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On quasi-isotropic tensor functions
J. RYCHLEWSKI (WARSZAWA)

THE cLAss of such functions is considered, whose arguments and values are symmetric second-
-order tensors, and which has the following property: the value of the function of a certain
argument is at least as symmetric with respect to the rotations as the argument itself. A ge-
neral representation is given. The potential function is shown to have the property mentioned
above only in the case when it is isotropic.

Rozpatrzono klase funkeji, ktérych argumentami i wartosciami sg tensory symetryczne drugiego
rzedu, majacych nastepujaca wiasno$¢: warto8¢ funkcji od dowolnego argumentu jest co naj-
mni¢j tak symetryczna wzgledem obrotdéw jak ten argument, Podano ogélny wzér reprezen-
tacyjny. Pokazano, ze funkcja potencjalna ma wspomniang wlasno$¢ tylko wtedy, gdy jest
izotropowa.

Paccmorpen knacc ¢yHKIHH, aprymeHTaMH M 3HAUEHAMH KOTOPBIX SBIAIOTCA CHMETPHUHBIC
TEH30PbI BTOPOr'o paHra, obsaJalolliuX CJIEAYIOLIHM CBOMCTBOM | 3HaueHHe (PYHKLHH oT Jo6o-
TO apryMeHTa NO KpaHHeH Mepe TaK >K€ CHMMETPHYHO OTHOCHTEJIBHO BpAILleHHHl KaK M 3TOT
aprymeHT. Iano ofIuee BbIpakeHHe (YHKUHMI TOro Kiacca. IIoKasaHO, YTO MOTEHIMALHAS
<yuxuua obiagaeT YKasaHHbIM CBOHMCTBOM TOJIBKO TOra, KOrda OHa M30TPOITHA.

1. Formulation of the problem

IN THE THEORY of continua, mainly in mechanics and in related fields, a principal role
is played by such functions f which ascribe symmetric second order tensors f(w) to second
order symmetric tensors w. Such functions are represented, for instance, by the consti-
tutive laws of elastic bodies, viscous liquids etc. If a physical property of the body is inde-
pendent on the direction in space, the function f must be isotropic. Isotropic functions
are described by the classical representation theorems [1-6]

(1.1) f(w) = ¢, (W) 1+ (W)w+p;(wWw?,

¢; being the invariants.

In the case of an isotropic function, tensor f(w) is always coaxial with w. This important
property is not equivalent to isotropy. Consequently, it is reasonable and useful to consider
the entire class of tensor functions having this property.

DEerINITION. The function w — f(w) will be called quasi-isotropic if for each argument
w all its eigenvectors are at the same time the eigenvectors of the values of f(w).

Isotropic functions constitute a subclass of the quasi-isotropic functions. Our con-
siderations are aimed at the analysis of quasi-isotropic functions and, in the first place,
at those which are not isotropic. Taking this opportunity, certain new facts concerning
the isotropic functions will be pointed out.
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2. Representation theorem

The definition of quasi-isotropy may be formulated in the language of symmetry. The
entire space of symmetric second order tensors over the Euclidean vector space E is de-
noted by &, & = sym EQE. Element of & are denoted by w, T, ..., except for the
orthogonal tensors for which the notationss Q, ..., are generally accepted. The orthogonal
tensors realize the automorphisms (isometries) of the original space, a — Qa, a € £ and
constitute the orthogonal group O. This group acts in & according to the usual rule
w—Qxw=QuwQ’, Q*(axb) =QaxQb.

The symmetry group of tensor w is
2.1) 0,={Qe0|Q:zw=uw}.

LemMA 1. For the arbitrary tensors &, B the following statements are equivalent:
1) Each eigenvector of tensor « is the eigenvector of tensor .

2) Og o O,.
Proof of 1) = 2): Let us apply to a the spectral resolution theorem,
(2.2) o= o;nAn +an,@n,+o;n;@n;.
If the statement 1) holds true, then
2.3 B = fin;®n;+F,n,@n,+F;n;:@n;,
and for any prescribed 1 < i, k < 3
24 o = o= B = B4

Now, if Q#a = a, then also Q8 = 8.

Proof of 2) = 1): Let us consider, for instance, the eigenvector n, of tensor a-
Consider the mirror reflection (following the approach usedin [6]) Qn; = —n,;, Qn, =n;,,
Qn; = n;. It is obvious that Q € O, whence also Q €0z. Now Bn, = (Q+* B)n, =
= —(Q = B) Qn; = —Q(Pn,) whence it follows that Bn, = in,, Q.E.D.

