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The thickness of the boundary layer on a stretching filament
moving in a fluid at rest

S. MAY (WARSZAWA)

THE LAMINAR stationary boundary layer on an infinite filament, moving along its axis in a resting
fluid, is considered. The filament issues from a circular orifice, with an initial velocity wo. Due
to stretching, the velocity of the filament increases, and its radius decreases at increasing distance
from the origin. The thickness of the boundary layer was investigated using the Karman-Pohl-
hausen method. It has been found that for intense stretching the thickness of the boundary
layer varies nonmonotonically along the filament,.

Rozwazana jest laminarna stacjonarna warstwa przy§cienna na nieskoficzonym widknie
o przekroju kolowym, poruszajacym si¢ wzdiuz osi w spoczywajacym plynie. Widkno wy-
dobywa sie z predkoscia wo z kolowego otworu. Wskutek rozciagania predkos¢ wildkna narasta
w kierunku ruchu, za$ promiert maleje. Stosujac metode parametryczna Kérmdna-Pohlhausena
badano numerycznie grubo$¢ warstwy przysciennej. Stwierdzono, ze przy intensywnym rozcig-
ganiu grubo$¢ widkna zmienia si¢ wzdtuz witbkna w sposob istotnie niemonotoniczny.

PaccmarpHBaeTCsi JIAMHHAPHBIN CTallMOHAPHBIN NOTPAHMYHBIN CJIOH Ha GECKOHEUHOM OCECHM-
METPHYECKOM BOJIOKHE KPYTJIOro Ceu€HHA, ABHIKYIIEMCH BAOJIb CBOEH ocH B HOKOHLUCI:ICH
YKHAKOCTH. BOJIOKHO BBIABHraeTcA M3 KPYIJIOTO OTBEPCTBHA C HAaYaJbHOM CKOPOCTBIO W,.
Beitey cTBHE pacTsiXKeHHA BOJIOKHA, CKOPOCTB €0 M0 HAMPABJICHUIO ABHYXKEHHSA YBEIHUUBACTCA
a paguyc —ymeHbmaerca. B paGore ¢ momombio mapamerpuueckoro Metona Kapmana-IToas-
ray3eHa pacCUMTaHa TOJIIIMHA MOTPAHHYHOTO CJI0AA, I HEKOTOPOH MOIENM DACTSKEHMA BO-
NOKHA. YCTaHOBJIEHO, UYTO NMPH HHTEHCHMBHOM PAaCTAXKEHHMH TOJILIHHA BOJIOKHA U3MEHAETCA IO
JAJIHHE BOJOKHA HEMOHOTOHHO.

1. Introduction

SAKIADIS [1-3] in 1961 investigated a special class of boundary layer flows on continuously
formed surfaces moving in a fluid at rest. Flows of this type represent a new class of bound-
ary layer problems, with solutions substantially different from those with usual boundary
conditions. Using the Kéarman-Pohlhausen method, SAKIADIS analysed the boundary
layer on a plane sheet [2] and a circular cylinder [3] issuing from a slit or an orifice, respect-
ively. Later the boundary-layer flow on a continuously formed cylinder was investigated
also by KoLpenHOF [4], CRANE [5] and CLARK and DoOMBROWSKI [6].

In this paper the laminar stationary axisymmetric flow of an incompressible fluid,
generated by a stretching filament issuing from a circular orifice into a half-space, is con-
sidered (Fig. 1). The coordinates x and y denote the distance to the bordering plane and
to the body (the filament), respectively. The initial radius of the filament is ry, and the
initial velocity of its surface — wy. The velocity of the body surface increases, and its
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FiG. 1. A general view of a stretching filament.

radius decreases at increasing distance from the origin. An assumption is made that the
radius r(x) varies slowly along the filament:

dr
Far from the body the fluid is at rest. Near the body the viscous forces generate a flow

which can be described by the boundary-layer approximation. The Karman-Pohlhausen
method of solution of boundary-layer equations is used.

£1.

2. The boundary layer equations

The stationary axisymmetric boundary layer is described by Eqs. (2.1):

du dv v
A T
(2.1)
g (3_" +_La_“)
ax ay ayr "y ay]’

where u, v denote the velocity components in the x- and y-direction respectively; o is the
density; and » the kinematic coefficient of viscosity. The pressure derivative dp/dx has
been omitted in Eq. (2.1), because the fluid is at rest at infinity.

