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Application of the asymptotic expansion method for singularly 
perturbed equations of the resonance type in the kinetic theory 

J. MIKA (SWIERK) and A. PALCZEWSKI fYVARSZAWA) 

THE SINGULARLY perturbed systems of ordinary differential equations are treated by the asymptotic 
expansion method in two forms: standard and newly devetoped by the authors. Both procedures . 
are applied to the Carleman model of the Boltzmann equation and are shown to be related to the 
Hilbert and Chapman-Enskog expansions. 

Osobliwie perturbowane uklady ZWYCzajnych r6wnan r6ZniczkoWYch potraktowano za pom~ 
metody rozwini¢ asymptotycznych w dw6ch postaciach: metody standardowej i metody od 
nowa opracowanej przez autor6w. Obydwie procedury zastosowano do modelu ·earlemana 
r6wnania Boltzmanna oraz WYkazano, 2:e odpowiadaj~ one rozwini~om Hilberta i Chapmana
Enskoga. 

Oco6eHHo nepzyp6HpOBaHHble CHCTeMbi o6bn<HOBeHHbiX ~4>4>epe~am.HbiX ypasHemm 
l'pai<TYJOTC.JI npH DOMOIIUI 3CHMnTOTifqeCI<HX pa3JIO>I<emm B ,ll;Byx BHA3X: CTaHA3pTHOro Me
TO,ll;3 H MeTO,lJ;3 BHOBL pa3pa6oTaHHoro 3BTOpaMH. 06e npo~e,D;ypbl npHMeHeHbi I< MO,D;eJIH 
KapJieMaHa ypasHeHHH EoJib~aHa, a Tai<>I<e noi<a3aHo, 'liTO oTseqaroT oHH pa3JIO?J<eHHHM 
ruJIL6epTa H l.lenMeHa-3HCI<Ora. 

1. Introduction 

IN THE PREVIOUS paper [1] we developed a new algorithm of the asymptotic expansion 
· method for singularly perturbed systems of ordinary differential equations: 

dx 
edt= f(x, y); 

dy . 
dt = g(x,y). 

(1.1) 

As it was indicated in that paper, the analysis can be extended to situations when/ and g 
depend in a smooth way on e. 

The motivation for the new algorithm came from considering singularly perturbed 
equations of the resonance type 

(1.2) 

in which the functionj(z) is singular. Such equations are closely related to discrete models 
of the Boltzmann equation. 

In this paper we formulate the properties of the. functions appearing inEq. (1.2) which 

6* 
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396 J. MIKA AND A. P ALCZEWSKI 

enable us to translate it to the form (1.1) and then apply the standard [2, 3] or new [I] 
. algorithms of the asymptotic expansion. 

The results of the analysis will be used for the Carleman model of the Boltzmann equa
tion (see [4]) to shed some light on the relationship between the asymptotic expansion 
method for ordinary differential equations and the Hilbert and Chapman-Enskog 
asymptotic procedures (see, e.g. [5] or [6]). 

2. Singularly perturbed equations of the resonance type 

In this section we shall consider singularly perturbed differential equations of the re
sonance type (1.2) and formulate the conditions under which such equations may be re
duced to systems of the form (1.1) and then treated by the asymptotic expansion method. 

To that purpose introduce the following notation: 

(2.1) 

t E T = [0, t0 ], t0 > 0; 

E E E0 = (0, E0), Eo > 0, E0 = [0, E0]; 

Q c Rm, m > 1, Q open and connected; 

z:T-.Q; 

h:Q ..... Q; 

j:Q ..... Q; 

y:Eo--+ Q. 

By II· II we, denote any of the. (equivalent) norms in Rm or in any of its subspaces and by 
( · , · ) the scalar product. 

Consider the initial value problem for Eq. (1.2) 

(2.2) ddz = h(z)+ _!_ j(z), z(O) = y(E), t E T. 
t E 

The above equation will be said to be of the resonance type if the next assumption is 
valid: 

A.l. There exists a set of vectors tp1 c Rm ; i = 1, ... , p; 1 ~ p < m such that 

and for all z e Q 

(tp1,j(z))=0, i= 1, ... ,p. 

With A. I. we can write Eq. (2.2) as a system of equations. To do this we introduce the · 
projectors · 

p 

(2.3) 
Pu = }; (VJ" u)tp, 

i"" 1 

Qu = u- Pu, u e R"'. 
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Operating on both sides of Eq. (2.2) with P and Q we · get 

d(dQz) = Qh(Pz+Qz)+_.!_j(Pz+Qz), 
t e 

(2.4) 

Denoting 

(2.5) 

we-get from Eq. 

