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Stability of nonlinear thermal convection in a porous medium 

·w. KORDYLEWSKI and B. BORKOWSKA-PAWLAK (WROCLAW) 

THE PROPERTIES of the approximate solutions of the Darcy-Boussinesq equations, obtained 
for small amplitudes by the perturbation analyiis and for finite amplitudes by using the Galerkin 
method, were investigated. It was shown that two branches of three, which emanate at the 
Rayleigh number Ra = 4n2 representing two-dimensional time-independent flows, are stable. 
The third branch of three-dimensional convection is unstable. However, the branch of three­
-dimensional flow starting at Ra = 4.5n2 is stable. Galerkin's ~nalysis showed that three of the 
mentioned stable branches lose stability at Ra = 18n2 and 21n2 , respectively, at the H<;>pf 
bifurcation points. The existence of many branches of different stable pattern flows could 
explain the difficulties in determining the unique, second critical Rayleigh number of the 
transition from laminar to fluctuating flow. 

Badano wlasnosci przyblironych rozwi<lZ3-n r6wnan Darcy-Boussinesqa, otrzymanych dla 
malych amplitud przy pomocy analizy perturbacyjnej i w przypadku skonczonych amplitud 
przy u:iyciu metody Galerkina. Pokazano, ze dwie gal~zie z trzech, kt6re rozwidlaj~ si~ dla 
Ra = 4n2 reprezentuj~ce dwuwymiarowe ustalone przeplywy, s~ stabilne. Trzecia gahrz tr6j­
wymiarowej konwekcji jest niestabilna. Jednak:ie gal~z tr6jwymiarowego przeplywu wycho­
d~ca z Ra = 4.5n2 jest stabilna. Analiza Galerkina pokazala, i:e trzy wspornniane stabilne 
gal~zie trac~ stabilnosc w punktach bifurkacji Hopfa. Istnienie wielu r6i:nych stabilnych form 
konwekcji mo:ie wyjasniac trudnosci w jednoznacznym okre51eniu drugiej krytycznej liczby 
Rayleigha przejscia od laminarnego do fluktuacyjnego przeplywu. 

11ccne~oBaHhi cao:Hcraa npu6numeHHbiX pemeHH:H ypaaHeHHH: ,Uapcu-EyccHHeCI<a, nony­
qeHHbiX WUI MaJibiX aMIIJIHT)'~ npH llOMOI.QH neplj'p6a~HOHHOrO MeTOAa, a B cnyqae :KOHeq­
HbiX aMllJIHTY~ npH HCOOJIL30BaHHH MeTO~a ranep:KHHa. ,llm<a3aHO, qTO ~Be BeTBH, H3 TpeX, 
I<OTOpbre pa3BeTBmiiOTCH ~JI.a Ra = 4n2 , npe~craBJIRIOI.QHe ~ByxMepHhie yCTaHOBHBWHec.a 
TeqeHHR, cra6Hm.Hhi. Tpe-rM! BeTBb TpeXMepHo:H I<OHBe:K~HH Hecra6HJII,Ha. O~ru<O BeTBb 
TpeXMepHoro TeqeHH.a, HCXOMI.QaR H3 Ra = 4,5n2

' cra6HJibHa . .AHaJtH3 ranepi<HHa noi<a3aJt, 
qTO TPH ynoMRHYThie cra6HJn.Hhie BeTBH TepRIOT cra6Hm.HOCTD a TOql(ax 6ml>ypi<a~HH Xon<l>a. 
Cyi.QecraoaaHHe MHOrHX pa3HhiX cra6HJibHhiX <l>opM :KOHBe~ Mome-r BhiHCHHT& Tpy~OCTH 
a o~o3Ha~oM onpe~eneHHH BToporo I<pHTHqeC:Koro qucna Pene.a nepexo~a oT naMHHap­
Horo I< TYP6yneHTHoMy TeqeHHHM. 

1. Introduction 

THE NATURAL convection in a saturated porous layer of infinite horizontal extent has 
received considerable attention in recent years mainly because of its geophysical interest. 
In terms of mathematics convection in a porous medium is simpler than the ordinary 
Benard problem, which results from the replacement of the viscosity term in the Navier­
Stokes equation by Da~y's law. 

