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Stability of nonlinear thermal convection in a porous medium

'W. KORDYLEWSKI and B. BORKOWSKA-PAWLAK (WROCLAW)

THE PROPERTIES of the approximate solutions of the Darcy-Boussinesq equations, obtained
for small amplitudes by the perturbation analysis and for finite amplitudes by using the Galerkin
method, were investigated. It was shown that two branches of three, which emanate at the
Rayleigh number Ra = 4n? representing two-dimensional time-independent flows, are stable.
The third branch of three-dimensional convection is unstable. However, the branch of three-
-dimensional flow starting at Ra = 4.5x2 is stable. Galerkin’s analysis showed that three of the
mentioned stable branches lose stability at Ra = 1822 and 21n2, respectively, at the Hopf
bifurcation points, The existence of many branches of different stable pattern flows could
explain the difficulties in determining the unique, second critical Rayleigh number of the
transition from laminar to fluctuating flow.

Badano wlasnosci przyblizonych rozwigzan rownan Darcy-Boussinesqa, otrzymanych dla
malych amplitud przy pomocy analizy perturbacyjnej i w przypadku skonczonych amplitud
przy uzyciu metody Galerkina. Pokazano, ze dwie galezie z trzech, ktére rozwidlaja sie dla
Ra = 4n? reprezentujace dwuwymiarowe ustalone przeplywy, sa stabilne. Trzecia galaz troj-
wymiarowej konwekcji jest niestabilna. Jednakze galaZz trojwymiarowego przeplywu wycho-
dzaca z Ra = 4.512 jest stabilna. Analiza Galerkina pokazata, Ze trzy wspomniane stabilne
galezie tracg stabilno$¢ w punktach bifurkacji Hopfa. Istnienie wielu roznych stabilnych form
konwekcji moze wyjasnia¢ trudnosci w jednoznacznym okre$leniu drugiej krytycznej liczby
Rayleigha przejécia od laminarnego do fluktuacyjnego przeplywu.

HccnenoBanbl cBoiicTBa NpUGIMMKeHHbIX pewlenuit ypaBHenuii Jlapcu-Byccunecka, momy-
YEHHBIX JUISI MAJILIX aMIUIHTYZ TPH MOMOILIHM NMepTypOGallMOHHOTO METO/Ja, & B CJIyuae KOHeu-
HBIX aMIUTHTY[ NIPH UCTIONB30BaHUM MeToja I'amepkuna. J[oKa3aHO, UTO OBE BETBH, H3 TpeX,
KOTOpble Pa3BeTBJIAKTCA A Ra = 47, npeAcTaBIAIOIIME ABYXMEPHbIE YCTAHOBUBILUMECH
TeueHUsI, CTabMaBHBI. TpeThsi BETBh TPEXMEPHOH KOHBEKIMM HecTaOmwisHa. OOHAKO BETBB
TPEeXMEpPHOI0 TeUeHHs, HCXoasiuas u3 Ra = 4,522, craGuibha. Ananus [anepKkuHa IoKasan,
4YTO TPH YIIOMAHYTBIE CTa0HIILHbIE BETBH TEPSIFOT CTAOMIJIBHOCT B Toukax Ondyprauuu Xondga.
CylecTBOBaHMe MHOTHX pasHbIX CTaOHJIBHBIX (JOPM KOHBEKIIMH MOMKET BBIACHSTH TPYAHOCTH
B OJHO3HAUHOM OINpEJeNICHHH BTOPOTO KpUTHUecKoro umcia Penes mepexofa oT namuHap-
HOTO K TYpPOYJICHTHOMY TEUCHHsIM.

1. Introduction

THE NATURAL convection in a saturated porous layer of infinite horizontal extent has
received considerable attention in recent years mainly because of its geophysical interest.
In terms of mathematics convection in a porous medium is simpler than the ordinary
Bénard problem, which results from the replacement of the viscosity term in the Navier—
Stokes equation by Darcy’s law.

‘ Similarly to the classical Bénard problem, the Rayleigh number Ra assumes in this
case two critical values. The first of them Ra, = 4n2, given by LaApwooD [1], determines
transition from conductive to convective heat transfer in a porous layer and has been
well established by many laboratory experiments. The second critical Rayleigh number
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Ra, determines transition from laminar to turbulent flow, but its exact value is not known
at present.

