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Propagation and damping of surface- and interface-type waves
in viscoelastic fluids

S. ZAHORSKI (WARSZAWA)

THE PROBLEMS of propagation and damping of small-amplitude harmonic waves in the neigh-
bourhood of plane boundaries or plane interfaces in viscoelastic incompressible and compressible
fluids are discussed in greater detail. Several examples of homogeneous and two-layer fluids,
with free or rigid surfaces and the layers sliding or adhering at the interface, are presented. The
conditions under which the layers may act like waveguides are also considered.

Przedyskutowano szczegolowo zagadnienia propagacii i tlumienia fal harmonicznych o matych

amplitudach w sasiedztwie plaskich powierzchni i powierzchni rozdzialu faz w niesci§liwych

i §ciSliwych cieczach lepkosprezystych. Przedstawiono kilka przykiadéw cieczy jednorodnych

i dwuwarstwowych, ze swobodnymi lub sztywnymi powierzchniami oraz z warstwami §lizgaja-

cymi si¢ lub przylegajacymi na powierzchni rozdzialu. Rozwazono réwniez warunki, przy
rktorych warstwy moga dziata¢ podobnie jak falowody.

Obcy>kaeHbI ToaApoOHO IIPO0JIEMBI PACIPOCTPAHEHHS M 3aTyXaHHsI TapMOHMYECKHAX BOJIH Ma-
JIOM aMIUTMTYAbI BOJIM3H IJIOCKHX IIOBEPXHOCTEN M mOBepxHocTell pasmena ¢as, B HEOKH-
MaeMbIX ¥ CKHUMAeMbIX BSSKOYIPYTHX JKHAKOCTAX. IlpencraBjiieHO HECKOJIBKO TPHMEPOB
OJTHOPOIHBLIX H JBYXCIOHCTBIX YKHIKOCTEH, CO CBOGOMHBIMH MITH YKECTKMMM ITOBEPXHOCTAMH,
a TaKMKEe CO CJIOAMM CKOMb3ALIMMM WMJIM MPHIETaI0IIMMH Ha MOBEPXHOCTH pasfena. Paccmor-
PEHBI TOXKE YCJIOBUSA, IIPH KOTOPBIX CJIOM MOTYT ACHCTBOBATH aHAJIOTMUYHO KaK BOJIHOBOLBI.

1. Introduction

WAVE propagation problems in elastic solids have been extensively discussed in numerous
monographs and books (cf. [1, 2, 3]). There exist also several papers (cf.e.g. [4, 5, 6, 7])
devoted to the problems of propagation, reflection and transmission of harmonic waves
in viscoelastic, usually compressible, solids. In our previous papers [8,9, 10, 11] some prop-
erties of small-amplitude harmonic waves in viscoelastic compressible and incompressible
fluids were considered. It was shown, among other things, that certain properties of such
waves differ essentially from those observed in elastic and viscoelastic compressible solids.

In the present paper we discuss the conditions of existence, propagation and damping
for small-amplitude harmonic waves in the neighbourhood of plane boundaries or plane
interfaces in viscoelastic incompressible and compressible fluids. We shall call such waves
the surface- and interface-type waves, bearing in mind an analogy to elastic cases, although
a full similarity does not exist. In general, these waves may propagate parallely to a sur-
face or interface, being simultaneously damped in other directions (cf.[12]).

In Sect. 2 some notions and notations concerned with the governing equations for vis-
coelastic fluids and various boundary conditions are briefly discussed. In subsequent
Sects. 3 and 4, several examples of waves propagating in incompressible (shear waves)
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and compressible (shear and dilatational waves) viscoelastic fluids are presented in greater
detail. At the end, in Sect. 5, certain general remarks are made and possible simplifications
as well as generalizations are discussed.