Simiiarly to the classical Benard problem, the Rayleigh number Ra assumes in this 
case two critical values. The first of them Ra1 = 4n2

, given by LAPWOOD [1], determines 
transition from conductive to convective heat transfer in a porous layer and has been 
well established by many laboratory experiments. The second critical Rayleigh number 
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Ra2 determines transition from laminar to turbulent flow, but its exact value is not known 
at present. 

Experiments carried out by COMBARNOUS and LE FuR [2] suggest that the second 
critical Rayleigh number lies between 240 and 280. Numerical calculations of Ra2 [3, 4, 5] 
and [6] were also carried out, but the results are not as yet satisfactory because of their 
non-uniqueness. The recent SCHUBERT and STRAUS calculations [6] suggest that the tran­
sition to fluctuating convection occurs at a value of Ra between 300 and 320. The authors 
[7] have shown that the transition of two-dimensional convection in a square cell to fluc­
tuations takes place at Ra2 = 30n2 • 

The nonuniqueness of the second critical Rayleigh number results probably from the 
multiplicity of stationary states of convection for large Ra numbers. If the Rayleigh num­
ber increases, the branches of steady-state solutions lose stability for different values of 
Ra2 • Hence we observe experimentally and numerically different values of the second 
critical Rayleigh number, depending on the particular realization of the pattern flow. 
Moreover, the loss of stability of some branch of steady-state solutions need not lead 
to turbulence, the transition to other steady-states being possible. At present the behav­
iour of thermal convection in a porous layer for large Ra is c<:>nsidered to be extremely 
complex, and it is still impossible to compl~tely analyse the stability of flow. 

In this paper we give a perturbation analysis of small solutions which emanate from 
the two first points of bifurcation Ra = 4n2 and 4.5n5 • In the sequel we use the Galerkin 
method for obtaining the finite amplitude solutions and analyse their stability. The 
obtained results show the possibility of the existence of two- and three-dimensional 
stable flows which lose stability at Ra close to the experimental data. 

2. Formulation of the problem 

Consider a saturated porous layer of infinite extent heated from below. The layer 
has a thickness equal to unity and is bounded by two nonpermeable, perfectly conducting, 
horizontal plates. We assume that fluid motion and heat transfer including convection 
in a porous medium are described by the dimensionless Darcy-Boussinesq equations 

ao 
(2.1) at= V 20+uz-UV(), 

-u-Vp+RaOz = o, Vu = o, 
with the boundary conditions on the lower and upper plates 

(2.2) 

Here() is the temperature, u = (uz, Ux, uy) is the velocity vector, pis the pressure, z = (0, 0, 1) 
is the unit vector directed upwards and V2 is the Laplace operator. 

The Rayleigh number is defined as follows: 

Ra = kga.hL1Tfkmv, 

where k denotes the coefficient of permeability, g- acceleration due to gravity, oc- the 
coefficient of thermal expansion, h - .wave number, L1-T- difference of temperature, 

http://rcin.org.pl



STABILITY OF NONLINEAR CONVECTION IN A POROUS MEDIUM 97 
---------------------

, -viscosity, km- coefficient of thermal diffusion. The physical parameters of the po­
rous medium as well as the fluid (viscosity, permeability, thermal expansion etc.) are 
constant and do not depend on temperature and pressure. 

When the Rayleigh number is sufficiently small, there is only a conductive, steady 
state solution of Eqs. (2.1) and (2.2) () = u = p = 0. This solution loses stability at the 
bifurcation point when convection appears. The necessary condition of bifurcation occur­
rence is that the linearized form of the steady-state problem (2.1) and (2.2) 

(2.3) 

(2.4) 

V 2 cp+1pz = 0, 

-1p-Vq+Racpz = o, 
Vip = 0, 

Z = 0, 1: cp = "Pz = 0 

has a nontrivial eigenvector [cp, 1p, q]r, wh~re cp, 1p, q denote the temperature, the velocity 
and the pressure, respectively. Combining the particular equations of t!J.e set (2.3), it is 
easy to obtain the linear eigenvalue problem in the form of a single equation: 

(2.5) ( 
()2q ()2q) 

V4q + Ra ox2 + oy2 = 0. 

