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On constrained size-effect bodies 

A. TRZ~SOWSK.I (WARSZAWA) 

ELASTIC size-effect bodies with internal constraints are considered. Investigations have been 
restricted to the class of so-called homogeneous processes. The model of dynamics, the form of 
generalized forces describing the response of bodies under consideration and the interpreta­
tion rule for these forces have been proposed . 

Rozwazane S(l spr~zyste ciala z efektem skali i z wewn~trznymi wi~zami. RozwaZania zostaly 
ograniczone do klasy tzw. jednorodnych proces6w. Zaproponowano model dynamiki, postac 
uog6lnionych sil opisuj(lcych reakcj~ rozwai:anych cial oraz regul~ interpretacyjn(l dla tych sil. 

PaccMaTpHBaiOTCH yrrpyrue Tena c 3<l><l>eKToM MacUITa6a H c BHYTPeHHHMH CBH3HMH. Paccym­
.QeHIDI orpaHHtieHbl KJiaCCOM T. Ha3. O.QHOpO.QHbiX npo~eCCOB. llpe.QJIOH<eHbi MO.QeJib ,r:uma­
MHKH, BH.Q o6o6meHHhiX cHJI, OIIHChiBaromHX pe~mo paccMaTpusaeMhiX Ten, a TBK>Ke HH­
TepnpenmuoHHbrlt npllliQHII .QJIH 3THX CHJI. 

1. Introduction 

THE SUBJECT of this paper is the elastic size-effect body which has internal constraints. 
The description of such a body, on the ground of the M. E. GURTIN and P. P. Gumuou 
internal constraints theory [1], has been presented in the paper [2]. From this description 
it appears that in the "purely mechanical" case (that is in an adiabatic, isothermic and 
isentropic process) the dissipation inequality for a body with internal constraints has 
the form 

( l.l) b =-E+W ~ O, 

where E is the total internal energy of this body and W is a net working. In the case of 
an unconstrained body or, for instance, in the case of so-called "scalar constraints" (see 
Sect. 2, Eq. (2.2)) the formula (1.1) reduces to b = 0. It is an open question whether 
b = 0 is valid for every form of constraints or not. Hence one should take into account 
the possibility that in the M. E. Gurtin and P. P. Guidugli internal constraints theory, the 
law of conservation of energy is neglected. In this paper we postulate the fulfillment of 
this law for every form of constraints. It has been shown in the paper that for elastic bo­
dies the dipole moment of the momentum balance law, which we stated as a postulate 
in [2] (cf. also [3] and [11]), can be derived from the definition of the net working. We also 
depart from the definition of constraint effects as additive corections for quantities inde­
pendent of constraints. 
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186 A. TRZ~MKI 

2. The space of mechanical configurations 

We wiJI deal with a material body of an immovable center of mass, homogeneomly 
deformed. Spatial configurations of such a body can be identified with the subsets ~ of 
the Euclidean vector space E3 (the physical space in this case) that have the form ~ = 

= /(F) (~0} where ~0c E 3 is a distinguished set (called the body reference configura­
tion) and /(F) is a linear mapping of the form 

l(F)(X) = F ·X, X E £ 3 , 

(2.1) 
FE GL+(£3) = {F EE3®E3: det F > 0}. 

We assume that the body reference configuration ~0 is compact, connected and has a non­
empty interior; such sets will be called "solid figures". 

Let us denote by M a connected C1 - manifold such that (cf. [l]} 
(Ml) M c GL+(£3), 

(M2) 1 EM, 
(M3) Q eo+(£3), FE M => QF EM, 

where o+ (E3}c GL + (£3) is the set of all proper orthogonal tensors, AB denotes the group 
multiplication (in the shape of the simple contraction) in GL+(£3

) and 1 is the unity of 
this group. We will call this manifold M the space of mechanical configurations and the 
curve in M- the homogeneous M-process. The solid figure ~0 with the attached mass 
m and the family of all solid figures of the form ~ = /(F) (~0), F E M will be called the 
M-body. A set ~ of the form~ = /(F) (~0), FE M will be called the admissible or the 
M-admissible (spatial) configuration. The set ~0 will be considered as theM-body reference 
configuration. It follows from the condition (M2) that a M-body reference configuration 
is the M-admissible configuration, and from the condition (M3) that rigid rotations of 
M-admissible configurations are also M-admissible configurations. We say that theM-body 
is "an unconstrained body" if dimM = 9 (= dimGL+(£3)) and that the M-body has 
"constraints" if dimM < 9 (cf. [1, 2]). We will say that the M-body has "scalar con-
straints" if 

(2.2) 
M = {FE GL+(£3):h(F) = 0}, 

hE C1(G), M c G E topGL+(£3). 