2. Wave equations and boundary conditions

It can be shown (cf.[8, 9]) that the constitutive equation of a simple viscoelastic fluid
subjected to small-amplitude oscillatory flows takes the following form:

@.1) T = (—p+2*trD)1+2¢*D, D = % (Vv+(VV)T),

where T is the stress tensor, p — the hydrostatic pressure, D — the strain-rate tensor,
A* and n* denote the frequency-dependent dynamic second and shear viscosities, respect-
ively. For plane flows realized in the xz-plane, the above relations introduced into the
dynamic equations of equilibrium lead to the governing equations

0 0
(2'2) (Vz—i*fTﬁ* 7) @1 = 0, (Vz—n—e*ﬁ) @2 = 0, Vzp = 0,

where g is the mass density of a fluid(*), and @; (i =1, 2) denote the potentials determin-
ing the velocity components, viz.

0P, | 09D, _ 0P, 0P,
@3) s m T m o VT YT T
Instead of dynamic viscosities, we often use the following dynamic moduli:
2.4 G = Gi+iG] = iw(A*+29%), G¥ = G3+iG; = ion*,

where primes and double-primes denote the real and imaginary parts, respectively. GT may
‘be called the bulk (dilatational) modulus and G¥ — the shear (distorsional) modulus. For
incompressible fluids only shearing flows are admissible; then trD = 0 or div grad®, = 0,
and the two last equations of the set (2.2) are taken into account. Thus, for small-ampli-
tude harmonic oscillations, Eqs. (2.2) describe the dilatational (longitudinal), shear
(transverse) and pressure waves, respectively.

In what follows, being interested in the surface- or interface-type waves, we consider
solutions of Eqs. (2.4) in the forms

(2.5) D, = (A,e’*+Bie~"?)exp(ux+inwt), i=1,2,
(2.6) P = po(Z)exp(ux +iot),
where A;, B; (i = 1, 2) are integration constants, and »; (i = 1, 2), u, viz.
2
X i k= = (E) = -,
i

are simply related to the components of the wave vectors k;(kx, kiz), i = 1, 2.

(*) It can be proved [9] that for small disturbances in compressible fluids, the density g is independent
of time.
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It is scen from Eqs. (2.5) and (2.6) that the waves considered may propagate parallely
to the x-axis, if Reu? < 0, being simultaneously damped in the z-direction if also Rev? > 0.
Damping in that direction is considered to be full if, moreover, Imv»} = 0 for certain discrete
values of the frequency w.

The solutions (2.5) and (2.6) must satisfy the appropriate boundary (continuity) condi-
tions determined at the surfaces or interfaces. Therefore, for homogeneous fluids contained
in the lower half-space z < 0, we have (Fig. 1)

(2.8) T3 =T*3=0, or u=w=0,
if the surface is free or rigid, respectively. Similarly, for two immiscible fluids in which a

thin upper layer is superposed on a bulk fluid (hereafter we call it the two-layer fluid), we
obtain (Fig. 2)

(2.9) TR =T%, w=Ww,
if the layers can slide freely at the interface and, moreover,

(2.10) TR =79, u=u,

FiG. 1. FiG. 2.

if the layers adhere at the interface. All the quantities concerned with the lower fluid are
marked with overbars. We should also take into account that amplitudes of the waves
considered vanish far away from the surface or interface. Therefore, for z » — 0, the
waves must be damped entirely. This means that the constants B, or B; (i = 1, 2) should
be disregarded in Egs. (2.5). Moreover, in such an approach to the problem we neglect
possible effects of surface or interface tensions.

3. Propagation and damping in incompressible fluids
3.1. Shear waves in homogeneous fluids

For homogeneous incompressible fluids, the boundary conditions (2.8), for z = 0
lead to (?)

(*) In this Section we are interested only in shear (transverse) waves of the type considered. The
Rayleigh surface waves in homogeneous incompressible viscoelastic media were discussed elsewhere
(cf. [13, 14]).