From the relations (2.4) and the momentum balance equation in the z direction (2.3) 
there result the boundary conditions 

(2.6) 
oq 

z = 0, 1: Tz = 0. 

The eigenvectors of the linear eigenvalue problem (2.5) and the relations (2.6) have the 
form 

q = 2ncos(inz) · cos(khxnx) · cos(lhyny). 

Eigenvalues, corresponding to these eigenvectors, are given by 

2 (i2+k2hi+Fhi)2 
Ratkl = n k2h2 +Ph2 ' 

X y 

where h; 1 and h-y 1 are the horizontal wave numbers in the x andy directions, respectively. 
The smallest eigenvalue Ra1 = 4n2 follows for hx = hy = 1 and two sets of numbers 

(i' k' /) 
(1,1,0) and (1,0,1). 

The eigenvalue Ra = 4n2 is double because there are two corresponding eigenvalues 
which can be easily calculated from Eqs. (2.5) and (2.6) 

cp1 = sinnzcosnx, q1 = -2ncosnzcosnx, 

"Ptz = 2n2 sinnzcosnx, "Ptx = -2n2 cosnzsinnx, 
(2.7) 

(2.8) 
cp2 = sinnzcosny, q 2 = -2ncosnzcosny, 

1p2 z = 2n2 sinnzcosny, 1p2 y = -2n2 cosnzsinny. 

These eigenfunctions are two-dimensional, hence we conclude that the small nonlinear 
solutions of Eqs. (2.1) and (2.2) corresponding to them also are two-dimensional. How-
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ever, every linear combination of these gives a three-dimensional . eigenvector and can 
lead to a three-dimensional nonlinear solution. 

It is well known [9] that the odd multiplicity of the eigenvalue is a sufficient condition 

for the existence of the bifurcation point. When the multiplicity is even, then every case 
must be analysed precisely because we do not know the general rules for the determi­
nation of the emanating branches. The next section is an illustration of this problem. 

We should also notice that close to the first bifurcation point Ra1 = 4n2 there is 
the next point of bifurcation Ra = 4.5n2

• Because the eigenvalue Ra = 4.5n2 is simple 
at this point, only one branch of the nonlinear solution bifurcates. However, it is inter­

esting from the physical point of view that the corresponding eigenvector is three-dimen­
sional, which suggests that · it is possible for stable three-dimensional flow to occur very 
close to the first critical Rayleigh number. 

In the sequel we assume the periodicity of the solutions of Eqs. (2.1) and (2.2) in the 

x and y directions, and restrict our considerations to the box with perfectly insulated walls. 
Hence the boundary conditions on the sidewalls become 

(2.9) 
ao 
oii = Un = 0, 

where n denotes the ~ormal direction to the wall. The horizontal dimensions hx and hy 
are assumed to be equal to unity. 

3. Bifurcation of steady-state solutions 

For the evaluation of the branches of steady-state solutions, which emanate at Ra1 = 
= 4n2

, we will use the perturbation analysis [10]. Hence we assume steady-state solutions 
of Eqs. (2. I) and (2.2) in the following power series: 

(3.1) 

(3.2) 

l ~] = e{cxl r~:] + (X2[~:] + e .i; e•-l[~:J}' 
P ql q2 1=2 Pt 

V·u, = o, 
00 

Ra = Ra1 + ,21 
e1r, 

1=1 

where e is a small parameter. 
Now our main effort is directed to evaluating the coefficients et1 and et2 , which deter­

mine the multiplicity of the solutions. It is convenient to normalize these coefficients 

Cti + et_i = 1. 