It is seen that the definition of quasi-isotropic functions may also be formulated without
using the notion of eigenvectors.

DEFINITION. The “law” @ — f(w) will be called quasi-isotropic if for each w the “effect”
f(w) is at least as symmetric as the “cause” w, that is

(2.5) O((w) pus Ow.
Let us introduce the important invariant in %
(2.6) p(w) = inf |o;—awy,

‘where o; are the eigenvalues of w. Introduce the set of tensors with pairwise different
eigenvalues, w; # W, # W1# ©y,

@) & = {weFpw) # 0},

and its complement
(2.8) B = {weF|lulw) =0}
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In the set # we can distinguish the set of spherical tensors #,,w; = w, = w; = @
and its complement %, The decompositions into disjoint sets
2.9) S = AVB = VB, VB,
are of considerable importance for further considerations.
For each fixed w € & let us introduce the set
(2.10) W(w) = {te &0, > 0,}.
The condition (2.5) of the definition of quasi-isotropic functions may be written in an
equivalent form:
(2.11) f(w) € W(w).
Evidently, W(w) is a linear subspace in & (not invariant to Q) with the dimension

3 for wes,

(2.12) dimW(w) =412 for weA,,
1 for we,.

T € W(w) may easily be written in an explicit form.
The system of isotropic functions g;: & — &, i = 1, 2, 3 is called a generating system
if for each w

(2.13) W(ew) = Lin(g,(w), g2(w), g(w)).

This means that for w € o/ the tensors g,(w), g,(w), g;(w) constitute a base in W(w),
and for w € &, two of three tensors g,(w), g,(w), g;(w) represent a base in W(w), the
third one being their linear combination. For w € &, all g;(w) are spherical and at least
one of them is nonvanishing.

An example of generating systems is the well-known system

(2.14) giw)=1, g =w, gw=uw’
As a matter of fact, if w € &/, then the equation

(2.15) ol + fw +yw? = 0

holds true only for « = f = y = 0, and if w € #, then the equation
(2.16) al+fw =0

holds true only for « = g = 0.
Besides the standard system (2.14) there exist infinitely many other generating systems.
One of them is the system proposed in [7],
gl(w) &= lv gz(w) = w*’

(2.17) .
g2(w) = ((w*)?)*— ::%z*;z )

Here a* = a—-;— (tre)l is the deviator of a. The system has a useful orthogonality

property
(2.18) gi(w) g(w)=0 for i#k.
Other orthogonal generating systems were proposed in [7].
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Now we are ready to formulate the theorem.

THEOREM 1 (REPRESENTATION): Let g,,8,,8; be an arbitrary, fixed generating set.
The function f: & — & is quasi-isotropic if and only if there exist such three functions
oy, 0y, 03: & — R that for each w € &

2.19 f(w) = a,(w)g,; (W) +a,(w) g, (W) + o3 (w) g3 (w).

Proof. Itisthe immediate result of the definitions (2.11) and (2.13), Q.E.D.

In the particular case of Eq. (2.14) we obtain
(2.20) f(w) = a; ()14 oy (w)ew + o3 (w)w?,

The representation formula (1.1) is a particular case of Eq. (2.20).

Like in the classical case, the functions «, (their existence being guaranteed by Theorem
1) are not, in general, uniquely determined. It should be stressed, however, that Eq. (2.19)
is unique in &,

(2.21) flor & (ay, @2, o)l

Here 7|, means that the function 7 is considered only in «/. Significance of this statement
follows from the fact that “almost all” & consists of o/ in the sense of Lemma 2.

The nonuniqueness mentioned above may be avoided. Let us take an arbitrary gener-
ating system g,, g,, g;. Without any loss of generality it may be assumed that g,(w),
g,(w) are a base for all w € #,, and g,(1) = 1. Let us write

(2.22) f(w) = &;(w)g;(w)+ 2, (w)g2(w)+ 3 (w)gs(w),
where

(2.2 6:2((») =0 for weB,

a(w) =0 for weRUB,.
It may easily be shown that a; are uniquely determined,
(2.29) f— (@, a,, a3).

On the other hand, the form (2.22) proves to be not convenient in applications.

3. Symmetry of quasi-isotropic functions

In order to avoid possible misunderstandings, let us recall that the symmetry group
of a tensor function f is defined as

(3.1 O,= {Qe0|Qx+f(w) =f(Qxw) forall we},
while the symmetry group of a scalar function ¢ is
(3.2 0,= {Qe0|p(Q«w) = p(w) for all weF}.