7*
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(3.1) n*(3—u?Ad2 =0, —po(0)—2n*uwv,4, =0,
if the surface is free. The above system of equations has a solution only if
2__:__9‘02___‘1_): 2 @
3.2) ur=v; = 2GF = T 2c cos?d,(1—itand,),
where
Gi(w) G/'(»)
3.3 C}=—"", tand,=— —, i=1,2,
( ) i Q i Gt (GL))

denote the frequency-dependent real wave speeds in the fluids for which tan 4, = 0, and
the frequency-dependent real loss angles.

Thus the condition of propagation along the x-axis and the condition of damping in
the z-direction, viz.

2.

(3.9) 2CT cos?d, <0, 4C2 sm262 >0

)
are always satisfied for any frequency w. The resulting shear waves propagate and are
damped in both directions; they are never fully damped.

3.2. Shear waves in two-layer fluids

For two-layer incompressible fluids with the upper layer of thickness 4 (Fig. 2), the
boundary conditions (2.8), and (2.9) lead to

n*(v3 —u?) (42€"" + Bye"") = 0,
(3.5) —po(h)—=2n*uv,(4,"*—B,e~"") = 0,
A,+B,—A4, =0,

— (Po(0)—~Bo(0) )~ 2n*uva(A, — By) + 27* uv, A, = 0,

if the surface is free and the layers can slide freely at the interface. Therefore we have four
equations (3.5) and five quantities to be determined (4,, By, A3, Po(h), Po(0)—po(0)).
Two types of solutions are possible, on assuming either po(h) = 0 or po(0)—pe(0) = 0.
Other assumptions do not lead to interesting cases; e.g. for 4, = 0, the waves are fully
reflected in the upper layer (cf. Sect. 4.3).

In the first case (po(h) = 0), a solution exists if Eq. (3.2) is valid. Thus the condition of
propagation along the x-axis and the condition of damping in the z-direction in the lower
fluid are as follows:

@ oeosiy 20, s

(3.5 C? C? cos?d,

Damping in the lower fluid may be full for certain discrete values of frequency w for which

C? sin26,

2 e TPV oot T
B:3) C? sin20,
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The conditions (3.6), and (3.7) may be satisfied simultaneously only for tan 8, > tané,,
i.e. in the case in which the loss angle in the lower fluid is greater than that in the upper
one.

In the second case (po(0)—po(0) = 0), the condition of solution existence takes the
form

(3.8) th”zh = m———

This complex transcendental equation can easily be solved in the following limit cases:
for thv,h — 0, i.e. for a very thin upper layer, and for thv,h — 1, i.e. for sufficiently high
frequencies (3).

The conditions equivalent to Eq. (3.6) for thv,h = 1 are as follows:

Ez 4 62 ( 4
3.9 C2>§, C2<l EJ<1’
while for thv,h = 0,
w? " C:  cos?d,
(3]0) = C‘f Cos (52 <0, —-“C*%—‘ m

In the latter case the condition of full damping, viz.

C? __sin 28,

G.11) T7 = Sin2s,’

can be satisfied only for tand, > tané,.
For two-layer incompressible fluids with rigid surfaces, the first two boundary condi-
tions (3.5) change into
1’2(1428’3"—.828-"") = 0,

(42) u(A, e +Bye ") = 0.

Now, on assuming that p,(0)—p,(0) = 0, we arrive at the following condition of existence:

(3.13) v, =0, pi=- 9—“’: = ——(P;coszéz(l—itan 81).
G2 CZ
Thus the conditions of propagation and damping take exactly the form given by Egs. (3.10)
and (3.11).
Consider the case of two-layer incompressible fluids with the upper layer of thickness #
(Fig. 2), and the layers adhering at the interface. The boundary conditions (3.5) should
be completed with the following equations resulting from Egs. (2.10):

N*03—p?) (A2 +By)-1* (3 — )4, = 0,

3.14 dy-
( ) v3(4d,—B;)—7v,4, = 0,

if the surface is free. Therefore we have six equations (3.5) and (3.14) and five quantities

(®) This fact can be shown, expanding thv, into real and imaginary parts, respectively.