(2.6) 

d(dPz) = Ph(Pz+Qz), 
t . 

(Qz)(O) = Qy, (Pz)(O) = Py. 

Qz = x, Pz = y, 

Qy = ft, Py = 'YJ' 

j(Pz+Qz)+ eQh(Pz+Qz) = f(x, y, e), 

Ph(Pz+Qz) = g(x, y), 

(2.4) the initial vaiue problem 

dx 
edt= f(x, y, e), x(O} = ~t(e), 

dy . 
dt = g(x,y), y(O) = 'Y}(e). 

This is the system identical with that considered in [1] except for the fact that f depends 
explicitly on e. However, it follows from Eq. (2.5) that fPis dependence is smooth so that 
the analysis in [1] can be straitghforwardly adapted (o include Eq~ (2.6). 

We shall now make assumptions concerning the functions ;appearing in Eq. (2.2) 

such that the requirements concerning Eq. (2.6) and set up in [1] are satisfied. · · 
A.2. The functions h and j belong to C 2"+ 2 (Q) andy e cn+l(E0 ) for some E0 • The 

latter means that we admit. the expansion 
k 

(2.7) y(e) = ~ ekyk+O(e"+ 1
). 

n= I 

A.3. There exists an open, bounded, and connected set() c PQ and a continuous func
tion e:ii-+ Q such that for all ye ()~J(e(y)) = 0. The root e(y) is isolated in the sense that 
there exists <5 > 0 such that for all y e 0 and z e QQ such that 0 < llzll < ~we have 

J(z+e(y)) =F 0. 

A.4. For every y e 0 the kernel of the matrix operator D:}(e(y)) coincides with PRm 

and the nonzero eigenvalues J.1(y) of Dz}(e(y)) satisfy the inequality 

(2.8) Re J.,(y) < -ex < 0. 

A.5. The initial value problem 

(2.9) dyo ( ) dt =Ph (!{yo) , Yo(O) = 'YJo E () 

has a unique, bounded solution y0 : T-+ 0. The initial value t'J~ is defined from Eq. (2.7) 

as Py0 • 
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398 J. MIKA AND A. PALCZBWSKI 

Consider the equation 

(2.10) ~: = j(e(y)+u ),_ T ~ 0, yeti, 

for u e QRm. It follows from (A.4) that u = 0 is an ~symptotically stable fixed point of 
Eq. (2.10) (see Proposition 3 of [1]). 

A.6. For each y e 0 the point Q(y0 - e(y)) belongs to the region of attraction of the 
fixed point u = 0 of Eq. (2.10). Additionally, 

e(y)+Mu efJ, 

where u is the solution of Eq. (2.10) and M is any diagonal matrix such that 0 ~ Mu ~ 1, 
i= 1, .. . ,m-p. 

It can now· be checked that if all the assumptions (A.2-A.6) are satisfied, then the hy
potheses (H1-5) of [1] are valid for the system (2.6). Observing that the assumptions of [2] 
are included in those of [i], we conclude that the system (2.6), and hence Eq. (2.2), can 
be treated by both standard and new asymptotic expansion procedures. 

In -the next section we take the Carleman model of the Boltzmann equation which is 
of the form (2.2) and apply both procedures to show their relationship to the Hilbert and 
Chapman-Enskog approaches. 

3. Carleman model 

Consider the Carlernan equations with periodic boundary conditions [4]: 

ok1 oxl = _1_ (X2 _ x 2 ) 

ot + or 4e 2 1 
' 

oX2 _ oX2 = _1- (Xi -xn 
ot or 4e ' 

(3.1) X 1(0, t) = X 1(a, t), 
(0) 

X1(r, 0) = X1(r, _e), i = 1, 2, 

t e T = [0, t0 ], 0 ~ r ~ a, a > 0. 