The following fact is most useful:
THEOREM 2 (ON THE SYMMETRY OF CAUSES AND EFFECTS). Each symmetry of a “cause”
w being the symmetry of the “law” fis also a symmetry of the “effect” f(w)

(33) 0((,,,, b 0(('\0,,,.
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Proof. If Qe Oyrn O, then Q x f(w) = f(Q * w) = f(w), Q.E.D. (This theorem
remains true for the arbitrary “law” f: W — B where A is an arbitrary set of “causes”,
B — an arbitrary set of “effects”, and the same group % acts in A and in B).

For an isotropic function Of = O, Eq. (3.3) assumes the form of Eq. (2.5), what means
that each isotropic function is also quasi-isotropic, as it should be.

THEOREM 3. For an arbitrary quasi-isotropic function

(3.9 O = 05,103,008, 2 0, N0, NO,,.
Proof. If Q€ 0yn0,NO0,,, then
35 f(Q+w)=o,(Q+w)g,(Q+w)+ ...
= 4, (W)Qxg;(wW)+ ... = Qx[a;(w)g,(W)+ ...] = Q*f(w),

that is Q € Oy, and s0 Oy 5 0,,N0,,NO,,. The same is true for a,, &,, ;. If Q € O,
then

(3.6) 2,(Q*w)g, (Qxw)+ ... = Qx[&(w)g,(w)+ ...],
whence, in view of Eq. (2.24), #;(Q * ) = a,;(w) and it follows that Q € 0i:i= 12,3,
Q.E.D.

Let us mention, for the sake of completeness, the slightly modified classical represen-
tation theorem for isotropic functions.

THEOREM 4 (REPRESENTATION). Let g,, g3, g3, be an arbitrary, fixed generating system.
Function f is isotropic if and only if there exist such three invariants vy, y,, y3, 0y, = O
that for every w e &

€Y) J(©) = p,(w)g,(w) +9:(w)g2(w) +¥3(w)g3(w).

Proof. Sufficiency is obvious. Necessity: if f is isotropic, then it is also quasi-iso-
tropic, and the formulae (2.22) and (3.4) hold true. Since Oy = O, then also Og, = 03, =
= 03, = O. It follows that the invariants are, for instance, &, Q.E.D.

Formula (3.7) contains the classical formula (1.1) and all its possible modifications
proposed in [4] or [7]. Let us observe that, in view of the nonuniqueness of «;, Eq. (2.19)
may hold true for isotropic functions f, even for such «; which are not invariant in 4.

4. Continuous quasi-isotropic functions

Tensorial operation (a, 8) » « - B = «;B;; is a correct scalar product in &. It gener-
ates the norm

4.1 ] = (w-w)?

and the metric

4.2) o(w, T) = |w—r1|.

The product @ - B, and hence the norm |w| and the distance p(a, B) are invariant with
respect to the group O.

All topological notions like continuity, differentiability etc. will be understood exclu-
sively in the sense of the norm (4.1) (metric (4.2)). In particular, a subset ) € & is called
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open if for each & € # there exists an open ball |w—w| < & contained entirely in #.
The subset # <= & is called dense in & if in each open ball [w—w| < ¢ (for every
we S, ¢ > 0) there exists at least one tensor w € H#.
LemMmA 2. The subset of is open and dense in &.
Proof. Openness. Function f: R® > R, f(x,, X2, X3) = :nlf |x;—x,| is a function
#

continuous with respect to the metric (x; —y;)*+ (x;—y;)*+(x3—y3)®. Consider an
arbitrary tensor @ € & with the eigenvalues @, > @, > @;. In the neighbourhood of
@ the mapping w — (w,, w,, w;) is defined. The mapping is continuous (with respect
to the metric (4.2) and the metric in R?) since w; are the roots of the characteristic equation.
Hence the invariant u4: & — R given by Eq. (2.6), as a composition of continuous functions,
is a continuous function. Consequently, if u(®) # 0, then u(w) > 0 in a certain open
ball. According to Eq. (2.7), this ball belongs to <.

Density. Consider an arbitrary w € # and an arbitrary ball jw —| < e. If, for instance,

. . . 5 £ 5 £
@, = @, > w3(< w;), then the tensor w with the eigenvaluesw, = », — -+(=w1+--),

2 2
w, = @,,w; = ®, and with eigenvectors identical with the corresponding eigen ve-
ctors &, belongs to that ball. If @, = &, = @; = @, then the tensor with eigenvalues
W, = 0— ~§~, w, = &H-;, w; = @ belongs to the ball mentioned above, Q.E.D.