414 S. ZAHORSKI

to be determined (4,, B, A,, po(h), P0(0)—po(0)). It is seen by inspection of Egs. (3.5)
and (3.14), that some particular solution can be obtained if

(3.15) 03— = PFEE-pd),  thrh = 22
2
This solution gives
(3'16) BZ = _AZeZHh: ZZ = AZ(I_ezvzh)a
and the corresponding expressions for p,(h) and py(0) — P (0), resulting directly from Egs.
(3.5).

The conditions of propagation, damping and full damping, determined in a manner
analogous to the previous cases, take the forms
G2 2 i
(.17) 2.0, % G ool
[ C3 ot+o C3 otan 6,

for thv,h — 1, and
o G 0 oy otand,
(3.18) — < =5 <=, my=—=—,
20 C; "o C?  25tans,
for thy, i — 0, respectively. The above conditions may be satisfied simultaneously only for
certain discrete values of frequency w for which

_ 20 =
3.19 tand, < tand = ,
(3.19 and, < tand, < RS tand,
and

(3.20) tand, < tand, < 2tand,,
respectively.

If in the above case of layers adhering at the interface the outer surface is rigid, there
is no reasonable solution for the waves considered.

3.3. Waves of the Love type

It can be shown, like for elastic media, that in two-layer incompressible fluids with the
layers adhering at the interface, there exist the surface-type waves whose amplitudes oscil-
late only in a direction perpendicular to the xz-plane. Such waves which may be called the
Love-type waves do not occur in homogeneous fluids.

Now we assume the velocity components in the form
(3.21) u=0, v=(4d,e¥+Be"*exp(ux+int), w=0,
and similar expressions with overbars. The boundary conditions are (Fig. 2)

(3.22) T# =0 or v=0, T®=7T2 g¢=7,
if the surface is free or rigid, respectively. Nontrivial solutions of the problem exist if
either

G3v, b G3v,
= or thryh = — —-=
Gyva GXv,

(3.23) thyh = —

are satisfied.
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In the limit case of very high frequencies, i.e. for thy, & — 1, we obtain results analogous
to those described by Egs. (3.9)

In the limit case of very thin upper layers, i.e. for thy,h — 0, Egs. (3.23) give either
v, = 0 orv, — 0. Thus, for a free surface, these particular Love-type waves may be damped
only in the upper layer, while for a rigid surface they may be damped only in the lower
fluid.

The conditions of propagation along the x-axis, viz.

w? — w?
(3.29) — %5 cos?d, <0 or — Ez—coszéz <0,

2 2

are always satisfied for any frequency w. The conditions of damping in the z-direction are
as follows:

& & cos?d; or C2 _ cos?d,

G2 cos2d, C? cos2d,

for a free or rigid surface, respectively. In both cases the waves may be entirely damped
in the z-direction if for certain discrete values of frequency w Eq. (3.11) is true. The in-

equality (3.25), and Eq. (3.11) require that tan 8,>tand,, while the inequality (3.25),
and Eq. (3.11) require that tand, > tand,.

(3.25)

4. Propagation and damping in compressible fluids

4.1. Waves in homogeneous fluids

For homogeneous compressible fluids, the boundary conditions (2.8), for z = O lead to
n*2uvy Ay + (3 —p)A2] = 0,

—Po(0)+ [2*(2 +p*) + 20*3) A, = 20*uv2 A, = 0,

if the surface is free. Therefore, we have two equations and three quantities to be deter-

mined (4, 4, , po(0)). Without any loss of generality we can put p,(0)=0, and then a solu-
tion exists if

4.2 dn*uv, v, + [A*(vi +p2)+29*5] (03 —p®) = 0.