Putting Eqs. (3. I) and (3.2) into Eqs. (2.1) and (2.2) and expanding the nonlinear 
term u · V() into the Taylor series, we obtain the equations of perturbation, after compar­

ing the terms .to zero powers of e. The equation of the second perturbation has the form 

V 2
02 +u2z = (etl Vl1 + et2tp2)V(et1 CJ>1 + Ct2 (/>2), 

- u2 ...., Vp2 + Ra1 0 2 z = - r1 (et1 cp1 + et2 cp2)z, (3.3) 

v · u2 = o 
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with the boundary conditions (2.2) and (2.9). The necessary condition for the existence 
of the solution [02, u2, p2]T is that the right-hand side of Eq. (3.3) be orthogonal to the 
eigenvector of the adjoint to Eqs. (3.5) and (3.6) linear eigenvalue problem [10]. The 
adjoint to Eqs. (3.5) and (3.6) linear eigenvalue problem has the form 

(3.4) 

V2qy* + Rat"P: = 0, 

-1p*-Vp*+qy: = 0, 

v. 'P* = 0 

with the eigenvector 

[qy*, ip*, p*]T = [qy, 1p/Ra1, p/RatY· 

Multiplying the right-hand side of Eqs. (3.3) by the eigenvectors [qyi, "Pi, p*]T (i = 1, 2), 
we obtain two equations of bifurcation: 

((at"Pt+IX21Jl2),qyj)-rt((atfPt+a2qy2),1p~) = 0, 

where(.,.) denotes the scalar product in L2 [(0,1) (0,1) (0,1)]. Since qy1 = qyi (i = I, 2), 
multiplying the above equations by . oc1 and oc2, respectively, and adding, we obtain 

which implies r1 = 0. 
Further we consider the equations of the third perturbation 

(3.5) 
V203+uz3 = (ctt'Pt+a21p2)02+ii2V(atfPt+IX2f/J2), 

-ii3-Vp3 + Ra1 03z = -r2(a1 fPt + a2 fP2):Z, 

v · u3 = o 
which lead to the bifurcation equations in the following form: 

(3.6) ((a11fJ1 4 a21jj2)V02 +il2 V(al fPt + a2 (/)2), qyj) 

-r2(a1 fPt + IX2 (/)2, "Pfz> = 0, i = 1, 2. 

These equations allow the evaluation of oc1 and oc2, but before we must calculate 02 and 
1p2 from Eq. (3.3). We neglect longish calculations and present only the results: 

7* 

02 = -: sin(2nz)-
3
; a1a2sin(btz)cos(nx)cos(ny), 

U2z = Ra1 ; !X11X2cos(2nz)cos(nx)sin(ny), 

U2x = Ra1 ; cc1 a2 cos(2nz) sin(nx) cos(ny), 

u2, = Ra1 )- IX1 a2 sin(2nz) cos(nx) cos(ny), 

1 1 
P2 = Ra1 8 cos(2nz)+ T Ra1·a1 a2cos(2nz) cos(nx) cos(ny). 
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Consequently, the functionals existing in Eqs. (3.6) are given by 

(iptV02, cpf) = n 4 /8, i =I, 2, 

(3.7) 

<ifJ2 vo2, cp~> = <ifJ~ vo2, cp!) = 3a.l a.2 n 4 /56, 

<u2Vcp1, cp~> = <u2Vcp2, cp~> = o, 
'Jl2 

(cpt,"P't) = 2Ra
1

' 

(ii2Vcph {{Jt) = 0, i = I, 2. 

Introducing Eq. (3. 7) into Eq. (3.6) and adjoining the condition of normalization we 
obtain equations for three variables a:1 , a:2 and r2 : 

ex 1 ( "': +ex~ 3
;; -r2 /Ra1 ) = 0, 

ex2 ( exl ~~
2 

+ ~
2 

-r2 /Ra1) = 0, 

a.i + a.i = I. 

There are three sets of nontrivial solutions of the above equations: 

I) a.t = ±I' a.2 = 0' 

2) 

3) a.l = a.2 = ±I/y2, 
a.l = -a.2 = ±l/y2, 

I7 2 
r2 = 56 n Ra1 • 

Each of these solutions corresponds to the branch of nonlinear solutions of Eqs. (2.I) 
and (2.2) 'Yhich emanate at the first point of bifurcation Ra1 = 4n2

• 

From Eqs. (3.I) and (3.2) it follows that 

(
Ra-Ra )

112 

e = Ra
1 

1 +terms of higher order 

and three distinct sets of solutions of Eqs. (2.1) and (2.2) assume the form 

J), 2) m = ±! ( Ra~~~ r l::l+ ~ Ra~~a, r~:J+ ... , i = I, 2. 