The specific feature of the problem considered are unconventional boundary condi-
tions. For the classical boundary layer the velocity vanishes at the body surface, and is
nonzero at infinity. In our problem the u-component of the velocity is nonzero at the body
surface (on the body, due to inequality (1.1), u can be assumed equal to the velocity of the
body surface w(x)); and is varying, in general, along the body; while the velocity at infi-
nity is zero. The boundary layer with similar boundary conditions was first considered by
Sakiadis. Our problem differs from that analysed by Sakiadis (in [3]) for two reasons:

1) the filament radius is not constant,

2) the fluid velocity at the body surface varies along the body. These factors can
substiantially influence the development of the boundary layer; and, as it will be seen
later, can in certain cases give quite different general picture of the layer.
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3. The parametric method

The strict solutions of the boundary layer equations are known for very special prob-
lems only. As a consequence, for practical needs many approximated methods have
been developed. One of the best known is the parametric method, associated with the
names of Karman and Pohlhausen. In that method a certain type of functional dependence
of u on y is postulated. Namely, it is assumed that » is a known function of the coordinate
v and of a certain shape coefficient &, which is a function of x to be determined. It is de-
manded that u fulfill the boundary conditions and Egs. (2.1) on the body and on the edge
of the boundary layer. Inside the layer, instead of the differential equations (2.1), an overall
integral condition is postulated to be fullfilled. This integral condition permits to determine
the shape coefficient «, and thereby to find the velocity. To obtain this condition, one
multiplies the first and the second equations of the system (2.1) by uy and y, respectively,
sums both equations, and there up on integrates across the layer (see [9]). Assuming that
the corresponding integral exists and that the operations of integration and differentiation
can be interchanged, one obtains

[¢
X € 2y =
3.1 L dy

Equation (3.1) expresses the conservation of momentum in projection on the axis of the

body. The flow of the fluid is concentrated in a thin (in a sense) layer near the body. Out-

side the layer the fluid is almost at rest. It follows then that in the left-hand side of Eq.

(3.1), the integral over the interval (r, o) is almost equal to and may be replaced by the

corresponding integral over the interval (r, r + §) where d is a certain thickness of the layer.
Similarly to GLAUERT, LIGHTHILL [7] and SAKIADIS [3], we assume for u

u 1 ¥
B2 R

If u diminishes at increasing distance from the body, then from Eq. (3.2) it follows that

(3.3) a> 0.

Due to mequality (1.1), the velocity components # and v at the body surface are
dr
(34) u(x, r) = W(x); 'U(x, r) = W(x) E .

In the method applied, u should fulfill the differential equations on the body and on the
edge of the layer. Since the knowledge of the component » is of less importance, our con-
sideration will be confined to the second equation of the system (2.1).
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If u is given by Eq. (3.2), the right-hand side of Eq. (2.1), is identically equal to 0.
For the cylindrical filament moving with constant velocity, the left-hand side of Eq. (2.1),
vanishes on the body, and Eq. (2.1), is fulfilled locally on the body. However, on the
stretching filament with the boundary conditions (3.4), Eq. (2.1), may be fulfilled only
approximately. For this reasons both terms in the lefthand side of Eq. (2.1), should be

]
negligible with respect to % a—; on the body surface, or

€1 and ﬂd—w<
v dx

The strong inequalities (3.5) together with Eq. (1.1) restrict the admissible model of fila-
ment stretching.

The edge of the boundary layer is defined by the condition # = 0. For u given by Eq.
(3.2) it corresponds to y = re* or

(3.6) 0 =r(e*—1),
where § is a thickness of the boundary layer. The derivatives of u with respect to y for
y=r+0 are

du w %u w

S W hro” T HEED) " e I

To fulfill the Eq. (2.1), on the edge of the boundary layer, the derivatives (3.7) should
be equal to 0. This condition is not fulfilled but both « and & increase at increasing distance
from the origin so that Eq. (2.1), is satisfied approximately at increasing distance from the
origin.

rw | dr
(3.5) - I

v

du
a—y' (x,r)

4. The differential equation for the shape coefficient

Replacing co by r+ 4 as the upper limit of integration in the left-hand side of Eq. (3.1),
and inserting for # the right-hand side of Eq. (3.2), one obtains the following equation:

d —
4.1) EE—(IR W?) = o
where new dimensionless symbols are used:
XX _ ToWo - T _w
@3 &= roReg 1wy’ Bao = e & ro’ ¥ wo
1+;d—
y(u) [y L 2
(4.3) I(a):f T(—;)d(T)_—_W(e By,

Upon some transformations of Eq. (4.1), one obtains the differential equation (4.4) for
the coeflicient of shape «:

de 1 J,(0) dIn(RW)
df T RPWI(0) J(e) dE

(4.9
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where

ar L. (1 1 1 1
o= B =8 ﬂ"z?)*”(z’f—zaz)’

4.5) ’
Jo() = 20l = ﬂ(ez“—-l-—Za—zaz).