On introducing the notations

4.1)

2

s o O
(43) e
‘ Gt 2
P = e e cos?d,[(1+tan d, tand,)—i(tan d, —tan é,)],
1 1

we arrive at the following algebraic equation with complex coefficients:
4.4 n3—8n?+(24—168)n—16(1—-9) = 0,

the form of which is similar to that describing the Rayleigh surface waves in elastic solids.
Since for real viscoelastic fluids usually tand; > tand, and C, > C, (cf. [4]), we expect
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that also Re?# < 1 and Im# < 0. Solutions of the above equation, such that Ren > 0
or Reu? < 0, essentially depend on the numerical values of complex .
The conditions of damping and full damping in the z-direction take the forms

3 a® s 2 w?
4.5) Rep? < — —a-%—cos 8, Imu?= T sin24,.
They may be satisfied simultaneously only for tand, < —Imu?/Repu?.
If the surface of homogeneous compressible fluids is rigid, the boundary conditions (2.8),

for z =0 lead to
(4.6) A +va 4, =0, v A;—ud, =0.
The condition of solution existence requires that

@) bt =0 o n=lt,
where n, & are defined by Egs. (4.3).

On denoting
Gy (@) +G3 (@)

_ Gi(@)+G:(w)
Gi(0)+G3(w) ’

(4.8) C%z — —"'_g—"‘"""_' ’ tanalz Lo

we arrive at the following condition of propagation:

2

2}2 c0s2d;, < 0,

which is satisfied for any w. This means that in the case considered the Rayleigh-type sur-
face waves always propagate along the x-axis. The conditions of damping and full damping

in the z-direction are

4.9) -

Ci co0s24;, Ci, _ sin24;,
Ci cos?d; ’ C? sin24; ’

(4.10)

for dilatational waves, and

Ci, cos?d;, Ci, _ sin2d;,

(4'11) sz 005262 ’ C:z_ - Siﬂzaz ’

for shear waves. The above conditions may be satisfied for certain discrete values of the
frequency o if tand, > tand, and tand, < tand,, respectively. Thus, for real fluids
only dilatational waves may be fully damped in the z-direction; shear waves always propa-
gate in both directions.

4.2. Waves in two-layer fluids
For two-layer compressible fluids, with the upper layer of thickness A (Fig. 2), the bound-
ary conditions (2.8); and (2.9) lead to
2uv (A4, e’*':— B,e" M)+ (3 —p?) (4 —Be"*) = 0,
—Po(h)+ [A* (v} +p?) + 20*12] (4, € + By o) = 2n* v, (4, €4 — By e7"") = 0,
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(4.12) vy (A, —By)— (A, +B)—% A, +pd; = 0,
— (Po(0)=Po(0))+ [A* (] +p?) +20*13] (A, + B)) — 2n* v, (4, — By)

— [ +u?) + 27714, + 27* v, 4, = 0,
if the surface is free, and the layers can slide freely at the interface. The above four equa-
tions involve eight quantities to be determined (4;, By, 4;, i = 1, 2, po(h), po(0)—po(0)).
Instead of seeking various particular solutions of the whole problem, we consider the case
in which the waves are only transmitted, without being reflected, from the upper to lower
fluid, i.e. for B, = B, = 0 (*). Without any loss of generality we again assume that

Po(h) = 0, po(0)—po(0) = 0. Then the condition of solution existence can be expressed in
the form of two equations:

[A*OF +p%) +29*1] (v — ) —dn*plyi v, = 0,

(4.13) — N o
2+ u2) + 2% = 2%, v, = 0.