3) m = ±! ~ ~~ ( Ra~~a, )", r ::J + r::J + ~~!, Ra~~a, r::l+ .... 
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The solutions of the next perturbation equations depend on cx1 and cx2 • For example, 
when cx1 = ±I, cx2 = 0 [03, u3 , p3]T does not depend on they coordinate, when cx1 = 0, 
IX2 = ± I [03' u3' P3f does not depend on X. This is true for the next perturbation solu­
tions [04 , u4 ,p4 ]r, .... Hence the first two solutions: I) and 2) determine exactly the 
two-dimensional rolls, the axes of which are parallel to the x or y coordinate, respect­
ively. The third solution represents three-dimensional convection. The stability of this 
solution will be analysed in the next section. 

The case of bifurcation at the point Ra = 4.5n2 is the classical one because the eigen­
value Ra is simple. Hence only one branch emanates from this point and its amplitude 
is proportional to (Raj4.5n2-l)112. The stability analysis of this branch is given in the 
fifth section. 

4. Stability of small amplitude solutions 

The significance of the stability analysis is due to the fact that only stable physical 
states can be observed experimen~ally. For the thermal convection phenomena it is inte­
resting which stable pattern flow, two,. or three-dimensional, leads to turbulence. In this 
section we analyse the stability of branches emanated at Ra = 4n2

• 

We assume the solution of the nonlinear problem (2.1) and (2.2) in the form of the 
following power series: 

Vut = 0, Ra = Ra1 +y2
, r = y 2 t. 

The equations of the second perturbation assume exactly the same form as in the previous 
section, but 02 is changed slightly because cx1 and cx2 are not normalized: 

02 =-: (a:f+cxDsin(2nz)-
3
; cx1cx2 sin(2nz)cos(nx)cos(ny). 

The equations of the third perturbation yield the following form: 

iJ(al fPt + IX2 (/)2) 2 -, ot = V 03+u3z-[(cxtV't+cx21J'2)V02+u2V(cxtfPt+IX2(/J2)], 

-u3-Vp3+Ra103z = -(cx1fP1 +cx2qy2)z. 

Consequently, the equations of bifurcation may be written as 

I dcxt 
4([t = -((cxtv;t +cx21j32)V02+u2V(cxtfPt +cx2qy2), qyf) 

+((1XtfPt+IX2fP2),1J'tz), i = I,2. 

The functionals which occur in the above equations are also given by Eqs. (3. 7) except 
two of them: 

4 

(f[J1V02, qy1) = (1j)2V02, qy~) = ~- (cxi+cxD. 

http://rcin.org.pl
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Therefore we have 
da.l - . 1t4 3n4 n2 

4 -iit- - T (af+cxi)cxl-cxt cxi ~+ext 2Ra
1 

, 

1 dcx2 n4 ( 2 2) 2 3n4 n 2 

4Tt = -8 cxl +cx2 cx2-cxtcx2 ~ +cx2 2Ral. 

(4.1) 

According to the previous analysis there are three sets of nontrivial fixed points: 

3) 

2 

2 
± --­

nJ!Ral ' 

cx1 = ~2 = + I ... / ~ 
- n v' Ra 1 V 17 ' 

I I 28 
cx1 = - cx2 = ± y V Tf . , n Ra1 

The standard stability analysis of fixed points shows that the solutions belonging to sets 
1) and 2) are stable, whereas the trivial solutions and solutions belonging to set 3) are 
unstable. Figure I presents the geometrical properties of the particular solutions. It is 
an obvious conclusion th'at the steady-state form of flow depends only on a choice of the 
initial conditions for oc1 ('r) and oc2 (r). 

oC z 

Fro. 1. Stability of the fixed points of Eqs. (4.1) (e ,- stable, 0- unstable). 

