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On quasi-isotropic tensor functions 

J. RYCHLEWSKI (WARSZAWA) 

THE CLASS of such functions is considered, whose arguments and values are symmetric second­
-order tensors, and which has the following property: the value of the function of a certain 
argument is at least as symmetric with respect to the rotations as the argument itself. Age­
neral representation is given. The potential function is shown to have the property mentioned 
above only in the case when it is isotropic. 

Rozpatrzono kla~ funkcji, kt6rych argumentami i warto8ciami s~ tensory symetryczne drugiego 
rzctdu, maj~cych nastctpuj~~ wlasno§C: warto§C funkcji od dowolnego argumentu jest co naj­
mniej tak symetryczna wzgl~dern obrot6w jak ten argument. Podano og61ny wz6r reprezen­
tacyjny. Pokazano, ze funkcja potencjalna ma wspomnian~ wlasnosc tylko wtedy, gdy jest 
izotropowa. 

PacCMOTpeH I<nacc <l>YHI<~Hit, apryMeHTaMH H 3HaqeWIMH I<OTOpbiX HBJIRIOTCH CHMeTp~biC 
TeH30pbl BTOporo paHra, o6na,o;aromHX CJie~yromHM CBOHCTBOM: 3HaqeHHe $ym<~HH OT mo6o­
ro apryMeHTa no I<paHHCH Mepe Tal< >Ke CHMMeTp~O OTHOCHTeJibHO BpameHHH I<ai< H 3TOT 

apryMeHT • .[(aHo o6mee BbipameHHe 4>YHI<~HH 3Toro I<Jiacca. lloi<asaHo, qTO noTe~HaJibHa.R 
4>YHKI(IDI OOJIIlJ(aeT YJ<33aHHbiM CBOHCTBOM TOJibi<O TOr~a, I<Or~a OHa H30TpOnHa. 

1. Formulation of the problem 

IN THE THEORY of continua, mainly in mechanics and in related fields, a principal role 
is played by such functions f which ascribe symmetric second order tensors f( w) to second 
order symmetric tensors w. Such functions are represented, for instance, by the consti­
tutive laws of elastic bodies, viscous liquids etc. If a physical property of the body is inde­
pendent on the direction in space, the function f must be isotropic. Isotropic functions 
are described by the classical representation theorems [1-6] 

(1.1) 

cp1 being the invariants. 
In the case of an isotropic function, tensor f( w) is always coaxial with w. This important 

property is not equivalent to isotropy. Consequently, it is reasonable and useful to consider 
the entire class of tensor functions having this property. 

DEFINITION'. The function w--+ f(w) will be called quasi-isotropic if for each argument 
w all its eigenvectors are at the same time the eigenvectors of the values of f(w). 

Isotropic functions constitute a subclass of the quasi-isotropic functions. Our con­
siderations are aimed at the analysis of quasi-isotropic functions and~ in the first place, 
at those which are not isotropic. Taking this opportunity, certain new facts concerning 
the isotropic functions will be pointed out. 
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2. Representation theorem 

The definition of quasi-isotropy may be formulated in the language of symmetry. The 
entire space of symmetric second order tensors over the Euclidean vector space E is de­
noted by f/, f/ = sym E®E. Element of f/ are denoted by w, "t, ... , except for the 
orthogonal tensors for which the notationss Q, ... , are generally accepted. The orthogonal 
tensors realize the automorphisms (isometries) of the original space, a-+ Qa, a E E and 
constitute the orthogonal group 0. This group acts in f/ according to the usual rule 
w -+ Q * w = QwQr, Q * (a®b) = Qa®Qb. 

The symmetry group of tensor w is 

(2.1) Ow= {Q E OIQ * w = w}. 

LEMMA 1. For the arbitrary tensors ex, ~ the following statements are equivalent: 
1) Each eigenvector of tensor ex is the eigenvector of tensor ~. 

2) 0~ ~ Oa. 