Experiments carried out by ComBArRNOUs and LE Fur [2] suggest that the second
critical Rayleigh number lies between 240 and 280. Numerical calculations of Ra, [3, 4, 5]
and [6] were also carried out, but the results are not as yet satisfactory because of their
non-uniqueness. The recent SCHUBERT and STRAUS calculations [6] suggest that the tran-
sition to fluctuating convection occurs at a value of Ra between 300 and 320. The authors
[7] have shown that the transition of two-dimensional convection in a square cell to fluc-
tuations takes place at Ra, = 30x2.

The nonuniqueness of the second critical Rayleigh number results probably from the
multiplicity of stationary states of convection for large Ra numbers. If the Rayleigh num-
ber increases, the branches of steady-state solutions lose stability for different values of
Ra,. Hence we observe experimentally and numerically different values of the second
critical Rayleigh number, depending on the particular realization of the pattern flow.
Moreover, the loss of stability of some branch of steady-state solutions need not lead
to turbulence, the transition to other steady-states being possible. At present the behav-
iour of thermal convection in a porous layer for large Ra is considered to be extremely
complex, and it is still impossible to completely analyse the stability of flow.

In this paper we give a perturbation analysis of small solutions which emanate from
the two first points of bifurcation Ra = 4z? and 4.5x%. In the sequel we use the Galerkin
method for obtaining the finite amplitude solutions and analyse their stability. The
obtained results show the possibility of the existence of two- and three-dimensional
stable flows which lose stability at Ra close to the experimental data.

2. Formulation of the problem

Consider a saturated porous layer of infinite extent heated from below. The layer
has a thickness equal to unity and is bounded by two nonpermeable, perfectly conducting,
horizontal plates. We assume that fluid motion and heat transfer including convection
in a porous medium are described by the dimensionless Darcy-Boussinesq equations

o, .
@.1) S = V0+u,—avo,

—u—Vp+Rabz =0, Vu=0,
with the boundary conditions on the lower and upper plates
(2.2) z=0,1: 0 =u,=0.

Here § is the temperature, u = (u., u,, uy) is the velocity vector, p is the pressure, z = (0, 0, 1)
is the unit vector directed upwards and V? is the Laplace operator
The Rayleigh number is defined as follows:

Ra = kgah AT/k,v,

where k denotes the coefficient of permeability, g — acceleration due to gravity, « — the
coefficient of thermal expansion, & — wave number, AT — difference of temperature,
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» — viscosity, k, — coefficient of thermal diffusion. The physical parameters of the po-
rous medium as well as the fluid (viscosity, permeability, thermal expansion etc.) are
constant and do not depend on temperature and pressure.

When the Rayleigh number is sufficiently small, there is only a conductive, steady
state solution of Egs. (2.1) and (2.2) 6 = u = p = 0. This solution loses stability at the
bifurcation point when convection appears. The necessary condition of bifurcation occur-
rence is that the linearized form of the steady-state problem (2.1) and (2.2)

Vip+y. =0,
(2.3) —yp—Vg+Ragz = 0,
Vy =0,
2.4) z=0, l:ep=9,=0

has a nontrivial eigenvector [p, ¥, ¢]", where ¢, P, g denote the temperature, the velocity
and the pressure, respectively. Combining the particular equations of the set (2.3), it is
easy to obtain the linear eigenvalue problem in the form of a single equation:
0%q d%q

4 1,991 _ 0.
(2.5) v q+Ra( S ayz) 0
From the relations (2.4) and the momentum balance equation in the z direction (2.3)
there result the boundary conditions

oq

(2.6) z=0,1:-a—z—=0.

The eigenvectors of the linear eigenvalue problem (2.5) and the relations (2.6) have the
form

q = 2ncos(inz) - cos(kh,nx) - cos(lh,ny).
Eigenvalues, corresponding to these eigenvectors, are given by
o 5T
k*hz+1?h}
where A3 ! and h; ! are the horizontal wave numbers in the x and y directions, respectively.

The smallest cigenvalue Ra; = 4z7?% follows for A, = h, = 1 and two sets of numbers
G, k, D

Ra,, ==n

(1,1,0) and (1,0,1).