In this paper we will consider spaces of mechanical configurations with the differential 
structure induced from the Euclidean linear space E 3 ®E3 • Let us denote by Tp(E 3

) the 
Euclidean linear space of tensors of valence p(p = 0, I , 2, .. . ) over £ 3

; in these spaces 
the full tensor contraction defines the inner product. By the symbol D we will denote the 
EucJidean covariant derivative in T2 (E3 ) = E 3 ®E3 (cf. [4]). Iff: G-+ Tp(E 3

), G E top T2 

(E3
) is a differentiable function (in the Frechet sense), then the derivative Dis defined by 

(2.3) V(F' V) E G X T,(E3
), 

of 
Dvf(F) = oF (F). V' 

where the symbol ·denotes the full tensor contraction. We wiJJ consider a space mechan­
ical configurations M to be a Riemanian submanifold ("hypersurface") in the space­
T2(E3), namely the tangent space M(F) to Mat the point FE M will be identified with 
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a linear subspace of T2(E3) with the inner product induced from T2 (E3). The Euclidean 

covariant derivative D and the orthogonal projection operators Pp: T2 (E3)-+ M(F), 

FE M induce the Riemanian covariant derivative V on the hypersurface M (cf. [4])., 

For real-valued functions on M extensible on an open set G E T2 (E3), this covariant 

derivative can be defined as follows: 

(2.4) V(F, V) Eif, Vvh(F) = Pp (~~(F)) · V, 

where M is the tangent bundle to M and h: G -+ R; this means that 

(2.5) VF eM, Vh(F) = Pp (;!(F)). 

3. The elastic-size-effect M -body 

Let ~0 be the M-body and F: I-+ M(Ic. R- interval)- a homogeneous M-pro­

cess. Let us consider external force fields on ~0 : the body force field b(X, 1), X E Int ~0 , 

T E I (lnt ~0 - the interior of ~0) and the surface force field s(X, T), X E o~0 , T E I 

(o~0 - the boundary surface of ~0) . The power P of external forces acting on ~0 and 

the kinetic energy K of this M-body have the following form: 

K(~o; T) = ~ J lv(X, T)l 2dm(X), 
,0 

(3.1) 

P(~0 ; T) = J b(X, T) · v(X, T)dV(X)+ f s(X, T) • v(X, T)dS(X), 
\lo o\lo 

where lvl 2 = v · v, dm(X) = e0dV(X), eo = m/V(~0), V(~0) = vol~0 and, according 

to the assumption that the M-body has an immovable center of mass, 

v(X, T) = F(T) ·X, X E~0 , 

(3.2) · dF • 
F(T) = dT(T) E M{F(t)). 

Let us designate by W(~0 ; T) the net working at the time T E I, that is the quantity which 

in an inertial frame of reference has the form ([5]): 

(3.3) 

and let us denote by 4>(~0 ; T) the internal energy at the time T E I of the "size-effect 

M-body ~0" (cf. [2]). 

The size-effect is formalized here by dependence of the internal energy and the net 

working on the solid figure ~0• This can be presented, for instance, by dependence on 

such global geometrical characteristics as: 

4* 

width (in any direction) or thickness of the solid figure, 

volume of the solid figure 
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and also by dependence on geometrical characteristics of the boundary surface of this 

solid figure, such as: 
boundary surface area, 
total mean curvature or total Gaussian curvature of this surface. 

For example, in the classical theory of capillarity a finite internal energy density is 

attributed not only to the volume but also to the surface measure. This means that we can 

endow a body with the internal energy functional <p(~) of the form 

(3.4) <p(~) = a V(~) + bF(~), 

where a and b are some constants, V(~) and F(~) are the volume and the boundary sur­

face area of an admissible spatial configuration ~ of the M-body ~0 • The attempt to 

generalize the classical theory of capillarity, undertaken in the paper [6], resulted among 

others in the generalization of the internal energy functional <p(~) in the form (cf. also [7]) 