The first equation, involving material functions of the upper fluid, is equivalent to Eq.
(4.2) or Eq. (4.4), describing the Rayleigh-type surface waves. The second equation, in-
volving material functions of the lower fluid, leads to the following propagation condition
along the x-axis:
C?  cos?d,
4.19) 3 ==

1

[(tan 8, —tan 8,)tan 8, + (1 +tan &, tan 8,)].
There exists no damping in that direction if, moreover,

2 2
%; = %‘% [(tan 3, — tan 3,) — tan 3, (1 +tan 3, tan 3,)]
for certain discrete values of the frequency w. Both conditions may be satisfied simulta-
neously only for tan 8, > tand, (what is realistic) and for tand, < 1. The damping condi-
tion in the lower fluid can be discussed only for dilatational waves; shear waves are
never damped if tan 8, >tan 8, . Thus the waves may be damped in the z-direction if C3/C3
is contained between the values resulting from the relations

(4.15)

(_?_f_) = 1+tan 31 tan a_2 (1 + tangl —tan 3-2 )
C*ly,  2cos?8,[(l+tand, tan d,)> — (tan &; —tan 8,)?] 1+tand, tand, /
This damping is full if

“c? 1 sin24, -
4.17) c: 2 sin23, ( ¥ 1+sin 8. )
for certain discrete values of the frequency w.
Similar conditions can be formulated for waves in the upper layer. Instead of Egs.
(4.16) and (4.17), we obtain

(%) The case in which the waves are fully reflected in the upper layer (4; = 4, = 0) is discussed
separately in Sect. 4.3.
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C? 44 cos?8,(1+tan d, tan d,)— 1
@iy —i < _ -
1 44%c0s?6,c0s%0, [(1 +tan d, tan 4,)

x (1 +tan 8, tan d,)— (tan 8, —tan d,)(tan 8, —tans,)]

C - cos?d,tan 8, tan &, +44
cz =S 44%sin20, ’

(4.19)

for dilatational waves and

2 25 Ky s y_
(4.20) %( U 44cos él(l-l-tanéltanéz) 1 ’
2 44%c0s?d,cos?d,[(1 +tan d,tan d,)
X (1+tand, tan d,)— (tan 6, —tan &,)(tan 6, — tan d8,)]
cZ AT cos26,tan d,tan 6, +44
(4.21) T sin24, - Asn3s,

for shear waves, respectively. In the above formulae 4 = E%/z‘f.
If the surface of two-layer compressible fluids is rigid, the first two boundary conditions
(4.12) should be replaced by

w(4, e+ B e ) +u, (A, et —B, e = 0,

(422) 1"1(A1 e"i"-=B1 e__ylh)_lu(Azev,k +Bze'v’h) = 0.

In this case the assumption B, = B, = 0 together with p,(0)—p,(0) = 0, leads to the
following existence conditions:

2
MU=V vy = 0,

(4.23) TH(s2 4,2 —%72_ ks
A+ p?) +2n*t - 2n*v v, = 0,

involving, like in the previous case, material functions of the upper and lower fluid, re-
spectively. The first equation is equivalent to Eq.(4.7), , while the second one to Eq.(4.13),.
Therefore, everything said after those equations remains true in the case of two-layer
fluids with the rigid surfaces.

In a similar way other cases of surface- and interface-type waves in two-layer compres-
sible fluids can be discussed in greater detail. By.way of illustration, consider the case of
afluid with the free surface and the layers adhering at the interface, under the additional
assumption that in the upper fluid (incompressible) only shear waves can exist. From the
boundary conditions (2.8);, (2.9) and (2.10), we obtain the following system of equa-
tions:

(3—u?) (A€ + Bye"") = 0,

—po(h)—2n*ur,(4, €~ Bye™"") = 0,

vy(A2—By)—pd, —v,4, =0,

(A +By)+v, A, —pd, = 0,

(3 — u?) (A + B) = 2* v A, —* (3 —p*) A, = 0,

= (Po(0)=Po(0))—2n*ur; (A, — By) = [A* (0% +p®) + 207*93] A, + 2*uiv, A, = 0.

(4.24)
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Therefore we have six equations and six quantities to be determined (A2 By, Ay, A4,, po(h),
Po(0)—po(0)). The solution of the above system exists if _

wz
(4.25) wr =93 = — —— cos?d,(l—itand,).