The eigenvalue Ra = 4x% is double because there are two corresponding eigenvalues
which can be easily calculated from Egs. (2.5) and (2.6)

@, = sinzmzcosmx, g, = —2mCOSMZCOSTX,
@) Y, = 2x%sinmzcosmx, Y. = —2alcosmzsinmx,

@, = sinmzcosmy, ¢, = —2mCOSTMZCOSTY,
(28 Y, = 2r%sinmzcosmy, Y., = —2m2cosmzsinmy.

These eigenfunctions are two-dimensional, hence we conclude that the small nonlinear
solutions of Egs. (2.1) and (2.2) corresponding to them also are two-dimensional. How-
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ever, every linear combination of these gives a three-dimensional eigenvector and can
lead to a three-dimensional nonlinear solution.

It is well known [9] that the odd multiplicity of the eigenvalue is a sufficient condition
for the existence of the bifurcation point. When the multiplicity is even, then every case
must be analysed precisely because we do not know the general rules for the determi-
nation of the emanating branches. The next section is an illustration of this problem.

We should also notice that close to the first bifurcation point Ra; = 4x? there is
the next point of bifurcation Ra = 4.572. Because the eigenvalue Ra = 4.522 is simple
at this point, only one branch of the nonlinear solution bifurcates. However, it is inter-
esting from the physical point of view that the corresponding eigenvector is three-dimen-
sional, which suggests that it is possible for stable three-dimensional flow to occur very
close to the first critical Rayleigh number.

In the sequel we assume the periodicity of the solutions of Egs. (2.1) and (2.2) in the
x and y directions, and restrict our considerations to the box with perfectly insulated walls.
Hence the boundary conditions on the sidewalls become
0
on
where n denotes the normal direction to the wall. The horizontal dimensions 4, and 4,
are assumed to be equal to unity.

(2.9 u, = 0,

3. Bifurcation of steady-state solutions

For the evaluation of the branches of steady-state solutions, which emanate at Ra;, =
= 4n2, we will use the perturbation analysis [10]. Hence we assume steady-state solutions
of Egs. (2.1) and (2.2) in the following power series:

6 P1 P2 o 6,
(.1 2| = elog |9, |+ a2 72 +e/Se‘-2 |l
p q qz i=2 Di
\'A ﬁ; = O,
3.2) Ra = Ra, + Z &'ry,

i=
where ¢ is a small parameter.

Now our main effort is directed to evaluating the coefficients «; and «,, which deter-
mine the multiplicity of the solutions. It is convenient to normalize these coefficients

aitel=1.

Putting Eqgs. (3.1) and (3.2) into Egs. (2.1) and (2.2) and expanding the nonlinear
term u - VO into the Taylor series, we obtain the equations of perturbation, after compar-
ing the terms to zero powers of e. The equation of the second perturbation has the form

V20, +us, = (039, + 02 9,) V(o @y + 02 92),
—u;—Vp,+Ra;0,Z = —r (0,9, + 22 92)Z,
Vet,=0

(3.3)
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with the boundary conditions (2.2) and (2.9). The necessary condition for the existence
of the solution [0,, u,, p,]T is that the right-hand side of Eq. (3.3) be orthogonal to the
eigenvector of the adjoint to Egs. (3.5) and (3.6) linear eigenvalue problem [10]. The
adjoint to Eqs. (3.5) and (3.6) linear eigenvalue problem has the form

Vip*+Ra;p¥ =0,
34) —yp*—Vp*+op¥ =0,

v . .F,* = 0
with the eigenvector
[‘p*s ﬁ*’ p*]T = ['Pa 1/"/I{alap/Ral]T'

Multiplying the right-hand side of Egs. (3.3) by the eigenvectors [¢], ¥, p*]" (i = 1, 2),
we obtain two equations of bifurcation:
(ot g +o2s), gD —ri{(a @1+ a2 92), pi> = 0,

where {.,.> denotes the scalar product in L, [(0,1) (0,1) (0,1)]. Since ¢; = ¢ (i = 1, 2),
multiplying the above equations by «; and «,, respectively, and adding, we obtain
51'2

