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NOTES ON POLYHEDRA.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. VII. (1866),
pp. 304—316.]

Axial Properties. Article 1 to 18.

1. A polyhedron may have a 7-axis, viz. a line about which if it is made to
2π

rotate through an angle = — (but not through any sub-multiple of this angle), it will 

occupy the same portion of space. It is then clear that when the rotation is repeated 
any number of times the body will still occupy the same portion of space; or if Θ 

denote the rotation through the angle — , then we have the rotations 1, Θ, Θ2 ,... Θq-1, 

and finally Θq = 1, that is, when the rotation is q-times repeated, the body will resume 
its original position. Similarly for any number of axes (Θq = 1, Θ'q' = l,..., where the 
indices q, q',... may be the same or different) we have the rotations 1, Θ, Θ2, Θq-1

2. The number of axes may be denoted by Σ and the number of rotations by
1+Σ(q-1); we may say that Σ1 is the number, and 1+Σ(q —1) efficiency or
weiqht, of the axes.

c. v. 67

Θ', Θ'2,... Θ'q-1,...; and if Θ, Θ',... be the entire system of the axes of the body, 
these rotations will form a group. The rotations in question are in fact the entire series 
of those which leave unaltered the portion of space occupied by the body, and since 
any two rotations combine together into a single rotation, any two of the rotations 
in question must combine together into some one of these rotations, that is, the 
rotations in question form a group. Some analytical consequences of this theorem will 
be obtained in the sequel.
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3. For any one of the regular polyhedra, E being the number of edges, then 
the number of axes or Σl is =E+ 1, and their weight or 1 + Σ (q— 1) is = 2E. In 
fact, if as usual >3 denote the number of summits, F the number of faces, and if 
there be m edges to a face, and n edges to a summit, then S + F = E + 2, mF = nS = 2E. 
Now in all the polyhedra except the tetrahedron, we have a number 1/2F of m-axes 
passing through the centres of opposite faces (amphihedral axes as Mr Kirkman has termed 
them) and a number 1/2 S of n-axes passing through opposite summits (amphigonal axes) ; 
and we have besides a number 1/2 E of 2-axes passing through the mid-points of opposite edges 
(amphigrammic axes): the entire number of axes is thus 1/2  (S + F+ E), which is = E + 1 : 
and the weight is 1 +1/2F(m — 1) + 1/2S (n — 1) +1/2E, which is = 1 + 1/2mF + 1/2nS -1/2(F+S-E), 
= 1+E + E- 1, = 2E. In the case of the tetrahedron S=F=4, m = n = 3, and the 
only difference is that instead of the 1/2 F amphihedral m-axes and the 1/2 S amphigonal 
n-axes, we have a number (F = S =) 1/2 (F + S) of (n =) m-gonal axes each through a 
summit and the centre of an opposite face (gonohedral axes).

4. The theorem that the weight 1 + Σ (q — 1) = 2E, or say 1+Σ(q- 1) = mF, may
be extended so as to apply to any polyhedron whatever. In fact considering any face 
A of the polyhedron, let F be the number of faces homologous to (and inclusive of) 
A; and, taking a any edge of the face A, let m be the number of edges of A 
homologous to (and inclusive of) a: then we have 1 + Σ(q- 1)=mF. This is almost 
a truism when the signification of the term “homologous” is explained. Imagine the 
polyhedron placed on a plane, say the table, and draw on the table a polygon equal
to the polygonal face A, and in this polygon select some one edge corresponding to
the edge a. The polyhedron may be placed on the table with the face A coinciding
with the polygon, or say the face A may be superimposed on the polygon, and that
in m different ways, viz. any one of the edges homologous to a may be made to 
coincide with the assumed edge: and in like manner there are F different faces (viz. 
the faces homologous to A) which may be superimposed on the polygon, each of them 
in m different ways; that is there are in all mF different positions of the polyhedron 
for each of which it occupies the same portion of space. And we have thus the 
required theorem 1 + Σ(q - 1) = mF.