2C3
The condition of propagation along the x-axis is exactly the same as Eq. (3.6),, and the
waves always propagate in that direction. On the other hand, the condition of damping
and full damping in the z-direction in the lower fluid (compressible) are

Ct: . .G} cos?d, C: ., sin28,

(4.26)

2 > R - A2 T T A 8
C} C? cos?d, C? C? sin26,’

for dilatational waves and

C3 " cos?d, E‘% B sin24,

C? cos?d, ©  C?  Tsin2é,’

for shear waves, respectively. The above conditions may be satisfied for certain discrete
values of the frequency w if tanéd, > tand, and tand, > tand,.

(4.27)

4.3. Surface layers as waveguides

In the previous examples we already had cases in which the waves considered propa-
gated along a thin surface layer, being fully damped in perpendicular directions. Interesting
cases arise when in two-layer compressible fluids with free or rigid surfaces the waves are
fully reflected in the upper layer, leading to some sort of a waveguide.

To this end we assume that in the boundary conditions (4.12) 4, = 4, = 0, what
means that no transmitted waves can occur in the lower fluid. Without any loss of gene-
rality we also take py(h) = 0 and po(0)—po(0) = 0. A solution of the problem exists if

either of the following equations is satisfied:
4.28 [A*(@3 +p2) + 23] (v — p?) +dn* v,z = 0,
28 A} +p2) + 2% + 2%y v, = 0.

The case of full reflection in the upper layer is possible if, moreover,

(4.29) ég - 71;0—}211125,” , 5{: . 1 +tan2d, .
Ci 1 +tan d, tand, 3 1+tané,tand,

The condition (4.28), is equivalent to Eq. (4.2) or Eq. (4.4) describing the Rayleigh-
type surface waves in homogeneous fluids, while the condition (4.28), reminds that Eq.
(4.13),, but with material parameters referred to the upper fluid. The condition of propa-
gation along the upper layer, resulting from Eq. (4.28),, takes the form

C3 z
(4.30) = > % [(tan d, —tan 8,)tan &, + (1 + tan 8, tan 8,)].
1
There is no damping along the upper layer if also
2 2
(4.31) Cs oS00 8 —tan . —tand, () 4-ta0.d, 15,

c? 4tand,
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for certain discrete values of the frequency w. The above conditions may be satisfied sim-
ultaneously only for tané, > tand, and tand, < 1. The conditions of damping and full
damping for dilatational waves are satisfied if C3/C? is contained between the following
values:

(4.32) (C_zz) _ 1+tand, tand, ( + tand, —tan é,
’ C?/y. 2cos?8,[(1+tané,tan d,)2— (tan &, —tan 6,)?] 1+tand, tan d,
and
2
(4.33) s W N ¥ PR arerr

C? 2 sin2é,

for certain discrete values of the frequency w. Note that shear waves are never damped if
tand, > tand,.

If the surface of the upper layer is rigid, we obtain, instead of Egs. (4.28), the following
conditions of existence:

2 -
M=V Yy = 0,

) A%+ u2) + 2% — 2%y, v, = 0.

The condition (4.34), is equivalent to Eq. (4.7); thus the Rayleigh-type surface waves al-
ways propagate along the upper layer, being damped in the z-direction according to Egs.
(4.10) and (4.11). The condition (4.34), is similar to Eq. (4.13) or Eq. (4.23) but with ma-
terial parameters referred to the upper fluid. The conditions of propagation and damping
are again expressed by Egs. (4.30)-(4.33).

On the basis of the above results, it can be concluded that both types of waves can
propagate along the upper layer and, under certain additional conditions, the propagation
in that direction is full, i.e. is not accompanied by any damping. In such a case the layer
of the upper fluid, sliding freely at the interface, acts like a waveguide.