=0
"' Ra,

which implies r; = 0.
Further we consider the equations of the third perturbation
V203 tu.s = (o 1+ a2 2) 0, + V(s @y + 22 92),
—u;—Vps+Ra 05z = —ry (e, 0, + 0, 9,)7,
V * l_l3 = O

(3.5)

which lead to the bifurcation equations in the following form:
(3.6)  (artpr + ap2) VO, + U, V(ay @y + a2 92), 9F>
_r2<a1¢1+a2¢27W?=z>=0’ i= 132-

These equations allow the evaluation of «, and «,, but before we must calculate 0, and
yp, from Eq. (3.3). We neglect longish calculations and present only the results:

4

4

Lol

7

0, sin(2nz)— o 0z sin(2nz) cos(nx) cos(ny),

u;, = Ra, ; o, o3 cos(2nz) cos(x) sin(my),

u,, = Ra, % o &, cos(2mz) sin(mrx) cos(my),

u,, = Ra, 375 o, o, sin(2mz) cos(mx) cos(my),

L]
7

Ra, 1 cos(2mz) +

P2 3

Ra, o, o, cos(2nz) cos(mx) cos(zy).

7#
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Consequently, the functionals existing in Egs. (3.6) are given by

<‘§)1V62,QP:~“>=TE4/8, i = 1,2,
<'7’2V621 lp*{) — <@1V62’ ¢§> = 3“1 d2ﬂ4/56,
3.7 Voo, 93> = UV, 93> = 0,

2

JT
N, et
<¢p“ w::) 2R3.1 )
Vo, 98> =0, i=1,2.
Introducing Eq. (3.7) into Eq. (3.6) and adjoining the condition of normalization we

obtain equations for three variables e, , o, and r,:

2 2
a,(n— + a3 Si —r;/Ra,) =0,

4 28
2 2
az(af —32% + —W‘T —r2/Ra,) =0,
aitai=1.

There are three sets of nontrivial solutions of the above equations:

P
) o= +1, a=0, "2=TR31,
2

2) dl=0, o, = +1, "z=TRa,,
3) oy =a= x1fy2,

o = —0; = iI/VE’

IZ%
rz—%n Ra,.

Each of these solutions corresponds to the branch of nonlinear solutions of Egs. (2.1)
and (2.2) which emanate at the first point of bifurcation Ra, = 4x2.
From Egs. (3.1) and (3.2) it follows that

(Ra—RaI

1/2
Ra, ) + terms of higher order

and three distinct sets of solutions of Eqs. (2.1) and (2.2) assume the form

6 1/2 | @i 0,
_ 2 {Ra—Ra r 4 Ra—Ra, |_
1),2 =+ |—> e ey 0= ;
),-2) u _n( Ra, ) Vi Ra, u |+ ..., i=1,2
P q: D2
7] = o 0
3y lalo oL gﬁ(Ra—R&_)m 2 2|, 56 Ra—Ra [-2f
SEIZV 17\ Ry, VitV | T TRy, ||t
p B qdz P2



STABILITY OF NONLINEAR CONVECTION IN A POROUS MEDIUM 101

The solutions of the next perturbation equations depend on «; and «,. For example,
when ¢, = +1, a, = 0 [03, u5, p3]" does not depend on the y coordinate, when «, = 0,
o, = +1 [05, us, ps]* does not depend on x. This is true for the next perturbation solu-
tions [04, U4, pa]7, .... Hence the first two solutions: 1) and 2) determine exactly the
two-dimensional rolls, the axes of which are parallel to the x or y coordinate, respect-
ively. The third solution represents three-dimensional convection. The stability of this
solution will be analysed in the next section.

The case of bifurcation at the point Ra = 4.5z is the classical one because the eigen-
value Ra is simple. Hence only one branch emanates from this point and its amplitude
is proportional to (Ra/4.57%—1)'/2, The stability analysis of this branch is given in the
fifth section.

4. Stability of small amplitude solutions

The significance of the stability analysis is due to the fact that only stable physical
states can be observed experimentally. For the thermal convection phenomena it is inte-
resting which stable pattern flow, two- or three-dimensional, leads to turbulence. In this
section we analyse the stability of branches emanated at Ra = 4xa2.

