Arch. Mech., 35, 3, pp. 369-383, Warszawa 1983

The optimum shape of a hydrofoil giving maximum lift
in steady two-dimensional partial cavitating flow

A. H. ESSAWY (EL-MINIA)

'WE CONSIDER a two-dimensional hydrofoil at rest in the (xy)-plane embedded in a steady two-
dimensional partidl cavitating flow. In maximizing the lift we use standard variational calculus
techniques and the problem of the optimum shape of the hydrofoil is shown to reduce to the
solution of a pair of coupled singular integral equations from which we show that the shape
of the mean chord of the hydrofoil has to satisfy a differential equation of second order.

Rozpatrzono dwuwymiarowy hydroplat spoczywajacy w plaszczyZnie (x, y) i zanurzony w dwu-
wymiarowym, czeSciowo kawitacyjnym przeplywie. W procesie maksymalizacji sily nosnej
zastosowano standardowe techniki rachunku wariacyjnego i wykazano, ze problem optymalizacji
ksztaltu sprowadza sie do rozwigzania ukiadu dwoch sprzezonych réwnan catkowych osobli-
wych. Z analizy wynika, ze ksztalt $redniej cieciwy plata spelnia¢ musi réwnanie rézniczkowe

drugiego rzedu.

PaccMoTpeHo ABYMEpHOE MOABOAHOE KPHIJIO, HAXOAAIIEeCA B IUIOCKOCTH (X, ¥), H IOTPY)KeH-
HOEe B [BYMEDHOM, YaCTHYHO KaBHTallHOHHOM IMOTOKe. B mpouecce MakcuMH3alMH HecyLIel
CHJIbI IPHMEHEHBI CTaHAaPTHBIE TEXHMKH BAPHALMOHHOIO MCUMCIEHHA U IOKA3aHO, YTo Ipob-
JleMa onTHMH3anuKe (OPMBI CBOJUTCA K PEUIeHHI0 CHCTEMBI ABYX CONPSHKEHHBIX CHHTYIAp-
HBIX HHTErpANLHBIX YpaBHeHuit. V3 ananmsa cnemyer, uto ¢opma cpemHedl xopAbl KpbLia
NOJDKHA YAOBJIETBOPATh NubdepeHIMAIEHOMY YPaBHEHHIO BTOPOTO IOPAAKA.

1. Introduction

IT 1s ASSUMED that in a flow of an incompressible liquid past a thin smooth hydrofoil C
a constant-pressure cavity develops behind the hydrofoil, the length of the cavity being
assumed less than the length of the hydrofoil (see Fig. 1).

The linearized theory is assumed; this problem has been studied by GuUERST [1] and
AcCOSTA [2] in the case of a flat plate hydrofoil, GUERrsT [3] for the circular arc hydrofoil;
WaDE [4] for the ogival section and NisHIYAMA [5] for'the partial cavitating hydrofoil
with thickness, all these are based on either conformal mapping or Fourier expansion
techniques.

The method of the lifting line theory has been used by DAvies [6] to solve the cavity
flow past an aerofoil and in the present paper we extend this method to the partially cav-
itating hydrofoil problem.

We use variational calculus techniques to obtain the optimum shape of the unknown
curve C in order to maximize the lift, the curve C being assumed to be of a given length
and prescribed mean curvature.
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The problem is shown to reduce to the solution of a pair of coupled singular integral
equations from which we show that the slope of the curve C has to satisfy a differential
equation of the second order, which is solved numerically subject to boundary condi-
tions at the end points.

2. Expression of the problem in integral equation form

ABD in Fig. 1 (p. 382) represents the mean chord (0 < x < ¢) of the thin hydrofoil and it
is assumed that a vapour-filled cavity 4 EB extends along a part AB (0 < x </ < ¢) on the’
suction side of the hydrofoil as shown in the diagram, this being known as partially cav-
itating flow.