5. As an example, take the regular pyramid on a square base; there is here a 
single axis, viz. a 4-axis, and we have 1 + Σ (q — 1) = 1 + 3 = 4. If for the face A we 
take the square base, then there is no other face homologous thereto and therefore 
F = 1 ; but the four sides are homologous to each other or m = 4, and we have 
mF = 4. Similarly taking for A one of the triangular faces, since these are homologous 
to each other, then 4; and if we take for the side a the base of the triangle, 
then there is no other side homologous to this, or m = 1; and therefore mF = 4. It 
might at first sight appear that the two equal sides of the triangle were homologous 
to each other, and therefore that taking for the edge a one of these sides we should 
have m=2; but in fact although the two sides in question are homologously related 
to the pyramid, yet according to the definition they are not homologous sides of the 
triangular face, and we still have m = 1, and therefore mF = 4.
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6. Of course in the case of a regular polyhedron the faces arc all homologous, 
and the edges of a face are all homologous, that is F will denote the entire number 
of faces, and m the number of edges to a face: so that for this case the theorem 
gives 1 + Σ (q --1) = 2E as above.

7. Returning to the regular polyhedra the axial systems are

Tetrahedron 4L3, 3L2.
Cube and Octahedron . 3L4, 4L3, 6L2.
Dodecahedron and Icosahedron 6L5, 10L3, 15L2,

where L3 denotes a 3-axis, &c.; this is in accordance with the notation of M. Bravais 
in the memoir subsequently referred to.

8. The . regular polyhedra may be exhibited in connexion with each other as 
follows: Imagine the polyhedron projected on a concentric sphere by lines through the 
centre; so that the summits become points on the sphere, the edges arcs of great 
circles, and the faces spherical polygons. Starting from the dodecahedron, the centres 
of the pentagonal faces are the summits of the icosahedron, and conversely for the 
icosahedron the centres of the triangular faces are the summits of the dodecahedron: 
moreover each edge of the dodecahedron cuts at right angles an edge of the icosahedron 
and the two edges have the same mid-point. Again if in any face of the dodecahedron 
we draw one of the five diagonals (arcs through two non-adjacent summits) there is 
in the face a single edge not met by this diagonal; and in the other face through 
this edge a single diagonal not met by the edge; joining the extremities of the two 
diagonals we have a spherical square, the face of the cube; it is to be observed that 
the summits of the cube are eight out of the twenty summits of the dodecahedron, 
and that the centres of the faces of the cube are the mid-points of six out of the 
thirty edges of the dodecahedron or the icosahedron. The cube given by the foregoing 
construction is of course one out of five different cubes. The centres of the faces of 
the cube are the summits of the octahedron; and conversely the centres of the faces 
of the octahedron are the summits of the cube; moreover each edge of the cube cuts 
at right angles an edge of the octahedron; and the two edges have the same mid
point. Finally, taking four non-adjacent summits of the cube (which can be done in 
two different ways), these are the summits of the tetrahedron, and the mid-points of 
the edges of the tetrahedron are the summits of the octahedron.

9. Considering the polyhedra in the foregoing mutual connexion, all the axes of 
the tetrahedron are axes of the cube and octahedron, viz. the 2-axes of the tetrahedron 
are the 4-axes of the cube and octahedron; and the 3-axes of the tetrahedron are 
the 3-axes of the cube and octahedron; moreover the 3-axes of the cube and 
octahedron are included among the 3-axes of the dodecahedron and icosahedron and 
the 4-axes of the cube and octahedron are included among the 2-axes of the dodeca
hedron and icosahedron; but the 2-axes of the cube and octahedron are not included 
among the axes of the dodecahedron and icosahedron. The 4-axes of the cube and