P r o o f of 1) => 2): Let us apply to ex the spectral resolution theorem, 

(2.2) 

If the statement I) holds true, then 

(2.3) 

and for any prescribed 1 ~ i, k ~ 3 

(2.4) ex, = exk => ~~ = ~k. 
Now, if Q * ex :::o ex, then also Q * ~ = ~· 

Proof of 2) => 1): Let us consider, for instance, the eigenvector n1 of tensor ex· 
Consider the mirror reflection (following the approach used in [6]) Qn1 = -n1 , Qn2 = n2 , 

Qn3 = n3. It is obvious that Q E Oa whence also Q E a~. Now ~Dt = (Q * ~)nl = 
= - (Q * ~) Qn1 = - Q(~n1) whence it follows that ~n1 = J.n1 , Q.E.D. 

It is seen that the definition of quasi-isotropic functions may also be formulated without 
using the notion of eigenvectors. 

DEFINITION. The "law" w -+ f( w) will be called quasi-isotropic if for each w the "effect" 
f( w) is at least as symmetric as the "cause" w, that is 

(2.5) 

Let us introduce the important invariant in f/ 

(2.6) #(w) = inf lro, -rokl, 
i:F-k 
l,k 

where ro; are the eigenvalues of w. Introduce the set of tensors with pairwise different 
eigenvalues, ro1 =I= w 2 =I= w 3 =1= ro1 , 

(2.7) .9/ := {wE fflf-t(W) ::/= 0}, 

and its complement 

(2.8) PJ = {wE fflf-t(W) = 0}. 
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In the set f!J we can distinguish the set of spherical tensors PltJ w1 = w2 = w 3 = w 

and its complement f!J 2 The decompositions into disjoint sets 

(2.9) 

are of considerable importance for further considerations. 
For each fixed wE f/ let us introduce the set 

(2.10) 

The condition (2. 5) of the definition of quasi-isotropic functions may be written in an 
equivalent form : 

(2.11) f(w) E W(w). 

Evidently, W(w) is a linear subspace in f/ (not invariant to 0) with the dimension 

(2.12) dimW(w) = {~ 
fo r 

for 

for 

't" E W(w) may easily be written in an explicit form. 
The system of isotropic functions g, : !/' -+ !/', i = I , 2, 3 is called a generating system 

if for each w 

(2.13) 

This means that for wEd the tensors g1 (w), g2 (w), g3(w) constitute a base in W(w), 

and for w E f!4 2 two of three tensors g 1 ( w ), g2 ( w ), g3 ( w) represent a base in W( w ), the 
third one being their linear combination. For wE f!J 1 all g,(w) are spherical and at least 
one of them is nonvanishing. 

An example of generating systems is the well-known system 

(2.14) g1 (w) = 1, g2 (w) = w, g3(w) = w 2
• 

As a matter of fact, if w E d, then the equation 

(2.15) ~1+fJw+yw2 = 0 

holds true only for a = fJ = y = 0, and if wE f!4 2 then the equation 

(2.16) ~1+fJw = 0 

holds true only for ex = fJ = 0. 
Besides the standard system (2.14) there exist infinitely many other generating systems. 

One of them is the system proposed in [7], 

gt(w) = 1, giw) = w*, 
(2.17) tr(w*)3 

g (w) = ((w*)2 )*- w* 2 tr(w*) 2 

Here ex* = ex- ! (trex)1 is the deviator of ex. The system has a useful orthogonality 

property 

(2.18) g,(w) · ~(w) = 0 for i # k. 

Other orthogonal generating systems were proposed in [7]. 
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Now we are ready to formulate the theorem. 
THEOREM 1 (REPRESENTATION): Let g1, g2, g3 be an arbitrary, fixed generating set. 