(3.5) <p(~) = aV(~)+bF(~)+cH(~)+d, 

where c and dare some constants, H(~) is the total mean curvature of the set ~ boundary 

surface and ~ is a convex solid figure. In our notations 

(3.6) 

for the convex reference configuration ~0 . This function C/>(~ 0 ; r), r E l can be inter­

preted as the internal energy function (in homogeneous M-processes) of the convex 

M-body ~0 of an elastic incompressible nonlocal fluid (in such a case the space M of 

mechanical configurations has the form (3.20)). 
The principle of conservation of energy for the M-body ~0 means that (cf. Intro­

duction) 
PosTULA,TE 1. In every homogeneous M-process 

(3.7) 

The mechanical response of the M-body ~0 to its deformation can be described by 

PosTULATE 2. In every homogeneous M-process 

(3.8) Vr E I, 3N(~0 ; r) E T2 (E3), W(~0 ; r) = -N(~0 ; r) · F(r) . 

The tensor N(~o; r), describing the mechanical response of the M-body ~0 at the time 

r E I, is called the generalized force; this quantity is not at all univocally definite by the 

homogeneous M-process. IfF : I-+ M is a certain homogeneous M-process and N(~0 ; r) 

an arbitrary generalized force at the time r E I in this process, then this force can be repre­

sented in the following form: 

(3.9) 
N(~o; r) = Nt(~o; r) + Nn(~o; r), 

Nt(~o; r) EM (F( r) ), Nn(~0 ; r) E M (F( r) )-1 

where M(F}L is the orthogonal complement in T2 (E 3) of the tangent space M(F). It 

follows from the definition of generalized forces Nt and Nn that they have to satisfy the 

orthogonality condition 

(3.10) 
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Since in every homogeneous M-process 

(3.11) 
W(58 0 ; r) = -Nr(580 ; r) · F(r), N,(580 ; r) · F(r) = 0, 

Nr(5So; r) = PF(-r)(N(5So; r)), 

189 

where Pp: T2 (E3
) ~ M(F), F E M are orthogonal projection operators, therefore the 

generalized force Nr(580 ; r) can be considered as the so-called "constitutive quantity" 
(both in the case of an unconstrained M-body and in the case of an M-body with con­
straints - cf. [5]). Thus the constitutive equations of the size-effect M-body describing 
its elastic response are given by 

PosTULATE 3. There are continuous functions £(580 ; ·): M ~ R and Ne(~0 ; ·): 

M ~ T2 (E3
) such that for every homogeneous M-process F: I~ M 

(3.12) Vr E/, <1>(~0 ; r) = E(~0 ; F(r)), Nr(~0 ; r) = Ne(580 ; F(r)). 

Moreover, we will assume that the function E(~o; ·) can be extended to a differentiable 
function on an open set G c T2 (E3

) such that Me G. Then from Eqs. (3.7)-(3.12) it 
follows that 

(3.13) 

where the Riemanian covariant derivative Vis defined by the formula (2.5). 
Let us note that from Eqs. (2.5), (3.9), (3.12) and (3.13) we have 

N(~0 ; 't) = -DE(~0 ; F(r))+Nc(~0 ; r), 

Nc(5So; r) = N,(~0 ; r)+P.L(DE(~0 ; F))(r) E M(F(r)}L, 
(3.14) 

where P.L(A) (r) = P~<•> (A(r)) for A :I~ T2 (E 3
) and P~: T2 (E 3

) ~ M(F).L, F EM 
are orthogonal projection operators. In the formula (3.14) the term DE is independent 
of constraints and thereby the constraint effect is described (in contrast to the formula 
(3.9)) only by the generalized force Nc (such that Nc • F = 0 for every homogeneous 
M-process). The form (3.14) of the constraint effect description has been used up to now 
as the definition of this effect (e.g. [1, 5]). Both the form (3.9), (3.12) and (3.13) and the 
form (3.14) of the constraint effect description can be useful. For example, in the case of 
scalar constraints it is simpler to find the form of the generalized force Nc (cf. the formula 
(2.2) and [1], or [5]): 

(3.15) Nc(~0 ; 't) = cc(~o; T) · Dh (F( r) ). 

The orthogonality condition (3.10) limits the form of both Nt and N,; for example, in 
the case (3.20) we have 

(3.16) 

The "normalization" p = 1/3 trN of the scalar p is used, for example, in the theory of 
simple incompressible materials (cf. [5]). 