67—2 
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octahedron form thus a system of rectangular axes common to all the polyhedra, and 
representing these axes (or say the summits of the corresponding rectangular spherical 
triangle) by X, Y, Z, we have a convenient system of coordinate axes to which to 
refer all the other axes of the polyhedron, viz. if P be the extremity (chosen at 
pleasure) of the axis in question, then the position of the axis may be determined 
by its distance PZ and azimuth XPZ (measured in the direction from X to Y), or 
by its distances PX, PY, PZ, or say X, Y, Z from the three rectangular axes (we 
have, it is clear, cos X = sin dist. cos azim., cos Y = sin dist. sin azim., cos Z= cos dist.). The 

rotation angle of a q-axis is = 2π/q (i. e. this is the angle through which if the body 

be turned about the axis, it still occupies the same portion of space) and the half- 

rotation angle is therefore = π/q. Moreover if i, j, k are Sir W. R. Hamilton’s quaternion 

symbols, then the “ rotation symbol ” of the axis is

cos π/q + sin π/q (i cos X + j cos Y + k cos Z),
qq

the application of which will be presently explained.

10. The angular coordinates of the different axes may be found by spherical 
trigonometry without much difficulty; and we are then able to form the following axial 
tables of the several polyhedra: the extremity of each axis is chosen in such manner 
that the distance PZ is not > 90o.

Axial System of the Tetrahedron.

Distances Azimuths cos X cos Y cos X Rot. Symbolsangle cos sin angle cos sin4 3-axes, 1/2 Rot. angle = 60°, cos = 1/2, sin = 1/2√3.
54o44' 1 √2 45o 1 1 + 1 1 1+ —~ 1/2(1 +i+j+k)√3 √3 √2 √2 √3 √3 √3n 135° - ,, + ,, - + ,, + ,, 1/2(l-i+j + k)2250 - ,, - n + „ 1/2(l-i-j+k)M 3150 + ,, = ,, + ,, - ,, + „ 1/2 (l+i-j+k)3 2-axes, 1/2 Rot. angle = 90°, cos = 0, sin = 1.0o 1 0 * * * 0 0 ! 1 k90o 0 1 0o 1 0 1 0 1 0 i,, ,, ,, 90o 0 1 0 1 0 J
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Axial System of the Cube and Octahedron.
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11. Before proceeding further I remark that exclusively of the foregoing axial 
systems of the regular polyhedra the only cases are as follows:

A. A polyhedron may have a single (q-axis, say Λq: taking this as the axis of Z 
the table is

B. It may have a single 9-axis, and (symmetrically arranged in a plane at right 
angles thereto) q 2-axes, say Λq, qL2. Taking the q-axis as the axis of Z and some 
one of the 2-axes as the axis of X, the table is 

and in particular if q= 2, the axes are 3L2 and the table is
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This in fact appears, Bravais, “ Me moire sur les polyedres de forme symetrique,” Liouυille, 
t. xiv., pp. 141—180 (1843), observing that for the present purpose there is no dis
tinction between his three cases

Λ2q+1, (2q+l)L2; Λ2q, qL2, qL'2; Λ2q, 2qL2.

12. The meaning of the rotation symbol is as follows: viz. if in general we have 
a rotation θ about an axis inclined at the angles X, Y, Z to any three rectangular 
axes, and if ∏ be the rotation symbol,

∏ = cos 1/2 θ + sin 1/2 θ (i cos X +j cos Y + k cos Z),

then if x, y, z are the original coordinates of any point of the body, and x', y', z' the 
coordinates of the same point after the rotation; the values of x', y', z' are given in 
terms of x, y, z by the formula

ix' +jy' + kz' = ∏ (ix +jy + kz) ∏-1.
This is in fact the form under which, in the paper “ On certain results relating to 
Quaternions,” Phil. Mag., vol. xxvI. (1845), p. 141, [20], I exhibited the rotation formulae 
of Euler and Rodrigues. See also my paper “ On the application of Quaternions to 
the Theory of Rotation,” Phil. Mag., vol. xxxIII. (1848), p. 196, [68].