The function f: !/-+ !/ is quasi-isotropic if and only if there exist such three functions 
«1 , ac2 , oc3 : !/ -+ R that for each w E !/ 

(2.19) 

Proof. It is the immediate result of the definitions (2.11) and (2.13), Q.E.D. 
In the particular case of Eq. (2.14) we obtain 

(2.20) f(w) = cx1 (w)l+cx2 (w)w+cx3(w)w2 • 

The representation formula (1.1) is a particular case of Eq. (2.20). 
Like in the classical case, the functions oc1 (their existence being guaranteed by Theorem 

1) are not, in general, uniquely determined. It should be stressed, however, that Eq. (2.19) 
is unique in .91, 

(2.21) 

Here 'YJ IJII means that the function 'YJ is considered only in .91. Significance of this statement 
follows from the fact that "almost all" !/ consists of .91 in the sense of Lemma 2. 

The nonuniqueness mentioned above may be avoided. Let us take an arbitrary gener­
ating system gb g2, g3. Without any loss of generality it may be assumed that g1(w), 
g2 (w) are a base for all we ~2 , and g1 (1) = 1. Let us write 

(2.22) f( w) = a1 (w) g1 (w) + a2(w )g2(w) + a3(w )g3(w), 

where 

for WE ~1 
(2.23) a3(w) = 0 for wE f1l1ufJI2. 

It may easily be shown that at are uniquely determined, 

(2.24) 

On the other hand, the form (2.22) proves to be not convenient in applications. 

3. Symmetry of quasi-isotropic functions 

In order to avoid possible misunderstandings, let us recall that the symmetry group 
of a tensor function f is defined as 

(3.1) 

while the symmetry group of a scalar function qJ is 

(3.2) Orp = {Q e Olq>(Q * w) = q>(w) for all we 9'}. 

The following fact is most useful: 
THEOREM 2 (ON THE SYMMETRY OF CAUSES AND EFFECTS). Each symmetry of a "cause" 

w being the symmetry of the "law" f is also a symmetry of the "effect" f(w) 

(3.3) 
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Proof. If Q E Or nOw, then Q * f(w) = f(Q * w) = f(w), Q.E.D. (This theorem 
remains true for the arbitrary "law" f: ~ -+ ~ where ~ is an arbitrary set of "causes", 
~ - an arbitrary set of "effects", and the same group t§ acts in ~ and in ~). 

For an isotropic function Or= 0, Eq. (3.3) assumes the form of Eq. (2.5), what means 
that each isotropic function is also quasi-isotropic, as it should be. 

THEOREM 3. For an arbitrary quasi-isotropic function 

(3.4) 

P r o o f. If Q E Oa.
1 
n0a.

2
f"'l0a.,, then 

(3.5) f(Q * w) = cx1 (Q * w)g1 (Q * w)+ ... 

= cx1(w)Q * gt(w)+ ... = Q •[cx1(w)g1(w)+ ... ] = Q * f(w), 

that is Q Eo,, and so o, ::> Oa.lf"'l0a./"'10a.,· The same is true for eXt, al, «3. If Q Eo,, 
then 

(3.6) «1 (Q * w)gt (Q * w)+ ... = Q *[at (w)gt (w)+ ... ], 
whence, in view of Eq. (2.24), &1(Q * w) = a1(w) and it follows that Q E 0~,, i = 1, 2, 3, 
Q.E.D. 

Let us mention, for the sake of completeness, the slightly modified classical represen­
tation theorem for isotropic functions. 

THEOREM 4 (REPRESENTATION). Let g 1 , g 3 , g 3 , be an arbitrary, fixed generating system. 
Function! is isotropic if and only if there exist such three invariants 1p1 , 1p2 , VJ3 , 0.,, = 0 
that for every w E 9' 

(3.7) 

P r o o f. Sufficiency is obvious. Necessity: if f is isotropic, then it is also quasi-iso­
tropic, and the formulae (2.22) and (3.4) hold true. Since 01 = 0, then also 0;

1 
= 0;

2 
= 

= 0;, = 0. It follows that the invariants are, for instance, ~, Q.E.D. 
Formula (3. 7) contains the classical formula (1.1) and all its possible modifications 

proposed in [4] or [7]. Let us observe that, in view of the nonuniqueness of ex, Eq. (2.19) 
may hold true for isotropic functions f, even for such cxi which are not invariant in !A. 