The speed of the liquid at infinity is U and the pressure there is P, . The pressure inside
the cavity is uniform and equal to P, (< Py). The problem will be solved on the basis of
the lifting line theory and for this purpose we distribute singularities as follows along the
X-axis:

a) sources of strength m(&) per unit length in 0 < & < [;

b) vortices of strength y,(£) per unit length in 0 < & < [;

c) vortices of strength y,(&) per unit lengthin/ < & < ¢, (y > 0, clockwise). The total
potential due to these singularities is given by

!
en o0 = o [ p@nni( L )aes L f ra@an-i( 2 Jae
0

— o [ m(@tograz,
0

where
22 r={(x=§*+y*}'2
Differentiation of Eq. (2.1) with respect to x and y yields
R 3 d
(2.3) lim (%) =
y-0t
m(E)dE ¥ yz(x) (I<x<o).
1 UL @de 1 [ oa@de
- 71 Y2
+7'"<")+3;f—x-e ) T Ve
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(2.4) lim (?—di)
y=0+\ OY 1
1 f n@®de | 1 f 70
0

Xt 27: e—F (I<x<o.
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It follows therefore that the boundary condition of zero normal velocity on the hydro-
foil will be satisfied if m, ¥, and p, satisfy

! ¢
L p(®dE 1 [ pa(®dE 1 _
(25) Eo —;T‘FEI T_é—+-i—m(x)— Uy(x) (0<x<l),
and
I c
(2.6) 1 (@ 1 Ly iy g<x<o).

Zno x—£ an x—§

Applying Bernoulli’s theorem in its linearized form, the condition of constant pressure
on the surface of the cavity becomes

@7 be = - Us,
2
where the cavitation number ‘is defined by
2.8) i ff"_Pf-
i 2
i

It will then follow from Egs. (2.3) and (2.7) that the following equation must be sat-
isfied:

I
1 m@dE 1
(2.9 ") s fogr

y1(x) = %Uo’ 0 <x <.

The three integral equations of the problem are thus Egs. (2.5), (2.6) and (2.9).

3. Solution of the system integral equations

The problem is thus reduced to finding the solution of the coupled singular integral
equations:

] c
3.1) ”‘ﬁ)f + J ”j;f)j"! —am(x) = 22Uy'(x) (0 < x < I);
]
! c
3.2) -""E(i)ié + f ”’E,(f)jf =2aUy'(x) (I<x <o)
1

' .

(3.3) ;f "';'5_):5 —mp(x) = —nlUo (0 <x <),

for m, v, and v, with the Kutta condition of finite velocity at the trailing edge of the hydro-
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foil and with the closure condition (3.4) satisfied. We consider first Eq. (3.3); it may be
verified that the inverse of Eq. (3.3) which satisfies the closure condition

i

(3.4) [ mdx = 0
0
is
(3.5 Vx(-x) m(x)——Ua(l B = —- ! f'/“’:(’ 7(EdE (0 <x<]).

We now solve Eq. (3.2) for y,; it is convenient to write Eq. (3.2) in the form

c !
(3.6) % = 27Uy’ (x)— f ”'T(_E)Ji:-‘f_ (<x<c
0

then the general solution for y, is as follows:
1
B Ve DGD 70 = B 5 f VEDED oty [ 100 Jge,
0

where B is an arbitrary constant. Using the Kutta condition which can be expressed in the
form

(3.8) v2(e) = 0,

we find that the arbitrary constant B is given by

c 1
, [ V{e=5E-DdE s § yl(n)dn}.
(3.9) B—f A {ZnUy x) J o

and Eq. (3.7) now reduces to

- ¢ 4
610 new=11/ f L2 | suy@aes L [ 10},
0

x—1

It is permissible to change the order of integration in the second term on the right-hand side
of Eq. (3.10) and when this is done it becomes

(3.11) ?’2(x)=%]/c x{ 5 l y(é)d's f]/l n ?In("?);i’?}

(I<x<o).
We require now to calculate the integral

"y (B)de
E—x °

(3.12) I= where 0 <x <.
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Using Eq. (3.11) and making use of the Poincaré-Bertrand formula

¢1(6)dE d’z(’?)d’? - ¢.(§)dé
@1y [HBE [LD () 4:00+ j $a(dn f G

€1 (2]

we obtain, after some reduction,

NG, N

fl/n o=l y(n)dn
5
VS -

Substituting the expression for m(x) from Eq. (3.5) in Eq. (3.1), we obtain

(1 9\ | n®de [ y.@ae
(3.15) f[1+]/ *(I= x))] Fox +1f x = 510
where
3.16 () = Bl — ol (I3,
(3.16) fi(x) = 2zUy (x)+2 W (1-2x)

and elimination of y, between Egs. (3.14) and (3.15) gives

(.17 f [/ 21/ |0 Ly,

where

(.18)  2y/x(=x) g(x) = nUo(I—2x)+4U Y x(c—x) f ]/ =1y n(n);in

For convenience we write

(3.19) VI—Er® =vV®, Vi-xgk) =G,
and, consequently, Eq. (3.17) can be expressed in the form
, v R T "
(3.20) fh/éJrl/—z—:—’; %:G(x) ©0<x<I.
0