To reduce Eq. (3.1) to the system of ordinary differential equations we discretize the 
space variable r such that 

0 = r0 < r1 < ... < rs = a; 

and replace the functions xl and x2 by the vector functions Wt and w2' respectively. Thus 
we take 

w1(t) = {wl(t), ... , wi(t) }; 

w1(t) = X1(r1" t), i = 1, 2, k = I, ... , s. 
(3.2) 

The value of X1 at r = 0 is eliminated on account of the periodic boundary conditions in 
Eq. (3.1). 
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The differentiation with respect tor is replaced by the finite differencing. Thus, instead 

ax I of -a 1 
, we take 

r r=r" 

w~+1_W:-1 

'"+1-rlc-t 

Taking into account the boundary conditions we may replace the derivative with respect 
to r by the matrix operator 

0 b1 0 0 0 -b1 

,, -b2 0 b2 0 0 0 

(3.3) G= 
0 0 0 -bs-1' 0 bs-i 
bs 0 0 ·o -bs 0 I 

where 
{(r .. ,-r._,)-1

, k= l, ... ,s-1; 
b~c= . -1 (r5 -r5 _ 1 +r1 -r0 ) , k = s. 

In this paper we shall treat the vectors as functions of a discrete variable and perform 
with the vectors operations similarly as with functions. Thus, for example ab stands for 
the vector with the components (ab)1 = a1b1, a2 = aa, and (expa)' = expa1• 

With Eqs. (3.2) and (3.3) we may replace Eq. (3.I) by the following syste~ of ordinary 
differential equations: 

dw1 I ( 2 2) (i't+Gw1 = 
48 

w2 -w1 , 

(3.4) dw~ I ( 2 2) dt -Gw2 = 4s w1-W2' 
(0) . 

w1(0) = w,(s), i = I, 2, t E T. 

Finally we introduce the vector function _z(t) whose components are consecutively the 
components of the vectors w1 (t) and w2 (t) and define the block matrix 

0 = {G o }. 
0 -G 

With this notation we can write Eq. (3.4) in the form 

dz " I 
-d +Gz = -j(z), 

(3.5) t 8 

z(O) = y(e), 
where 

(3.6) k = l, ... 's, 

k = s+ I, ... , 2~ 
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400 J. MIKA AND A. PALCZEW_SKI 

and 

( {
(0)1 (0)1 (0)1 (0)1 } 

ye)= w1 , ••• ,w1 ,w2 , ... ,w2 • 

Now, if - Gz is identified with h(z), Eq. (3.5) takes exactly the form (2.2). 
The finite discrete version of the Carleman model (3.5) is an approximation to the orig

inal system (3.1) in which the basic features of the model are preserved. This is due to the 
choice of the periodic boundary conditions. For other boundary conditions we would 

. have to cope with the boundary layer for which the proposed discretization would be 
inadequate. 

Take the following system of orthonormal vectors in R 21
: 

(3.7) 

'Pf = {~' 
0 , 

k = · i, s+i, 

otherwise. 

It is seen that 

and (A.l) is fulfilled. 
Performing the projections defined by Eq. (2.3) and introducing the notation given 

by Eq. (2.5), we get 

(3.8) 

dx " 1 
-d +Gy+-xy = 0, 

t e 

dy " 
-+Gx= 0 dt , 

x(O) = p,(e), y(O) = rJ(e). 

We shall now check the remaining assumptions listed in the previous section. 
First we observe that both h(z) and j(z) are infinitely many times differentiable in the 

whole R21
• Hence (A.2) is fulfilled whenever we take y(e) sufficiently smooth. 

As the set () we take 

(3.9) () = {y e P R 21 : I > a > 0; k = 1 , ... , 2s} 

and e(y) = y for all y e if. With this (A.3) is fulfilled. From the relations (3.6) it is easy 
to verify that 

-zl 0 0 ... 0 0 ~+1 0 0 0 
0 -z2 0 ... 0 0 0 ~+2 0 0 

(D,j)(z) = ~ 0 0 0 ... 0 -z~ 0 0 0 z21 

z1 0 0 ... 0 0 -z1+1 0 0 0 

0 0 0 z~-1 0 0 0 000 -z••-• 0 I 
0 0 0 ... 0 zl 0 0 ... 0 -z21 
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By direct calculations we check that 

(Dzj)(Y)"Pt = 0, 
(3.10) 

(Dzj){y)"i = -y1~,, i = 1, .. . ,S, yEO,, 

where -1p1 are defined in the relations (3. 7) and 

~~ = {"L .. ., ~;-}, t = 1, .. . , s, 

(3.11) I ~2· k = i, 

AJt 

"'' = l- ¥2' 
k = s+i, 

0 ' otherwise. 

From Eqs. (3.10) and (3.9) it follows that (A.4) is satisfied with a defined in the relations 
(3.9). 