The initial condition for Eq. (4.4) is d =0 or
(4.6) «=0 for &=0.

5. The analysis of solutions

To solve Eq. (4.4), some form of the functions R(&) and W(&), characterizing the model
of filament stretching is needed. In this section it is assumed that the velocity is uniform
in the filament cross-section or

(5.1 WR? = 1.
As a consequence of Eq. (5.1), Eq. (4.4) simplifies to the form

de 1 Jy() diInR
(32) FERAC AN

In most of this section it is also assumed that the radius decreases along the filament
accordingly to the expotential formula (5.3)

R—a
(5.3) e pha
where a is a ratio of the asymptotic and initial value of the filament radius, and the positive
coefficient b says how quickly the radius decreases along the filament. For the filaments
described by Eqs. (5.1) and (5.2), the profile of the velocity W has an S-shape with a de-
flection point. The R- and W-profile assumed here agree qualitatively with those observed
experimentally during fiber formation [8].
The range of validity of the applied method is limited by the strong inequalities (1.1)
and (3.5). For u specified by Eq. (3.2), these inequalities become

)

1

20

When the model of stretching is given by Eqgs. (5.1) and (5.3), the conditions (5.4) yield
a restriction for b:

dR
(54) \E < Reo, WR?

dinR
dé

<

Reo

(5.5) b < {l

The two asymptotic cases of the formula (5.3) may be distinguished: a = I(R = 1)
and a = 0. In the first case the filament is a circular cylinder moving with a constant
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velocity. For this case Eq. (5.2) has been solved numerically by SAkiapis [3]. KOLDENHOF
[4] has given an analytical solution (5.6):

] 2o 1 =
(5.6) &= S (e**—1—-2a)— 5 [Ei(22) — In20— C],
where Ei (x) is the integral exponent function, and C = 0.577... is the Euler constant.

The dimensionless thickness of the boundary layer 4 = §/r,, corresponding to the solution
(5.6), is shown in Fig. 2. It increases monotonically without limits along the filament.

:tlag 4

FiG. 2. The dimensionless thickness A of the boundary layer.

For a = 1, Eq. (5.2) was solved numerically by the author (Fig. 2). In the second
(rather theoretical) asymptotic case (a = 0, R = e~), the velocity of the filament grows
to infinity. The thickness of the boundary layer 4 reaches its maximum, and then decreases
to 0. If the asymptotic radius of the filament is finite and small enough, the thickness
of the boundary layer first grows along the filament, then after reaching a maximum it
begins to drop, and finally it grows once more along this part of the filament, where the
radius almost reaches its asymptotic value. On the initial part of the filament, the thickness
of the boundary layer increases quickly, and after a relatively short interval (of few ro)
it becomes much larger than the actual radius #(x). In the asymptotic region, the thickness
A of the boundary layer on a stretching filament is smaller than the corresponding thick-
ness on the circular cylinder, moving with constant velocity. This is due to the fact that
4 is not a real boundary layer thickness, but a ratio /r,. The discrepancy between curves,
corresponding to different values of @, would be, however, slight in the asymptotic region
if the asymptotic radius of the filament were taken as a reference thickness, instead of r,.
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6. Conclusions

The analysis of solutions of Eq. (5.2) has shown that the process of stretching of fila-
ments may have a substantial influence on the thickness of the boundary layer. The local
acceleration of the filament counterparts to the process of usual thickening of the boundary
layer. If intensive enough, it can cause a deep minimum in the boundary layer thickness.
However, when the filament velocity approaches its asymptotic value, the boundary
layer begins to thicken once more. Far enough from the origin, the ratio of the boundary
layer thickness to the asymptotic radius of the filament is very near to the same ratio for
a circular cylinder with constant velocity.
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