In order to invert Eq. (3.20) we proceed as follows:
We make the transformation

(3.21) & = csin?0, x = csin?0,, [ = csin’a,

then we obtain the following integral equation with a cotangent kernel:

(3.22) § 9(6) cot(9—05)d0 = f(0),
0
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where
(3.23) f(8,) = sinf,G(csin?0,), p(8) = 2I'(csin?6)sin6.
We transform the integral equation (3.22) into standard Cauchy form to give

b
(3.24) Y:(_')t‘:’ — F(t),

0
where
(325  Flto) = f(t%“;;“') = z;f:l’ wey = YD [ v,
and
(3.26) to = tanf,, t=tanf, b = tana.
The general solution of ‘Eq. (3.24) is as follows:

b
(3.27) Vi =1) ¥(t) = D—?:T f V1o(b—10) Fto) :‘_"! ,
0

where D is an arbittary constant.

Using Eqgs. (3.25), (3.26) and (3.27), we obtain
Dy cosa

cosf

(3.28)  sin"20sin"/2(a— 0)y(6) =

1 i sinf, sin(a—0,) do
_ ?5{ V/sinf, sin(a—6,) [f(HO)_AtaHGO]-SiD(Bm—;O——G) ,

(3.29) F(,) = —é—nUo‘ Y€ (sin?a—2sin26,)

2
~ =2t iR )sing d
+4 '/c Usinf, COSaof l/sm d)(sinszl:; fs?lg(foo) e

and z(¢) = ¥’ (1)|y=csinzo is the slope of the curve C at the point csin?¢.
From Egs. (3.19), (3.21) and (3.23) we can write

I'(csin26) _ »(0)
V1 Vsinfa—sin?0  2}/Isinf )/ sin?x—sin?6 ~

then Eq. (3.28) can be written in the form

(3.30)  #(8) = y,(csin?0) =

i . : ; nDcosa . |cost?a
(3.31) 2n{sin®0(sin%¢ —sin26) sin(a— 0) }*/%(0) = iTigsl —Ac12 cos0

a
| Y | ——————— (sin®a—2sin?0,)
—cos(ﬂ—- Ta)} -5 Uaf V/sinf, sin(x— 6) f(ssi—-m:—(’)—o dfy
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Joiieas
cosf(tan?¢ —tan26)

2
+2Uf }/sin%p —sinaz(¢p) sind de { [//tang —tan« (tang

+tan6)+}/tang +tan « (tang —tan8)| — 2cos (6— —:I,Ta)} 0<0<a).

The constant A can be calculated from Egs. (3.25), (3.30) and (3.31) to give
(3.32) A = =D,

then we can write Eq. (3.31) as follows:

(3.33) 27 {sin®0(sin’a —sin?8)sin(x— 0)}/%(6) = %f’—, cos(e— —;—a)

(sin%a—sin?0)

1 ; o —————
= —Z—Uo-f ]/smﬂo sin(o—0o) —si—n(ﬂo——ﬂ)—— db,

7 e g
+2U f V/sin?g —sin’a z(¢)sing d {co:!/;(:t(:noic;;/iatziz 5 |/ tang —tan0 (tangs

+tanf)+)/tang +tana (tan¢—tan9)]—2cos(6—% a)} (0<06<a).

Using Egs. (3.5), (3.21) and (3.33) we can write m(csin?6,) after some simplification in the
form

nD (1 0)
21/0_ Cos 71"‘ )
nUo

(1 .,_.,_.,L.(L_)]
—T[s'n('§“+0°)(51na 25in20,) — sin 5 asin|>-a 0,

(3.34)  —sinf, }/sina—sin20, /sinf,sin(x+ 0,) m(csin?0,) =

Mk

+U f V/sin?p —sinZa z(¢)sing d¢ {(sin"q’; —sin200)~1[/sing sin(6 — «) sin(¢ — 6o)

+ ¥/ sing sin(¢ + ) sin(¢—60)]-2005(-;—a+60)} 0<0<a.