We assume the solution of the nonlinear problem (2.1) and (2.2) in the form of the
following power series: '

‘6 (pl ?72 %]1 . Gi(ryxayv Z)
ul =y ()| p |+oa(0) | 92 [+y YR e, x, . 2) |
P qq q> i=2 P(t,x;y,z)

Vu, =0, Ra=Ra +9% 1=79%.
The equations of the second perturbation assume exactly the same form as in the previous
section, but 6, is changed slightly because x, and «, are not normalized:
P T oom . i s 3n ;
| (a1 +a3)sin(2nz) — g %% sin(2nz) cos(nx) cos(my).
The equations of the third perturbation yield the following form:

O(oy @1+ %2 92)

ot = V205 +uy.— [(ay 9, + a2 92) V0, + 4, V(ey oy + 2 93)],

_ﬂg _Vp3 +Ra1 032 = — ((xl "2 afs %) (}92)2-
Consequently, the equations of bifurcation may be written as

1 da _ _ _
Y *HT! = —{(oy P+ 22 92) VO, +u, V(e @) + 2292), 9F)

+{(2y @y +092), iz, i=1,2.

The functionals which occur in the above equations are also given by Egs. (3.7) except
two of them:

4
B1V02, 91> = (PaV0s, ) = T (ol +ad).
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Therefore we have

1 do n* 3n* n?
Ta ~ g rem e e ba e,
e 1 da e 3n* 7!21
2 2 2 2
— == - (aft o) ay— ooy —— + Uy .
4 dt g araEte TR ag > 2Ra,
According to the previous analysis there are three sets of nontrivial fixed points:
2
1 ,2 oy = i\ =
) ) 1 nl/Ra1 s o> 0)
2
¢, =0, ay= =% ——
n)y Ra,
1 28
3) “1=sz=it]/—,
7/ Ra, 17
1 /28

The standard stability analysis of fixed points shows that the solutions belonging to sets
1) and 2) are stable, whereas the trivial solutions and solutions belonging to set 3) are
unstable. Figure 1 presents the geometrical properties of the particular solutions. It is
an obvious conclusion that the steady-state form of flow depends only on a choice of the
initial conditions for &, (z) and «, (7).

oGy

FiG. 1. Stability of the fixed points of Egs. (4.1) (@ .— stable, O — unstable).
5. Galerkin’s analysis of finite amplitude solutions

By taking the curl of Darcy’s law in the relations (2.1), it can be seen that the vertical
component of verticity is zero:

(5.1

du,  Ou,

ox oy L
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This is identically satisfied if

a%¢ %P
(5.2) Uy = 375 Uy = Fxdy
: P’ I
Furthermore, with u, = — e % —— the continuity equation will be satisfied.

With the help of Egs. (5.1) and (5.2), we can obtain two equations for unknown 6
and ¢ from the relations (2.1)

(5.3) V3¢ = —Rab,

2 00 o 0? d0%¢ \ a0 2 2
IR S DL A R S
ot = 0x 0x0z = dy dyoz ox ay? | oz ox dy

The boundary conditions on 6 and ¢ are

0% 0 0%
b=t 37 = 522

=0 on z=0,1.

We use the Galerkin technique to determine ¢ and 6 in this three-dimensional situation.
The solutions of the problem (5.3) will be sought in the form of the Fourier series:

¢ = Zﬁn]anjmy

”I .y

jm
0
= 2 dnijnjms

n,j,m

(5.4)

where F,;,, is a complete orthonormal sequence

/2 sin(nnz), m=0, j=0,
5 2 sin(nzz) cos(jnx), m=0, j#0,
mm 2 sin(naz) cos(may), m#0, j=0,

22 sin(nnz) cos(jnx) cos(mmy), m #0, j#O.
Truncating the sequences (5.4) to functions

(5'5) FIOO,FZOOlFIIOSFIOI;FZIOy FZOI,EII!FZIIs

we obtain a finite system of ordinary differential equations:

) . TRan 7Raxn am
(3.6) 00 = —7?ay00+ ']6 l/f %y0%230+ — 10'/2 X101 %210+ V-Z- ®y11 %2115
) R R 2;
%300 = —4n%ay00— a—n afio— an a}o1—2'/lRaa?u:
V2 V2 3
. Ra — 4n? Ran Ran
Ayjo = = T %10+ '/—2— Or10%200— T]/*Z:azwawo