13. We have, it is clear,
Πs = cos sθ + sin sθ (i cos X +j cos Y + k cos Z)

which shows that ∏s is the symbol for the rotation ∏ repeated s times: (more 
generally performing on the body, first the rotation ∏ and then the rotation Φ about 
any axis, the same or different, the symbol of the resultant rotation is = ΦΠ). If ∏ 

2π
be the symbol for a rotation through the angle —, then the rotation which corre

sponds to the symbol IB is a rotation through 360o, that is the body returns to its 
original position; it might at first sight appear that we ought to have Πq = 1, and 
that the symbols 1, ∏, ∏2, ... ∏q-1 would form a group; this however is not so, for 
we have not ∏q = 1, but ∏ = — 1; in fact, it is to be observed that to pass from 
ix +jy + kz to ix' +jy' + kz', we have to multiply by ∏ ( ) ∏-1, so that the symbol of 
the rotation is indifferently + ∏, and that the rotation symbol — 1 is thus equivalent 
to the rotation symbol +1. But as regards the formation of the group, the only
difference is that it is not 1, ∏, ∏2, ... ∏q-1 which form a group of q symbols, but 
+ 1, + ∏, + ∏2, ... + ∏q-1 which form a group of  2q symbols.  And  so in the axial
system of any polyhedron, if ∏ be the rotation symbol of any g,-axis, then taking for
each axis of the polyhedron the set of symbols ± ∏, ± ∏2, ... ± ∏q-1, and besides the
two symbols + 1, the whole series of symbols form together a group.

14. Thus in the before-mentioned case B(q = 2) we have the eight symbols

± 1, ± i,  ±j, ± k
forming (as they obviously do) a group. In the general case B, putting for shortness

Θ = cos π/q + sin π/q. k and Φs = icos sπ/q+  j sin sπ/q,
C. V. 68
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the group consists of the 4q symbols 

(to verify that this is so, it is only necessary to form the equations 

which are at once seen to be true).

15. The + general case A gives merely the group of the 2q symbols 

which has been already mentioned.

16. The tetrahedron gives the group of 24 symbols,

(the signs + being all independent).

17. The cube and octahedron give +he group of 48 symbols

(the signs + being all independent).

18. The dodecahedron and icosahedron give the group of 120 symbols
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(The signs + are all independent, except that in each of the three expressions in the 
top line the signs in √5 -+ l, √5 +- l, are opposite to each other, so that each of the 
three expressions has 16 values.)

It is to be remarked that in the groups of 24 and 48, the group is not altered 
by any permutation whatever of the symbols i, j, k; whereas the group of 120 is not 
altered by the cyclical permutation of these symbols, but it is altered by the inter
change of any two of them; the geometrical reason of this difference may be perceived 
without difficulty.

P.S. I found accidentally, Gergonne, t. xv., p. 40, (1824—25), the following 
problem : “ De combien de manieres m couleurs differentes les unes des autres peuvent- 
elles etre appliquees sur les faces d’un polyedre regulier; m representant tour a tour 
les nombres 4, 6, 8, 12, 20?”

Instead of the m of the problem, writing as before F for the number of faces, 
and writing also E for the number of edges; then if different positions of the same 
polyhedron were reckoned as different polyhedra, the number of ways would of course 
be ∏ (F) (=1.2.3...F); and since by what precedes the same polyhedron can be 

placed in 2E positions, the required number of ways is 1/2E ∏ (F).

Thus for the tetrahedron, if the colours are black, white, red, green, we may place 
it with the black face on the table and the white face in front; the only variation 
in the disposition of the colours, is according as the right hand and the left hand 
faces are coloured red and green or else green and red respectively; and the number 
of ways therefore is = 2, which agrees with the formula.

2, Stone Buildings, W.C., 30 January, 1863.
68—2
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