It follows from Eq. (3.34) that the function m(csin26,) for small values of 0, is of the form

; A A A A
(339)  m(x) = m(esin®to) = i + gz +0(1) = (x)"m + (x)‘m +0(1),
0 <

where

1 nD 1 nloc . ,1
= ——s—in_m_oc{—zr; 08 = a——,— sin —2—a(2cosa+l)
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+ Uf 1/51112(;5 —sin?a z(¢) sing [‘/ sms(l(ﬁdn l/%;ﬂ)_ —2cos é«a]dqﬁ},

1 D . 1 1
o { e smla—n—UG sin? Lacos oz(3 +2cosa)

(3.36) A, = — T - 5

+U [ ysing—sinta =(9)ds [VW (l/%ﬂ ‘l/sms(—i;ﬂ)
+23in%asin¢]d¢}.

The behaviour of m(x) for small x has been discussed in earlier papers in the cavity theory
and the accepted behaviour of m(x) for small values of x is m(x) oc x~1/* [see, for example,
DaAviIEs (6)] hence we choose A, to be zero in order to achieve the proper behaviour and this
defines the unknown constant D;

1
—— sin ~—oc(2cosa+ 1)

(337 D 3

2y/cU l:rw

TTCOS — 0t
2

: o
- ;f sin’p —sina z(¢)sing [ l/ Sm;qz¢ + '/%;a) —2cos % a}dq.’):.

Substituting from Eq. (3.37) into Eq. (3.34) we obtain

(3.38) Ui{sinaesin(a-e) (sin?a— 2sin200)}/2(0) = -”—"1 {sinz -;—a
2cos7a

1 .1 g 1 1 . {1 )
X cos(—2—qsm(7a—9)+sm & #C08 (B—Ta) (2cosa+1) sm(-i—oc+00

3 1
i cos|6— 7
x €08 —- o(sino— ZSIHZOO)} + f V' sin*@ —sin’« z(¢)singp dd | — -
« cos—a

2

[ ]/ Sms(i; %) l/ Sms(l‘fr’l = %) ] + (sinp —sin?6)~1[}/sing sin (6 — ) sin( + )

+/sing sin(¢ + ) sin(¢ — 0)) (0<6<a).
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An alternative formula for the constant D can now be determined by using the closure
condition (3.5), (3.21) and (3.34) and we obtain

(339) D= Mf—f—— {% no‘sin"%cz
o8 —-a

n

7z o -
- ! V/sin¢ —sin®a z(¢)sing dgp [Smgns(l;(_(_ﬁ;; %) + ‘/8123] ::;-(}-(pa; %) —2cos % oa]} s

If we eliminate D between Egs. (3.37) and (3.39), we obtain the relation between the cav-
ity number ¢ and the integral of the slope of the foil

h/ m'ns(i;—fa) sin(¢ + o)cos (qb - % a)

- l/% sin(¢ — a)cos(¢+%az)}z(qb)d¢.

We now determine the formula for the lift L on the foil as follows:

-
%N[a

(3.40) mosin? %acosa = —

[+

i c
(3.41) L = [ {Plyao-—PJdx+ [ {Plyoo-—Plyooe}dx,
0 1
where
(3.42) Ply_os = P+ 0Udxly-0s4-
Using Eqgs. (2.3), (2.7), (2.8) and (3.42) we can write Eq. (3.41) as follows:
1 ¢
(3.43) L = oU [ ys(®dx+oU [ y,(x)dx.
0 ]

We substitute for y,(x) Eq. (3.11) and change the order of integration; using Eq. (3.21),
Eq. (3.43) reduces to

n

'3 2
(3.44) L = 2oUc [ /sin?a—sin?0»(6)sin0d0—4oU% [ /sin’p —sin®a z(¢)singdg.
0 a«

4. The variational treatment

We now pose the problem of finding the optimum shape of the hydrofoil curve C so
that the lift Eq. (3.44) is maximized, the curve C being of a given length S and prescribed
mean curvature K; S and K are related to z as.follows:

2
(4.1) S = 2¢ [ Y (1 +2%(8))sinfcosdf,
1]

5 Arch. Mech. Stos. or 3/83
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and

z
4.2) K= —218- z'2(0)secOcosect.
0
This problem is equivalent to minimizing the following functional I:

7
(4.3) 1(0), 2(6), 2(6), 6] = —L+4, S+ 4K = | F[(6),2(6), 2'(6), 0; 4, 2,140,
0

with the function F given by
22, ¢ Y (1+2%(0)) sinfcosh

+%Z'Z(B)SGCBC°SGC6‘2@UC y (sina—sin?0) »(0)sinf (0 < 6 < a),
44 F=
o 21, ¢/ (1+2%(6)) sinfcosd

+ ;—Zz'z(e)sec()cosecﬂ+4gUzcy"(sinza—sinzﬁ)z(ﬂ)sinO (cx <0< 7?22)’
where »(0), z(0) are related by Eq. (3.38) and 4,, 4, are determined Lagrange multipliers.

Let u(0), z(6) denote the required optimum functions and &, en the respective vari-
ations from the optimum; then we can write the following relation between &£(0) and
7n(0):

n

2

(4.5) 7 {sin®Bsin(a—6) (sin®a—sin26)}'/2£(0) = U"- V/sin%p —sinZaz(¢) sind d¢

o

cos (6 - 2 a)
- 2 [l/ sin(¢ — o) l/ sin(¢ + @) ] 1 -
1~ 1 sing sing | T GinZg —sin?0)

COS @
2

x [/ sing sin(p — o) sin(p +0) +}/singsin(0+ o) sin(p— )] ; (0 < 6 < a).
The variation of the functional 7 in-Eq. (4.3) due to the variations &(f) and 7(0) is

(4.6) Al = [ Fly+et,z+en,2 +en', 0)1d0— [ Fly, z,z’, 6]d6;
0

oc
K]

for sufficiently small ¢, we can write

2
@.7 Al = e8I+ % 8+ ... ... ,
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where the first -and second variations &7 and &2 are defined by

E

@8) o= [ (EOF, 2,2, 09O F.(v, 2,2, 6)+7 (O F.(v, 2,7, 0)}d6,
0

and

n

2
4.9) 8L = [ (E2F+ 12 F 02 Fyo+ 280F,, 4+ 260 'F,p - 2'F Y,
J _

in which the sub-indices denote partial derivatives.
As £(0) and %(0) are related by Eq. (4.5), substitution of Eq. (4.5) in Eq. (4.8) and in-
tegration by parts yields

3 3
(4.10) oI = f . P, b, b f V/sinZp —sin?an(¢)sing dep

3 7}/ sina—sin20 }/sinfsin(ax—0) s

1
Cos(ﬁ_T“)( WD D ), ]

i COSTQ

x ()/singsin(¢ — &) sin(¢ + 0) +}/sing sin(p + «) sin(p — 6))

+17(6)[ dﬂ ] do+ [n(6) F; ]2

We change the order of integration in Eq. (4.10), use Eq. (4.4), and we obtain

n

@11y of = [() 20) ]E

sinficosf

OQ N! "

{lecz(ﬂ)sinﬁcosf} A d (_ zZ'(6) )} 8

V1+220) "¢ dO \sinBcosb

2 et i e T
+ ZPUIZC f Vm {-I/M _,_"/M }n(ﬂ)smedﬂ.

sinf sin0
cos-z— o 0

For I[z, n] to be a minimum it is necessary that
4.12) o[z, m] = 0

5%



380 A. H. Essawy

and since this must be satisfied for all admissible () it follows that.

0<6<a),
@.13) d ( z'(6) ) 24, ?z(B)sinfcosf _ N
) 2 d0 \ sinfcosb Vi+z20)  [eUf(®) (cx <0< 7),
where
_ 2c? /sin20 —sin2asinf sin(0—a) sin(0+ a)
(4.14) 1) 1 [V sinf + l/ sinf
cos ¢

This is a differential equation of the second order for z(f) and it is necessary to postulate
either the slope or the slope derivative of the hydrofoil at the end points; here we solve
the problem subject to the following boundary conditions:

(4.15) z(0)= A4, z(c)=B

The square bracket of Eq. (4.11) can be written in the form [z’ (x)5(0)]2, x = ¢sin®0 and
we note that this is identically zero here since %(6) vanishes at each end.

