangean and Eulerian vector 

and tensor fields may also be associated through the deformation (by means of the defor­

mation tensors A and Bin particular), but not uniquely. For example, if v is an Eulerian 

vector field, then Arv and Brv are Lagrangean vector fields. Respectively they are covariant 

and contravariant in character since 

(Arv) · dX = v · (AdX) = v · dx = v1dx 1, 

a 
(BTv) ·Grad= v · (BGrad) = v · grad = v1 ~' 

ux' · 

where v; and vi, respectively, are covariant and contravariant components of v with respect 

to a general curvilinear basis. 
We adapt the terminology of HILL [1] and refer to Arv and Brv as (covariant and 

contravariant) induced Lagrangean fields of v. Similarly, if v0 is a Lagrangean vector 

field, then Av0 and Bv0 are induced Eulerian fields of v0 • Note that AT Av0 is Lagrangean 

and AAT v is Eulerian. ~ second-order Eulerian tensor field T has induced Lagrangean 

fields ArTA, ArTB, BTTA, BrTB. More generally, if T and T0 are Eulerian and La­

grangean tensor fields respectively of order n, then the equation 

(4.1) 

with x = x(X, t) defines 2" possible induced Lagrangean (respectively Eulerian) fields 

ofT (respectively T0), where the vector fields v~k> E Tx(f40 ) and v<k> E Tx(PA,) are connected 

through either v<k> = Av~k> or v<k> = Bv~k> for each k(k = 1, .. . , n)C). 

The relation (4.1) may be generalized to include two-point tensor fields but in order 

to avoid introducing further notations we do not do this here. However, for illustration, 

(')We emphasize that we are making no distinction between a vector space and its dual in this paper. 
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we note that if T is an Eulerian tensor field of order two, then ArT, urT, TA, TB are 
induced two-points fields of T. 

From the definition (3.12) and a generalization of Eq. (4.1), it follows immediately 
that a tensor field is objective if and only if each of its induced fields is objective. 

With the help of Eq. (1.2), differentiation of Eq. (3.6) yields 

{4.2) T~(X, t*) = T0 (X, t), 

where the dot indicates time differentiation at fixed X. Thus the rate of change of an objec­
tive Lagrangean tensor is an objective Lagrangean tensor. Equally, all induced tensors of 
T0 (X, t) are objective, but the time derivative (either at fixed X or fixed x) of an Eulerian 
or two-point tensor field is not objective. For example, if vis an objective Eulerian vector 
field, then v* = Qv, v* = Qv+Qv and vis therefore not objective. But, since Arv is an 
objective Lagrangean vector field, 

-~(Arv) = Ar(v+rrv) at 
is objective and therefore the induced Eul~rian vector field v+rrv is objective. Similarly 
for 

--:t (Brv) = Br(v-rv). 

More generally, for constant fields v&k>, differentiation of Eq. (4.1) with the use of 
A= rA and B = -rru yields 

(4.3) 

which defines the Eulerian tensor field T(x, t). Two examples of T(x, t) are 

i'+rrT+Tr 

and 

T-IT-Trr, 

when T is of second order. These are induced Eulerian fields of the time derivatives of 
ArTA and BrTB, respectively. In the context of continuum mechanics they are often, 
referred to as "convected" derivatives ofT, while in the language of differentiable mani­
folds [2], they are essentially Lie derivatives ofT with respect to the velocity v. The result 
that objective tensors have objective Lie derivatives, given in [2], is equivalent to Eq. 
(4.2) with Eq. (3.6). 

5. Application to conjugate stress analysis 

Let T denote the Kirchhoff stress tensor (the product of the scalar det A and the 
Cauchy stress tensor) and E the Eulerian strain-rate (both symmetric second-order Eule­
rian tensor fields). Then the expression tr(TE) represents the rate of working of the stresses 
on the material of the body B per unit volume of the reference configuration ~0 • It may 
be rewritten as 

(5.1) 
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where E is the Green strain tensor (2.15) and the Lagrangean tensor BTTB is the 
(second) Piola-Kirchhoff stress tensor~ 

More generally, let E0 be a (symmetric) objective Lagrangean strain tensor in the sense 
of [1] so that E 0 is coaxial with the right stretch tensor U and is expressible as an isotropic 
tensor function of U through E0 = G0 {U), where G0 is a suitably behaved function sat­
isfying 

(5.2) 

for all proper orthogonal Lagrangean tensors P. Then there exists an objective (symmetric) 
Lagrangean tensor T 0 such that 

(5.3) tr(T 0 E0 ) = tr(TI!), 

and, following [1], T0 and E0 are said to be conjugate stress and strain tensors. 

It is natural to regard such strain tensors as functions of U, rather than V, since, 
through Eq. (2.15), the expression (5.1) is expressible as a linear form in U, as is the left­
hand side of Eq. (5.3). Nevertheless, consideration of the Eulerian strain tensor F = 

= RE0 RT = G0 {V), where F is not objective, is instructive. Substitution of E0 = RTFR 
in Eq. (5.3) leads to 

(5.4) tr{T0 E0) = tr(RT0 RrFJ+tr{(T0 F0 -E0 T0)RrR} 

after some rearrangement of terms. It follows that the Eulerian strain tensor F has a con­
jugate stress tensor, namely RT0 Rr, if and only if the latter term in Eq. (5.4) vanishes 

identically for all R. Since RTR is antisymmetric, this condition is met if and only if 

(5.5) 

i.e. T 0 is coaxial with E0 for all deformations from the reference configuration f-40 • In 
the context of elasticity theory this means that the material is isotropic relative to fJl 0 • 

Let W be the strain-energy function of an elastic material per unit volume in 140 so 
that 

W = tr(T0 E0 ) 

for any conjugate pair (T 0 , E0 ). Thus W can be regarded as a function of E0 • We write 
W{E0 ) but, of course, the precise form of the function is dependent on the choice of E0 • 

The stress T 0 is given by 

aw 
To= oEo. 

Objectivity of W, and hence of T 0 , follows automatically from that of E0 when E0 is an 
objective Lagrangean strain tensor. This implies that W is indifferent to superposed rigid 

motions of the material after deformation (as is required). 
Equally, W may be expressed as a function of F but the objectivity of W is not then 

automatic and the restriction 

W(QFQ~ = W(F) 
I 

for all proper orthogonal Q must be imposed. And, in general, a WfoF is not a stress tensor. 
This illustrates one well-known advantage of the Lagrangean over the Eulerian viewpoint. 

6 Arch. Mech. Stos. nr 2/84 
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