Lemma 3. If a scalar continuous function ¢: & — R vanishes in .o, then it is identic-
cally equal to zero.

Proof. As a matter of fact, if for a certain @ € %, g(w) # 0, then, in view of conti-
nuity, @(w) # 0 for all w from within a certain ball [w—w| < &. It is impossible since the
set &/ is dense in &, Q.E.D.

Consequently, we have arrived at the following important result connected with the
continuity:

THEOREM 5. For an arbitrary quasi-isotropic function f (in particular, for every isotropic
function) there exists at the most one set of continuous coefficients &, ®;, x3 of the repre-
sentation formula (2.19).

Proof. If two such sets of continuous coefficients «;, «; existed, we would have
for every w e ¥

“4.3) [0y (w)—ay (w)]g, (w) + ... = 0.
Since g;(w) constitute a base in every w € &/, then
(4.4 p(w) = gy(w)—oi(w) =0 on .

But ; is a continuous function and, according to the previous lemma, y;(w) = 0 for all
we, Q.ED.

If o; and (g,, g,, gs) are continuous, then obviously the quasi-isotropic function f is
also continuous. Then

(45) ) O = ou.moa,moa,-

Unfortunately, the continuity of «; is not so tightly connected with the continuity of
the generating system and of the function f itself. It was shown in [6] in connection with
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isotropic functions that such pathological continuous (or even differentiable!) functions
f may be found for which it is not possible to select continuous ¢; according to the for-
mula (1.1).

5. Potential functions

In certain applications (e.g. in elasticity) an important role is played by the potential
tensor functions. These are the functions f : &% — & of the form

(5.1) f=al,

where I : ¥ — R is a certain scalar function called the potential (in Cartesian notation

fu = ‘aH )

awu
Potentiality imposes strong limitations upon the function. For a differentiable poten-
tial function f (twice differentiable I7), the following condition is obtained:

(5.2 N7 = of,

where the transposition symbol ( )T denotes the permutation (ijk/) — (k/ij) (in the indicial
notation Eq. (5.2) has the form (9f);;.; = (9f)uiy). of = %1 it follows from.

Let us demonstrate that the potentiality practically eliminates the effect of proper
quasi-isotropy (quasi-isotropy without isotropy). Consider a proper subgroup %< O,
% # O and the functionally complete and functionally independent set of invariants
of the group ¥:

\

L, . ., L:%—-R, k<6,
I(Q+w) = [j(w) forall we¥, Qe¥%.

The set is assumed to be continuous and differentiable, and

(5.3

1
(5.4) Ii(w) = trw, L(w)= -;--trmz, L(w) = 5 tr w3,

Functional independence means that for each w of a certain subset F< & dense in &,
the tensors
(w) =1, Lw)=w, w)=uw?

5.5
ad oL (w), ..., L (w)

constitute a linearly independent system.
Let us consider a potential in the form

(5.6) I(w) = D[}(w), ..., L(w)],

where @ : R* — R is a continuous function possessing continuous derivatives ¢@/d1;,
i=1,.. k.

THEOREM 7. The potential function f = 0IT with the potential Eq. (5.6) is quasi-isotropic
only in the case when it is isotropic.

5 Arch. Mech. Stos. nr 2/84
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Proof. On the one hand

oD oD
(5.7 f=27ll = 71;31[+ +a—a31“'
On the other hand, if f is quasi-isotropic,
(5.8) f = a11+azw+13w2,
whence
oD od od\ , oD oD
(5.9) (11 —3—11‘) 1+(G2 —3—12-)0) +(a3—'a—l;)m = a—[‘"a[4+ cee +Halk.

The set (5.5) being linearly independent in 9"\, for each w € & we have
(5.10) O DL S S S
oI,

Since p; are continuous functions of w and & is dense in &, pi(w) = 0 for all w e &,
whence

(5.11) H(w) = A(1,, I, I5).

In conclusion, both the potential and the function f must be isotropic, Q.E.D.

6. Examples of quasi-isotropic functions

Starting with the representation formulae (2.19) or (2.20) with arbitrary scalar functions
e; which are no invariants, it is possible to obtain an infinite number of various functions
exhibiting the effect of proper quasi-isotropy, that is the functions which are quasi-iso-
tropic without being isotropic.

In the linear case the number of possibilities is rather limited what follows from:

THEOREM 8. Linear quasi-isotropic functions have the form

(6.1) f(w) = (a0 W+ Atrw)1+2uw,
where a is a parametric deviator, tra = 0. This function is orthotropic, that is
(6.2) O, = 0,.