We consider the solution of Eq. (4.13) for the slope z(6) in the case of a small slope
(this is consistent with the linearization hypothesis), and we approximate Eq. (4.13) as
follows:

1 d
(4'1.6) 2csinfcosf df 2csm0c050 (6)] =nz{f)
0 0 <6< w,
= A _eU? 7 )
Ef(e),(n_ 27, , E = % ) (a<6<—2—,

where f(0) is defined in (4.14).
Using the transformation (3.21) we obtain

a1 . _ l 0 O<x<),
G417 20 El) = EF(x) (<x<c),
where F(x) is defined by
(4.18) 2”2x”4{c”2+(c—l)‘/2}1/2(c-x)1’2F(3c) = (x—DU?
< {Vxle=D -V ie=0 " +[v*C=D +V ="}
Equation (4.17) is a nonlinear differential equation for z(x); we solve it later subject to
the boundary conditions (4.15) and the constraints (4.1) and (4.2).
In the special case when the noncavity case / =0, = 0, and ¢ = 0 this gives

(4.19) L = 20U? of l/ TE—&T Y'(©)dE, z'(x)—nz(x)=E ]/ Cf x’

¢ is the hydrofoil chord, this is consistent with Essawy [7].
A sufficient condition for the extremum to be a minimum is

(4.20) 6%y, z,2',0] = 0
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From Eq. (4.4), Eq. (4.9) can be written as follows:

Ed

2
4.21) 0%l = f {211 csinfcosf[1+z2(0)] 3% + —‘%2« n'z(ﬁ)secﬁcoSecﬁ}dG.
0

In the case of a small slope z(0), we approximate Eq. (4.21) as follows:

n

2

(4.22) 6% = f {2}.1 csinfcosfn’?(0) + i:— n'z(ﬁ)secﬂcosecﬂ}dﬂ.
0

Using the transformation (3.21) we obtain

(4.23) 8 = f{11¢2(x)+212¢’2(x)}dx,

where "

(424)  ¢(x) = n(sin‘l l/ % ) ¢'(x) = % n’(sin“‘ ]/ % )[x(c—x)]—W.

Equation (4.23) has the same structure as in Ref. [7], Eq. (3.30); using the results of
that paper we can write

2
2n A, > 0.

(4.25) bt

5. Optimum solution in the case when z(0) and z(c) are prescribed

We use the numerical method of solution to solve Eq. (4.17), namely
5 " 0 0<x<l,
5-1) 2 ()nalx) = {EF(x) (I<x<o),

where F(x) is defined by Eq. (4.18), and when z(x) is subject to the boundary con-
ditions

(5.2) z(0) = 0, z(c) = B = tanl2°,

in the case

(5.3) S=4021t, I= (i) ft, c=4ft, k=00148 ft-!,
with

(5.9) o= 624 1b/ft3, U= 40 m.p.h.

The problem has been solved numerically for tho different values of the cavity length.

Equation (5.1) has the same structure as in Ref. [7], therefore we solve Eq. (5.1) numeri-
cally by the same method stated in Ref. [7] and subject to the boundary condition (5.2)
and constraints (4.1) and (4.2). '
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The values of n and E which satisfy the sufficient condition (4.25) are
5 n = 0.5852812, E =0.188548 V1 = 3 ft,
54 n = —0.6154366, E = 0.0856397V 1 =1 ft.

The graphs of y(x), the optimum shape, are shown in Fig. 2. Also included in Fig. 2
are the optimum shapes of foil for two cases: noncavity and full cavity.

—— E

AT o
' Ok/fg \\
u B F
T T ] i X
< . 4,
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FiG. 1. The physical plane.

-0.08

-0.16

-0.24

"0321=  —— Non-cavitating case
—-— Full cavifating case
Fartial cavilaling case

Fi1G. 2. The optimum hydrofoil shape in the case z(0) = 0, z(c) = 3.

The value of maximum lift

As seen from Eq. (3.44), the value of the lift L can be calculated by substituting »(6),
Eq. (3.38) in the lift formula (3.44) to give

kg

1 =
_ 2aU%cosin® — a(2cosa+1) 7. 2
(56) L= 2] - 29Ul ¢ f V/sin%p —sin’az(¢) sing
cos —0 Cos—0o

2 | 2
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sin{¢ +a) sin(¢p —a)
h/ sing l/ sing ]""“
where o is defined in Eq. (3.40).

Using the numerical results we find that the value of maximum lift is

L = 94835.727 1bf, I = 3ft,
.7 L = 30810.46 Ibf, 1=1ft.
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