The formula (3.13) describes the so-called "hyperelasticity", that is the case where 
the only source of elasticity is the change of the internal energy (cf. Postulate 1). Another 
kind of elasticity response is, for example, the so-called "rubberlike elasticity", that 
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is the case where the only source of elasticity is the change of the entropy. In order to 
give a description of this kind of elasticity. let us consider "ideal elastomeric size-effect 
bodies" [8]. In adiabatic and isothermal processes such a body can be considered as an 
elastic and incompressible body such that 

(3.17) DE(~0 ; 8 0 ; F) = 0 for detF = 1 

where eo is the temperature of both the reference configuration ~0 and an isothermal 
process, E(~0 , eo; F) is the internal energy in this process. In this case the dissipation 
function reduces to the form (cf. [2]) 

(3.18) 
c) = -d>(~o; T)+ W(~o; T}, 

~(~o; T) = U(~0 ; F(T}), 

where U(~o; F), F e M designates the Helmholtz free energy function for the ideal 
elastomeric size-effect body ~0 and isothermal processes, that is (cf. [2]) 

(3.19) U(~0 ; F)= E(~0 , 80)-e0 S(~o, eo; F), Fe M, 

where S{~0 , e0 ; F) is the entropy of this M-body ~o in isothermal M- homogeneous 
processes with the constant temperature eo and the constant internal energy E(~0 , e0) 

(see Eq. (3.17)). The space M of mechanical configuration has here the form 

(3.20) M = {Fe GL+(E3}:detF = 1 }. 

The consideration presented in this section for the case of the hyperelasticity response 
can be translated to the case defined by the formulae (3.18)-(3.20) and by the assumption 
that the dissipation function vanishes along the M- homogeneous processes ( ~ = 0). 
Then the generalized force N(~0 ; T) is given by the formulae (3.12) and (3.16) and the 
formula 

(3.21) 

or has the form (cf. Eqs. (3.14) and (3.16) 

(3.22) N(~0 ; T) = -DU(~0 ; F(T))+.P(~0 ; T)l. 

4. Dynamics 

If Fe M is some fixed mechanical configuration, then from Eqs. (3.1)-(3.3), (3.7) 
(3.11) and (3.12) it follows that 

(4.1) VV E M(F), (P-N!" -Mext) • V = 0, Nn • V = 0. 

Ne = Ne(~o; F) E M(F) is defined by Eq. (3.13) (or Eq. (3.21)), T denotes "transpose", 
P = P(~o; T) e T2(E3) is the dipole moment of momentum of theM-body ~0 : 

(4.2) P(~o; T) = J X®dp(X, T) = J(~0)F(T)T 
~0 

where dp(X, T) = v(X, T) dm(X), dm(X) = eodV(X), J(~0) is the solid figure ~0 inertia 
tensor computed with respect to its mass center: 

(4.3) J(~0) = J X®Xdm(X) 
.,0 
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and Mcx, = Mex,(~o; T) E T2 (£3) is the dipole moment of external forces: 

(4.4) Mcu(~0 ; T) = J X®b(X, T)dV(X)+ f X®s(X, T)dS(X). 
\lo ~o 

Since P, Ne and Mext are independent of V E M(F) and M(F)®M(F).l = T2 (E 3), then 
the formulae (3.9) and (4.1) and the Liu theorem ([9]) yield (cf. [2]) 

CoNCLUSION. In every homogeneous M-process the dynamics of the elastic size-effect 
M-body ~0 is described by the dipole moment of the momentum balance equation: 

(4.5) P(~o; T) = N(~o; T)T +Mcu(~o; T). 

Let us remark that the condition of immobility of the mass center means that the total 
external force acting· on ~0 vanishes, that is we have in addition 

(4.6) VT e/ J b(X, T)dV(X)+ f s(X, T)dS(X) = 0. 
~0 a~o 

It follows from this conclusion that the generalized force N is a dipole moment. This 
dipole moment has a representation in the following form: 

N(~0 ; T) = -S(~0 ; T)F(T)*, 

S(~o; T) = Se(~o; F(T))+Sn(~o; T) 
(4.7) 

with the notations 

(4.8) 

and the condition 

(4.9) 

The internal energy E must be an objective scalar function since it describes the physical 
properties of a material body, that is, for every tensor Fe M the following relations 
holds: 

(4.10) 

It may easily be shown (on the grounds of the formula (2.5), the conditions (M1)-(M3) 
and basing on similar considerations as in the case of an unconstrained body- cf. [5]) 
that the condition (4.10) yields Se = s;. This fact leads us to assume (in order to obtain 
conformability with the internal constraints theory for simple bodies - cf. Final remarks 
and [1] or [5]) that also Sn = SI. 