The initial value problem (2.9) reduces to 

(3.12) dto = 0, Yo(O) = 'Y}o, 

since for all y E () 

Ph(e(y)) = -PGe(y) = -PGy = o 
and (A.5) is trivially fulfilled. 

Equation (2.10) has in the present case the form 

du 
(3.13) dT = -yu, T;:;?!: 0, y E 0, U E QR2

", 

which shows that the region of attraction of the fixed point u = 0 is all QR2" and (A.6) 
is valid for any Yo. 

We see that all the assumptions (A.1-A.6) are satisfied and we may apply both stan
dard and new algorithms of the asymptotic expansion. 

From the definition of the projectors P and Q we see that 
x,k = -x'+k, 

yk=y~+", · k=1, ... ,s. 

Obviously it is true also for p,(e) and 'YJ(e). At the same time it is seen that Eqs. (3.8) .for 
the first s components of x andy are identical to those for the second s components. This 
shows that x andy are fully described by vectors from R" which again will be denoted by 
x andy: Now Eqs. (3.8) may be replaced by the system of equations in R• x R": 

(3.14) 

dx 1 · -
-d +Gy+-xy = 0, 

t e 

dy 
dt+Gx = 0, 

x(O) = p,(e), y(O) = 'Y}(e), 
" which formally differs from Eqs. (3.8) only by G substituted for G. 

In the next sections we shall analyze directly the system (3.14). 
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402 J. MIKA AND A. P ALCZEWSKI 

4. Asymptotic expansion for the Carleman model 

In accordance with the general procedure we introduce the stretched (local) variable · 

-r = t/e and represent the functions x ~nd yin the system (3.14) as sums of functions oft 

and -r; separately. Thus, writing 

x(t) = x(t)+x(-r), 

y(t) = y(t)+y(-r), 

we get from the system (3.14) by separating the dependence on t and . -r 

(4.1) 
ax --

eTt+ e(Ty+xy = 0, 

(4.1') 
dy - 0 
dt+Gx = , 

and 

dx G- ~ o (,h+ e y+J = , 
(4.2) 

dy - 0 (,h+eGx = , 

where 

j = (x(e-r) +i(-r))(y(e-r) + y(-r))- :X(e-r)y(e-r). 

In the standard approach we replace all the functions in Eqs. (4.1) and (4.2) by power 
expansions in e. Thus we write for a particular n 

(4.3) 

(4.3') 

From this, by expansing the functions of e-r into Taylor series, we get 

(4.4) xy = XoYo + e<XoYt +xt:Yo)+ ... ' 

j = Xo( -r)yo( -r)+xo(O)yo( -r)+io( -r)Jio(O) 

+ •[ (Jo(O) + ji0 ( r) )i1 ( r) + (i0 (0) + i 0 ( T) )ji1 ( r) 

+i0(T+ a;; (0)+ )11 (0)) + ( T ~1° (O)+X,(O)} ji0( T)] + ... = j.+ ej, + : .. . 

Taking in Eqs. (4.3) n = I, we obtain from all the above equations 

XoYo = 0, 
(4.5) 
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(4.5) 
(cont.] 

and 

(4.6) 

dxo -:-
-d +Jo = 0, 

T .. 

dyo _ O 
dr - ' 

dxo - - ·- - -
dt+Gyo+YoXt +XoYt = 0, 

dYt ' - 0 
dt+Gx1 = · , 

dxl _ =-
0 dr+Gyo+]t = , 

dyl - 0 
([(+Gxo = . 

From Eqs. (2. 7) and (2.5) it follows that 

(4.7) 

Denoting 

we get the relationships 

(4.8) 

p,(e) = t-to+ep,1 +0(e2
), 

,'f}(e) = 'f}o+ E'fJ 1 +0(e2
). 

x"(O) = P,k, 
Yk(O) = fib 

xk(o) = fi,k, 

Yk(O) = ~k• 

#k+fi," = t-t"' 
ijk+~k = 'fJk· 

These conditions do not suffice to solve uniquely Eqs. (4.5) and (4.6), so additionally 
we require that 

(4.9) limylr) = 0 

since Yk are local functions and should vanish for large r. 
We shall now solve Eqs. (4.5) and (4.6) with the conditions (4.8) and (4.9). First we see 

that Eq. (4.5) reduces to 

(4.10) x0 (t) = 0, y0 (r) = 0, 

(4.10') Yo(O) = 'fJo, 

(4.10") dxo - 0 dr +'YJoXo = , Xo(O) = f-lo. 