5. Final remarks

When discussing previous examples of the surface- and interface-type waves in ho-
mogeneous and two-layer fluids, we often emphasized the essential differences in the
solutions as compared with elastic and viscoelastic solids. These differences result from
the fact that for compressible as well as for incompressible fluids, there exists one more
function to be determined — the hydrostatic pressure. Thus a number of variables in the
equations resulting from the appropriate boundary conditions is usually greater than
in the case of solids. Frequently, without any loss of generality, it was possible to choose
the values of hydrostatic pressure at the surface or interface in such a way that unique
solutions of the problem could be found.

In the majority of cases the waves can propagate parallely to the surface or mtert‘ace
being simultaneously damped in both directions. Under certain additional assumptions
damping in the direction perpendicular to the interface may be full, that]is without any
propagation in that direction. Such cases are possible only for certain discrete values of
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the frequency w. Moreover, under the conditions of full reflection, the upper layer of a com-
pressible fluid, sliding freely at the interface, may act like a waveguide.

Some results obtained in the paper can be specified or simplified for purely elastic or
elastic-like fluids (cf. [5, 6]). Elastic fluids are the limit cases of viscoelastic fluids if fre-
quencies tend to infinity; then the loss angles tan §;(i = 1, 2) tend to zero and the speeds
of propagation C;(i = 1, 2) become constants. A less realistic notion of the elastic-like
fluids corresponds to the case in which tand, = 0 (i = 1, 2) but Cy(w)(i = 1, 2) depend
on the frequency w. Let us mention certain examples of the results valid for purely elastic
and elastic-like fluids.

The condition (3.23), describing the Love-type shear waves leads to the following
transcendental equation:

- 11

_ Ggl/%—f

C? 2

.0 tan(wh'l/l —1—2)= =

c:TTC 1 1
3 7 Gél/-?—'T
Cz CL

where C} = —w?/u? denotes the frequency-dependent velocity of waves. This equation
has a real root Cy such that C, > Cp > C,, if C,/C, > 1.

Similarly, Eq. (4.4) becomes the well-known equation of the Rayleigh surface waves in
elastic fluids if # = C,/C; < 1 and n < 1. For example, for C,/C, = 1/3, we obtain
n=2-2 ;/§= 0.8453 or Cy = 0.981C,, where Ci = —w?/u? = Cin denotes the fre-
quency-independent velocity of Rayleigh waves.

The conditions of propagation (4.14) and damping (4.16), for the waves in two-layer
compressible fluids with free surfaces and the layers sliding freely at the interfaces lead
to the inequalities

(5.2)

Here only dilatational waves can be damped in the lower fluid; shear waves are never
damped. If the upper fluid is incompressible and the layer adheres at the interface, we have
instead of Eq. (4.27),

(5.3) —2 > )2 since C, > C,.

In this case dilatational as well as shear waves can be damped in the lower fluid.

It is also worth noting that the velocity amplitudes of the waves considered may be
equal to zero at certain critical distances from the interface. Therefore, in the case of
two-layer fluids composed of the upper incompressible fluid and the lower compressible
one, with free surfaces and the layers adhering at the interfaces, the corresponding compo-
nents of the velocity amplitudes (for # and w) are equal to zero if

1 R 1 22
G4 Zep = ———In 31;2 and z, = s In ﬂz_zl-,g’
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respectively. By inspection of the right-hand sides of Eqs. (5.4) it can be proved that for
both components z., < 0, i.e. the critical values of depth are situated in the lower fluid if

2
(5.5) C2 N _4A__Cc)_s_(3_(l+tan(5 tanéz) e C2
e 24¢0s268,(1+tan 6, tan d,) C?
and
2
(5.6) o 59 I+tan*d,

CZ 1+tan 62tan 52 ’

respectively. For elastic or elastic-like fluids the latter inequality is identical to the in-
equality (5.3).

Possible generalizations of the problems considered can be realized either by solving
other more complex cases with the layers sliding or adhering at the interface or by taking
into account the effects of surface and interface tensions.
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