It is isotropic if and only if a = 0.
Proof. Let us start with the representation theorem in its standard form (2.20).
Linearity in w implies the conditions

(6.3) o3(w) =0, «,(w) =2u = const,
and
(6.4) (W) = p-w,

where p. is a certain constant tensor. Without any loss in generality it may be assumed
that

(6.5) p=a+il, tra=0
what yields the formula (6.1).



ON QUASI-ISOTROPIC TENSOR FUNCTIONS OF SECOND ORDER 203

Condition Q € Oy; f(Q = w) = Q = f(w) for each w € & takes now the form

(6.6) aw=a(Q:rw)=(Q"+a) w
valid for each w € %, what means that
(6.7) | QTra=a,

whence Q € O,; Since tra = 0, the equality O, = O holds true only for @ = 0, Q.E.D.
Function (6.1) may be put in the form (%)

(6.8) f(w) = C-w,

where C is a fourth order tensor of the form

(6.9) C = 1Q@a+ A1®1+2ul,

while I- w = w for each w € &. The function (6.8) is differentiable and
(6.10) o =C.

It is not potential for a # 0 since the condition (5.2) is not fulfilled. Indeed,
(6.11) CT-C = a®1-1Qa # 0.

Separation of the deviatoric and spherical components in Eq. (6.1) yields the set equivalent
to Eq. (6.1)

(6.12) *(w) = 2uw*,

(6.13) trf(w) = (31+2p)trw +3a - w*,

The effect of proper quasi-isotropy in the linear case is seen to consist in adding to trf(w)
the term 3a - w* linearly dependent on the deviator w*.

If we assume that elastic materials are not necessarily hyperelastic [8], then Theorem
7 yields a general form of the linearly elastic quasi-isotropic material

(6.14) ¢ = (x' e+ Atre)l+2ue.

Here o is the stress tensor and € — small deformation tensor. Equations (6.12) and (6.13)
may be written in the equivalent form

(6.15) o* = 2ue*,

(6.16) p = Keta-€¥

1
with p = itro, e=tre, K= A+£ In the spherical states ¢ = pl, € = -581 the

3 3°
material behaves like the classical Hookean material. In spite of the linearity, the following
effect appears: the purely deviatoric state of stress is accompanied by the voluminal change

&= ——g— o. It should be stressed that the material (6.14) has no elastic potential.
")

- Indeed, the stiffness tensor C determined by the formula (6.9) does not satisfy the symmetry
condition, CT # C.

1
(") In the Cartesian indicial notation fi;(w) = Ciniow, Ly = ?(‘M O+ 41 Gky).

5%
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Replacing in Eq. (6.9) the strain tensor € with the stretching tensor d, we obtain the
constitutive equation of a material which might be called the quasi-isotropic Stokesian fluid

6.17) ¢ = (a-d+Atrd)1+2ud.
The tensor of anisotropy a is defined here in a material particle in its actual configuration.
Equation (6.17) seems to be more sensible than Eq. (6.14) though it requires a comple-

mentary constitutive assumption concerning o.
Let us consider the hyperelastic material,

(6.18) ¢ = H(o) - d,

where ¢ is the Zaremba-Jaumann derivative and H — an isotropic fourth order function.
The relation d — & is quasi-isotropic when Eq. (6.18) has the following particular form:

6.19) ¢ = [a(c)d+ A(o)trd]1+2u(c)d.

Here A, p are the invariants of o, and a is the isotropic, deviator-valued function. In com-
pliance with Eq. (1.1) for tree = 0,

(6.20) a(o) = ¢,(0)o* +¢,(0)(a?)",

@, @, being the invariants of o.

To conclude let us give an example of a nonlinear quasi-isotropic relation. Consider
the rigid-plastic incompressible material with the flow law

(6.21) o* = Md*, A= B

yas P.ar’
where P is the fourth order tensor with the properties: a- P-a > 0 for every a # 0,
k > 0 is a material constant. Combining Eq. (6.21) with P we obtain

(6.22) o*-P-o* = k%

This is the plasticity condition of the material considered. The flow law (6.21) is not “as-
sociated” with the condition (6.22), and this fact makes the quasi-isotropy effect (6.21)
possible. For P = I an isotropic material is obtained; it is the rigid-plastic Levy—Mises
material.

7. Generalization

The definition of a quasi-isotropic tensor function of arbitrary order and arbitrary
number of tensor arguments may be based on Eq. (2.5) what has been done in [9].
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