6Rax & 4 Raz Ran s
— 201 111 = 101 %4211
5Y2 2y2
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5.6) @ Ra—4n? 4 Ra=n o Raz ,
: = — P -
el 101 3 101 /2 101 %100 52 201 %100
6Ran Raxn
+ 57|/2: 0‘210¢111+m*051100f211,
& oL « BT o ‘2 Ramotop
=— - -1 1 "
210 Z 210 22 110%100~ } 101 %111
, Ra—25n? Ran ;
U201 = 5 %201~ = %01 %00~ V2 Rama; 0044,
2)2
- 2Ra—9n? 22
Ay = T3 %+ — 3 -Rame o, %40
Rana o +n4Rad o +ﬂa o
31/2 211 %101 5y2' 110 X201 5[/5 101 %2105
. Ra—1872 Ran V2
X211 = 3 P8 ;-2*' X101 X110~ ’E*Raﬂanlamo-

The eight distinct steady-states of the convection were designated (eight sets of stationary
solutions of the system (5.6)). Figure 2 shows the norms of the branches of these station-
ary solutions. The branches 4, B and E starting from point Ra = 4z? are the same as
were determined in the perturbation analysis in Sect. 3. It can be seen that branch E con-
sists of two separate pieces for 47 < Ra < 18n?% and for Ra > 21x?, respectively. Ra =
= 21=2 is a singularity point of this branch. The branches D, F and G, which do not bifur-
cate from the trivial solution, emanate from the bifurcation point of limit-point type.

1ot/
041¢
~,
\\
\\-‘-‘
e =
e = e ——
_“‘{':"‘-::_—_—_-
Qz ——————— ;.‘- ______
0 0 Ra/T?

Fi1G. 2. Norms of stationary solutions of the system (5.6).
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The steady-states A4, B, F, G represent two-dimensional convective rolls. The other
branches: C, D, E, H correspond to three-dimensional convection. Figure 3a shows
the isotherm pattern for three-dimensional flow represented by branch E while Fig. 3b —
the isotherm pattern for three-dimensional flow represented by branch C. The linearized
stability analysis of steady-states of convection was examined.

s

W\ 'Y

i

}__________._

ﬁ

F1G. 3. The isotherm pattern for three-dimensional flows represented by a) E and b) C branches, respectively.

)
<

For the purpose of the stability analysis the real part of the eigenvalues of the Jacobi
matrix of the system (5.6) for fixed points were designated.

The stability of branches 4, B, C could be directly determined. The characteristic
equations of other branches were solved in the numerical way. The stability analysis
shows that the branches of three-dimensional convection, D, F and two-dimensional
convection F, G are entirely unstable. The steady-states A and B are at first stable, and
lose stability when Ra crosses the Hopf bifurcation point Ra = 18x2.

The stationary solution C, starting from Ra = 4.57%, is unstable in the range of
4.5n%* < Ra < 4.78x* and stable in the range of 4.7872% < Ra < 21x2.

According to the basis (5.5), it has the form

Ra = 21=? is also the Hopf bifurcation point of this branch. When the Rayleigh number
exceeds 212, the solution C becomes unstable.

6. Conclusions

At Ra = 422 three branches of steady-state solutions of the Darcy-Boussinesq equa-
tions emanate. Two of them representing two-dimensional flows are stable. The third
which describes three-dimensional flow is unstable. However, very close to the first criti-
cal Rayleigh number, at Ra = 4.522, one branch of stable three-dimensional flow ema-
nates.
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The Galerkin analysis, made for a finite basis truncated to eight elements, increased
the number of branches of steady-state solutions to seven, but only three of them having
been discovered earlier by the perturbed method are stable. The stable branches starting
at Ra = 4n2 and Ra = 4.57% lose stability at the Hopf bifurcation points Ra = 18x2
and 2172, respectively.

At present the stability of bifurcating periodic solutions from these points is not known.
It is an interesting problem because the transition from laminar to turbulent flow is abrupt
when subcritical bifurcation takes place [11] (unstable orbits) and is preceded by compli-
cated periodic and quasi-periodic states [12] for the supercritical point of bifurcation

(stable orbits).
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