4. Continuous quasi-isotropic functions 

Tensorial operation (ex, ~) -+ex · ~ = cxiJ ~~J is a correct scalar product in 9'. It gener­
ates the norm 

(4.1) 

and the metric 

(4.2) 

The product ex · ~' and hence the norm lwl and the distance e{ex, ~) are invariant with 
respect to the group 0. 

All topological notions like continuity, differentiability etc. will be understood exclu­
sively in the sense of the norm (4.1) (metric (4.2)). In particular, a subset Jlf E !I' is called 
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open if for each wE Jf there exists an open ball lw-wl < e contained entirely in Jf. 

The subset Jfc 9' is called dense in 9' if in each open ball lw-wJ < e (for every 

w E 9', e > 0) there exists at least one tensor w E Jf. 
LEMMA 2. The subset d is open and dense in 9'. 
Proof. Openness. Function f: R 3 

-+ R,f(x1 , x 2 , x 3) = inf lx; -xkl is a function 
l#k 

continuous with respect to the metric (x1 - Y1) 2 + (x2 - y 2 )
2 + (x3 - y 3 ) 2 • Consider an 

arbitrary tensor wEd with the eigenvalues rol > w2 > w3. In the neighbourhood of 

w the mapping w -+ (ru 1 , ru2 , w3) is defined. The mapping is continuous (with respect 

to the metric (4.2) and the metric in R 3
) since w1 are the roots of the characteristic equation. 

Hence the invariant p,: 9' -+ R given by Eq. (2.6), as a composition of continuous functions, 

is a continuous function. Consequently, if p,(w) =F 0, then p,(w) > 0 in a certain open 

ball. According to Eq. (2.7), this ball belongs to d. 

Density. Consider an arbitrary wE f!4 and an arbitrary ballJw -wl < e. If, for instance, 

ro, = w2 > w, ( < w,), then the tensor .., with the eigenvalues w' = ro' - ; ( = ro, + ; ) ' 

C02 = · ro2' (()3 = w3' and with eigenvectors identical with the corresponding eigen ve­

ctors w, belongs to that ball. If rol = w2 = ro3 = w, then the tensor with eigenvalues 

ru 1 = w- ; , ru 2 = w+ ; , w 3 = w belongs to the ball mentioned above, Q.E.D. 

LEMMA 3. If a scalar continuous function q;: !/-+ R vanishes in d, then it is identic­

cally equal to zero. 
P r o o f. As a matter of fact, if for a certain w E fJl, q;( w) =F 0, then, in view of conti­

nuity, q;(w) =F 0 for all w from within a certain ballJw-wl < e. It is impossible since the 

set d is dense in 9', Q.E.D. 
Consequently, we have arrived at the following important result connected with the 

continuity: 
THEOREM 5. For an arbitrary quasi-isotropic function f (in particular, for every isotropic 

function) there exists at the most one set of continuous coefficients <X1 , <X2 , <X3 of the repre­

sentation formula (2.19). 

Proof. If two such sets of continuous coefficients <Xi, IX~ existed, we would have 

for every wE 9' 

(4.3) 

Since g;(w) constitute a base in every wEd, then 

( 4.4) 1p1( w) = 1X1( w)- a~( w) = 0 on d. 

But tp; is a continuous function and, according to the previous lemma, tp1(w) = 0 for all 

(a) E 9', Q.E.D. 
If IX; and (g 1 , g2 , g3) are continuous, then obviously the quasi-isotropic function f is 

also continuous. Then 

(4.5) 

Unfortunately, the continuity of IXj is not so tightly connected with the continuity of 

the generating system and of the function f itself. It was shown in [6] in connection with 
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isotropic functions that such pathological continuous (or even differentiable!) functions 
f may be found for which it is not possible to select continuous fPi according to the for­
mula (1.1). 