From the last two equations we get 

(4.10"') y0 (t) = 'fj 0 , X0 (r) = e-'1o-rflo· 

The system (4.6) is simplified to give 

x1(t) = -'f}(/G'YJo, 
(4.11) 00 

Yt(r) = J dsGx0 (s) = G(rf0
1e-"o-rf'o) 

T 
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404 ]. MIKA AND A. PALCZEWSKI 

and 

(4.11') dY1 ·= -Gx1 = G(no 1Gno), )71(0),= n~-iJ~ = n1 -G('YJo 1Po), 
dt 

(4.11") :x: +'YJoX1 = e-'7oT.uo(G('YJo 1 P,o(1-e-'7oT))-n~), x1(0) = 'YJo 1G'Y)o+Pt· 

Solving the last equations we get 

Yt(t) = 'YJ1 -G('YJo 1Po)+tG('Y)o 1G'YJo); 

(4.11"') i:1('r) = e-'7oT('YJo 1G'Y)o+Pt +rpoG('Y)o1Po-'YJ1)-poG('YJo 2P,o(1-e-'7oT))). 

Defining the functions 

(4.12) 
x(l > ( t) = x o (tIs)+ e (x 1 ( t) + x 1 (tIs)), 

y0 > ( t) = Yo ( t) + B (y 1 ( t) + .Yt ( t I B)), 

we get from the theorem in [2] that the functions (4.12) represent an asymptotic solution 
of the first order to the system (3.14) uniformly valid on T. The zeroth order is given by 
first terms in the RHS of the functions (4.12). 

If, by coincidence, 

(4.13) 

then 

and the uniformly valid solution is given in terms of the bulk approximation 

x(l>(t) = - B'Y) 01 G'Y)0 , 

y(l>(t) = 'Y)o+s(nt+tG('Y)o~G'Y)o)). 
(4.14) 

The standard algorithm described above is such that the approximate equations at each 
step k are independent of the final order of approximation. This is not so in case of the new 
algorithm described in [1]. 

For n = 0 the new algorithm leads to the same equations (4.10) as in the standard case. 
For n = 1 both approaches are different. 

Applying the new algorithm we leave the local expansions in the (4.3') unchanged but 
replace the relations (4.3) with 

n 

(4.15) x =}; e"<p"{w), y = w, 
k=O 

which means that y remains unexpanded and x depends on time only through w. Accord
ingly," 

n 11 11 n 

(4.16) a; = 1; ekDw<J?k :; = -1; ekDw¢k.GX = 2 e"Dw<p"G 2 e1p,(w). 
k=O k=O k=O 1=0 

Now, inserting Eqs. (4.15) and (4.16) into Eq. (4.1) we get. up to terms of order e2 

W<J?o = 0, 

Dw<poG<po+Gw+<p1 W = 0, 
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which gives 

tp0 (w) = 0, 

q>1 (w) = -w- 1Gw. 
(4.17) 

This substituted into Eq. ( 4.1 h yields 

dw 
(4.18) dt = eG(w- 1Gw). 

Making use of the relations (4.3') we get from Eqs. (4.5) and (4.6) as previously 

dx0 : d.Yo = 0 d-r +Jo = 0, d-r ' 
(4.19) 

dyl - 0 
d-r +Gxo = . 

The functions j0 and ]1 are given by the expressions 

jo = Xo( t)?]o + 9'o(O)yo( -r) + Xo( -r)yo( -r), 

jt = (17o+Yo(-r))xt(-r)+ (9'o(O)+io(-r))yi(-r) 

+1j1i 0(T)+( T d:,o (0)+9'1 (0)) Yo(T), 

where we introduced the notation 

9't ( w(O)) = p,," ia:(O) = /.ta:, 

w(O) = 1] = 17o + e?]~ + ... , Yt(O) = 1it· 

Now we make use ofEqs. (4.8) and (4.9) to obtain the initial conditons for Eqs. (4.18) and 
(4.19). 