Finally Eq. (4.5) can be rewritten as follows (cf. [2], [3]): 

FJ(~o)Fr = -S+FMu,, 
(4.11) 

s = sr, FE M, 

where AB denotes the simple contraction of the tensors A, Be T2 {E3
). Equation (4.11) 

together with Eqs. (4.3), (4.4)) and (4.6)-(4.9) or with Eqs. (3.21) and (3.22) defines the 
global model of dynamics for an elstic size-effect M-body ~0 (of an immovable center 
of mass and being homogeneously deformed). 

It is interesting to make a comparison between this global model and the local model 
of dynamics (in the Cauchy form of the momentum balance law- e.g. [5]) for homo-

http://rcin.org.pl



192 A. TRZ~WSKI 

geneous elastic simple bodies (cf. [5] and final remarks Eqs. (5.1) and (5.3)). lfbodyforces 
are absent (b = 0), then this local model of dynamics allows for only trivial homogeneous 
processes of the form F('r) = F 0(1+-rF1) ([5]). Equation (4.11) does not give such 
a paradoxical limitation of the admissibility of homogeneous processes. 

5. Final remarks 

Let us consider an unconstrained size-effect body ~0 with a boundary a~o being 
a two-dimensional orientable manifold in the Euclidean vector space £ 3 • In this case 
S · = Se and the dipole moment S has the following representation: 

S = f X®t(~o; F, x)dS(x) = V(~) T(~o; F), 
(5.1) ~0 

t(~0 ; F, x) = T(~o; F)n(x), V(~) = ·vol~, 

where~= /(F) (~0) (/(F)- see Eq. (2.1)) is a deformed configuration of the body ~0 
n(x), x e a~ is the outward unit vector normal to the boundary a~ of the solid figure 
~ and T(~0 ; F) e T2 (E 3) is a symmetric tensor (cf. the commentary to Eq. (4.10)) of 
the form 

(5.2) 

If £(~0 ; F) = me(F) for m = V(~0) eo = V(~)e - the mass of both ~0 and ~. then 

(5.3) T(~o; F) = eDe(F)FT 

this means that such a size-effect M-body is the so-called "simple body" (homogeneous 
and unconstrained) with the Cauchy stress tensor T(~0 ; F) (cf. [5]). 

The circumstance that this simple body is a particular case of the size-effect body ~0 
enables us to take a contact interaction force (between the material solid figure ~0 and 
its exterior) at the point x e a~ in the form of the vector t(~0 ; F, x) (the formula (5.1)). 
Therefore the formula (5.2) can be considered as an extension of the stress tensor concept 
from simple bodies on elastic size-effect bodies. The real material, for which such a gener­
alization can be useful, is for example brass. Namely, on the one hand brass is treated 
in its applications as a macroscopically homogeneous material, but on the other hand 
it has been confirmed for this material that, for example, the thickness of a cylinder sample 
influences the Young's modulus ([10]). For liquid bodies the existence of the surface 
tension also creates the possibility of considering this generalized stress tensor (cf. formulae 
(3.6), (3.4) or (3.5) and formulae (3.12), (3.13), (3.16); cf. also [7], [8]). In this case, or 
more generally in the case of size-effect M -bodies, a generalization of the Cauchy stress 
tensor can be taken in the form (cf. Eq. (5.1)) 

1 
(5.4) T(~o; -r) = V(~T)S(~0 ; -r), V(~T) = vol~n 

where S(~0 ; -r) is defined by Eqs. (4.7)-(4.10) and ~T = /(F(-r)) (~o). 
The dipole moment S(~0 ; -r) (or the generalized stress tensor T{~0 ; -r)) represents 

mechanical properties of the elastic size-effect M-body ~0 • Both the manner of description 
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of these properties ( cf. commentary after Eq. (3.3)) and the model of dynamics (cf. Eq. 

(4.11) and the commentary to this) have a global character and not a field character. This 

means that the body smallest material element, which we can endow with mechanic or 

dynamic properties, is the whole body; in a field theory (local or nonlocal) such an element 

is the infinitesimal neighbourhood of a body point. 
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