5. Potential functions 

In certain applications (e.g. in elasticity) an important role is played by the potential 
tensor functions. These are the functions f : f/ -+ f/ of the form 

(5.1) r = an, 
where II : 9' -+ R is a certain scalar function called the potential (in Cartesian notation 

fu= _an). 
owij 

Potentiality imposes strong limitations upon the function. For a differentiable poten­
tial function f (twice differentiable II), the following condition is obtained: 

(5.2) 

where the transposition symbol ( )T denotes the permutation (ijkl)-+ (klij) (in the indicia! 
notation Eq. (5.2) has the form (of)uu = (of)ku1). of = o2n it follows from. 

Let us demonstrate that the potentiality practically eliminates the effect of proper 
quasi-isotropy (quasi-isotropy without isotropy). Consider a proper subgroup ~c. 0, 
t§ # 0 and the functionally complete and functionally independent set of invariants 
of the group t§ : 

/1, ... , lk: !/ -+ R, k ~ 6, 
(5.3) 

11(Q * w) = /1(w) for all wE!/, Q E ~. 

The set is assumed to be continuous and differentiable, and 

(5.4) 

Functional independence means that for each w of a certain subset i c f/ dense in f/, 
the tensors 

(5.5) 
a/l(w) = l, aJ2(w) = w, a/3(w) = w 2, 

o/4(w), ... 'aJk(w) 

constitute a linearly independent system. 
Let us consider a potential in the form 

(5.6) 

where <P : Rk -+ R is a continuous function possessing continuous derivatives of/Jfol;, 
i = 1' ... 'k. 

THEOREM 7. The potential function f = an with the potential Eq. (5.6) is quasi-isotropic 
only in the case when it is isotropic. 

5 Arch. Mech. Stos. nr 2/84 
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P r o o f. On the one hand 

act> act> 
(5.7) f = oil= 

011 oi1 + ... + oik oik. 

On the other hand, if f is quasi-isotropic, 

(5.8) 

whence 

(5.9) (~.- ~i.) 1+(~2 - ~i, ).., + ( ~3 - ~~ )...> = ~i. Oh+ ... + ~i. OI •. 

The set (5.5) being linearly independent in#, for each wE ff we have 

oct> 
(5.10) ~,(w) = of, = 0, i = 4, ... , k. 

Since 'Pi are continuous functions of w and !;; is dense in !/, 'Pi(w) = 0 for all wE f/', 
whence 

(5.11) 

In conclusion, both the potentia] and the function f must be isotropic, Q.E.D. 

6. Examples of quasi-isotropic functions 

Starting with the representation formulae (2.19) or (2.20) with arbitrary scalar functions 
tXi which are no invariants, it is possible to obtain an infinite number of various functions 
exhibiting the effect of proper quasi-isotropy, that is the functions which are quasi-iso­
tropic without being isotropic. 

In the linear case the number of possibilities is rather limited what follows from: 
THEOREM 8. Linear quasi-isotropic functions have the form 

(6.1) f(w) = (ex· w+J.trw)1+2,uw, 

where ex is a parametric deviator, trex = 0. This function is orthotropic, that is 

(6.2) 

It is isotropic if and only if ex = 0. 
P r o o f. Let us start with the representation theorem in its standard form (2.20). 

Linearity in w implies the conditions 

(6.3) 

and 

(6.4) 

where fL is a certain constant tensor. Without any loss in generality it may be assumecf 
that 

(6.5) fL = ex+ J.l, trex = 0 

what yields the formula (6.1). 
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Condition Q E 01 ;/(Q * w) = Q * f(w) for each wE f/ takes now the form 

(6.6) e~· w = e~· (Q * w) = (Qr *ex)· w 

valid for each w E f/, what means that 

(6.7) 

whence Q e 0"; Since tre~ = 0, the equality o. = 0 holds true only for « = 0, Q.E.D. 
Function (6.1) may be put in the form (1) 

(6.8) f(w) = C · w, 

where C is a fourth order tensor of the form 

(6.9) C = l®cx+A1®1+2,ul, 

while I· w = w for each we f/. The function (6.8) is differentiable and 

(6.10) of= c. 
It is not potential for« ¥= 0 since the condition (5.2) is not fulfilled. Indeed, 

(6.11) cr -C = cx®l-l®cx ¥= 0. 