First we observe that on account of the relations (4.19) we get 

Yo(-r) = 0, ?io = 0, f}o = fJo· 

The equation for x( -r) is 

~:0 +f}oXo = 0, Xo(O) = #o = 1-'o-tpo(f}o) = f'o, 

which is identical with_Eqs. (4.10"). In a similar way we get for ji1{-r) the same function . 
as previously (see Eqs. (4.11)), which yields ~~ and 1J1 = f}t --ij1• 

The function i 1 (-r) is defined as the solution to the equation 

dx1 _ :.... - ... _ - (o) - < ) 16 d-r +f}oXt = -f}tXo-XoYt, X1 = 1-'t = 1-'t-fPt f}o = p+f]o fJo, 

which again is identical with Eqs. ( 4.11 "). 
Finally we solve Eq. (4.18) with the initial condition 

w(O) = ij = f}o+qt = f}o+e(fJt-G(f}o 1!-'o)). 
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The first order approximate solution uniformly valid on T is given by 

x(l>(t) = x0 (tfs)+ s(cp1{w)+i1(t/e}), 
(4.20) 

y(l>(t) = w(t)+ey1(t/e). 

If the conditions (4.13) are satisfied, we obtain as previously the uniformly valid 
approximation in a simple form: 

(4.21) 

5. Relation to the kinetic theory 

x< 1> = - ew- 1Gw, 

y(l> = w. 

Any of the discrete models of the Boltzmann equation is of the form (1.2) where h(z) 
describes streaming and j(z) represents the collision operator. 

From the general properties of the collision operator it follows that there exists a p-di
mensional subspace of Rm spanned by collision invariants 'f/Ji as it was assumed in (A.1). 
It is called the hydrodynamical subspace and they components of the whole vector z consti
tute the hydrodynamical moments. 

The function e in the assumption (A.3) represents the Maxwellian in the sense that 
if the vector z0 is the solution to j(z) = 0, then it is uniquely determined by its hydrody
namical moments 

Zo = e(Yo); 

provided Yo belongs to the properly defined p-dimensional subset of the hydrodynamical 
subspace. 

The linearized collision operator represented here by the matrix Dzj(e(y)) has a kernel 
of the same dimension as the hydrodynamical subspace. For most of the practically rel
evant models the rest of the spectrum satisfies the inequality (2.8). In general the kernel 
of the linearized collision operator is not identical with the hydrodynamical subspace con
trary to (A.4). However, the latter is valid for the Carleman model. 

In view of the above explanations it is now not difficult to see that the bulk approxima
tion obtained with the standard approach is identical with that given by the Hilbert asymp
totic expansion procedure. In particular, Eqs. (4.10') represent the Euler equation and 
(4.11') the nonhomogeneous Euler equation. The solutions to the Euler equations give 
a uniformly valid approximation if Eq. (4.13) is fulfilled or, in oth~r words, if the solu
tion belongs to the Hilbert class. 

When applied to the Carleman model, the new algorithm corresponds to the Chapman
Enskog expansion and Eq. (4.18) represents the Navier-Stokes equation of hydrodynamics. 
As in the previous case the solution to this equation is uniformly approximating the exact 
solution if Eq. ( 4.13) is satisfied. 

It is seen that the application of the asymptotic expansion method enables us to obtain 
uniformly valid approximations for arbitrary initial conditions since the local functions 
contribute to the proper description of the solution in the initial layer and allow to define 
the appropriate initial conditions for hydrodynamical equations. 
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It is also suggested that the new algorithm developed by the authors [1] is superior to 
the standard one similarly as the Navier-Stokes equation is a better description of hydro
dynamics than the Euler equations. 

Finally, take the general case when, contrary to (A.4), the kernel of the linearized colli
sion operator is not identical with the hydrodynamical subspace. First we observe that anv 
y E 0 can be uniquely represented in terms of collision invariants 

p 

y =I {J,tp,, 
l=l 

where p, are scalar cottflicients. 
Differentiating- the identity 

with respect to {J1, we get 

p p 

Dzj(e(~fJ,tp,))D,e(~fJ,tp,)tp, = 0, i = 1, ... ,p. 
I= l l= l 

Since the dimensions of the kernel of the linearized collision operator and the hydrody
namical subspace are the same, the last equality shows that for any y E 0 the kernel of the 
linearized collision operator Dzj(e(y)) is spanned by the vectors D,e(y)tp1 provided the 
matrix D,e(y) is nonsingular. 

From above it is seen that (A.4) is satisfied only when the Maxwellian e(y) is a linear 
function of y which happens to be true for the Carleman model. In the general case the 
mapping D,e(y) of the hydrodynamical subspace into the kernel of the linearized collision 
operator depends explicitly on the solution and this has to be accounted for in the asympto
tic analysis. 
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