Separation of the deviatoric and spherical components in Eq. (6.1) yields the set equivalent 
to Eq. (6.1) 

(6.12) f*{w) = 2,uw*, 

(6.13) trf(w) = (3A+2,u)trw+3cx· w*. 

The effect of proper quasi-isotropy in the linear case is seen to consist in adding to trf(w) 
the term 3« · w* linearly dependent on the deviator w*. 

If we assume that elastic materials are not necessarily hyperelastic [8], then Theorem 
7 yields a general form of the linearly elastic quasi-isotropic material 

(6.14) a = ( Cl • E + A tre) 1 + 2,ue. 

Here a is the stress tensor and E- small deformation tensor. Equations (6.12) and (6.13) 
may be written in the equivalent form 

(6.15) 

(6.16) 

a*= 2,ue*, 

p = Ke+«· e*, 

with p = ! tra, e = tre, K = A+ j. In the spherical states a= pl, E = ! e1 the 

material behaves like the classical Hookean material. In spite of the linearity, the following 
effect appears: the purely deviatoric state of stress is accompanied by the voluminal change 

K 
e = ---- a. It should be stressed that the material (6.14) has no elastic potential. 

2p, 
· Indeed, the stiffness tensor C determined by the formula (6.9) does not satisfy the symmetry 
condition, cr ¥= c. 

5* 

1 
(1) In the Cartesian indicial notation fiJ(w) = CIJ"'w"" I,1u = - (~,,. ~~~ + ~~~ ~tJ). 

2 
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Replacing in Eq. (6.9) the strain tensor£ with the stretching tensor d, we obtain the 
constitutive equation of a material which might be called the quasi-isotropic Stokesian fluid 

(6.17) o = (ex· d+ Atrd)l +2,ud. 

The tensor of anisotropy ex is defined here in a material particle in its actual configuration. 
Equation (6.17) seems to be more sensible than Eq. (6.14) though it requires a comple­
mentary constitutive assumption concerning ex. 

Let us consider the hyperelastic material, 

(6.18) a= H(o) · d, 

where a is the Zaremba-Jaumann derivative and H-an isotropic fourth order function. 
The relation d-+ a is quasi-isotropic when Eq. (6.18) has the following particular form : 

(6.19) a= [cx(o)d+A(o)trd]l+2fl(a)d. 

Here ;., p, are the invariants of a, and ex is the isotropic, deviator-valued function. In com­
pliance with Eq. (l.l) for trcx = 0, 

(6.20) 

q;1 , q;2 being the invariants of a. 
To conclude let us give an example of a nonlinear quasi-isotropic relation. Consider 

the rigid-plastic incompressible material with the flow law 

(6.21) a*= A.d*, 
k 

A.- -----­- v' d* . p. d* ' 

where P is the fourth order tensor with the properties: ex · P · ex > 0 for every ex =1= 0, 
k > 0 is a material constant. Combining Eq. (6.21) with P we obtain 

(6.22) 

This is the plasticity condition of the material considered. The flow law (6.21) is not "as­
sociated" with the condition (6.22), and this fact makes the quasi-isotropy effect (6.21) 
possible. For P = I an isotropic material is obtained; it is the rigid-plastic Levy-Mises 
material. 

7. Generalization 

The definition of a quasi-isotropic tensor function of arbitrary order and arbitrary 
number of tensor arguments may be based on Eq. (2.5) what has been done in [9]. 
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