5. Galerkin's analysis of finite amplitude solutions 

By taking the curl of Darcy's law in the relatio,ns (2.1 ), it can be seen that the vertical 
component of verticity is zero: 

(5.1) ou'!.- OUx = 0 
ax ay · 
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This is identically satisfied if 

(5.2) 

. h 
82

4> 824> h . . . '11 b . fi d Furthermore, Wit Uz = - ox2 - oy2 t e contmmty equatiOn WI e satiS e . 

With the help of Eqs. (5.1) and (5.2), we can obtain two equations for unknown (} 
and 4> from the relations (2.1) 

(5.3) V 2 l/J = - RaO, 

8(} 8(} 824> 8(} 824> ( 824> 824> ) 8(} 824> 824> 
-at +ax 8x8z + 8y 8y8z - 8x2 + 8y2 7fi = V

2
(}- 8x2 - 8y2 • 

The boundary conditions on (} and 4> are 

824> 824> 824> 
(} = 8x2 + 8y2 = 8z2 = 0 on z = 0, 1. 

We use the Galerkin technique to determine 4> and (} in this three-dimensional situation. 
The solutions of the problem (5.3) will be sought in the form .of the Fourier series : 

(5.4) 

00 

l/J = .2; fJnjm Fnjm, 
n,j, m 

00 

(} = L I:J.njm Fnjm ' 
n,j,m 

where Fnim is a complete orthonormal sequence 

yi sin(nnz), 

2 sin(nnz) cos(jnx), 

'2 sin(nnz)cos(mny), 

m = 0, 

m = 0, 

m # 0 , 

j= 0, 

j # 0, 

j= 0, 

2 vi sin(nnz) cos(jnx) cos(mny), 

Truncating the sequences (5.4) to functions 

m # 0, j # 0. 

(5.5) 

we obtain a finite system of ordinary differential equations: 

2 7Ran 7Ran Ran 
a100 = -jl I:J.100 + -------:;=- I:J.110 OC210 + -

1
- I:J.101 I:J.210 + ----;=--- I:J.111 I:J.211' 

10.,2 10J2 }2 
(5.6) 

4 2 Ran 2 Ran 2 2 yh 2 I:J.2oo=- na.2oo- yi I:J.11o- l/
2. I:J.tot---3- Raa.ut, 

. Ra-4n2 Ran Ran 
I:J.110 = --2-·--- I:J.uo+ j/ 2 I:J.uoi:J.200-

5112 
OC210I:J.100 

6Ran Ran 
+ ----:;=- (J.201 (J.lll + ~ ~-· (J.101 (J.211' 

5 J' 2 2 J' 2 
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(5.6) 
[cont.] 

6Ran Ran 
+ 

5 
yf CX21o CXu1 + 

2 
J/.2- CX11o CX21 h 

• Ra- 25n2 Ran ,-
tX21o = - - 5- - cx210- 2~ 

2 
tX11o CX1oo- l1 2 Rance tot a 11 1, 

Ra-25n2 Ran . ~-
5 CX2o1- - r--CX1 01 CX1 oo- Jl 2 Ranallo CX11t, 

2J/ 2 

Ran n4Ra n4Ra 
- - --:;-::- tX211 CX101 + ---- CX110 CX201 +----:;=-- CX101 CX210' 

3 11 2 . 5ll2 - 5 11 2 

Ra-l8n 2 Ran y'2 
----3---- ·- CX211 - -J/ .2.- CX1 01 a 11 o- -3 Rana111 CXtoo. 

The eight distinct steady-states of the convection were designated (eight sets of stationary 
solutions of the system (5.6)). Figure 2 shows the norms of the branches of these station­
ary solutions. The branches A, B and E starting from point Ra = 4n2 are the same ·as 
were determined in the perturbation analysis in Sect. 3. It can be seen that branch E con­
sists of two separate pieces for 4n2 < Ra < 18n2 and for Ra > 2ln2

, respectively. Ra = 

= 2ln2 is a singularity point of this branch. The branches D, F and G, which do not bifur­
cate from the trivial solution, emanate from the bifurcation point of limit-point type. 

CJ.2 

FIG. 2. Norms of stationary solutions of the system (5.6). 

http://rcin.org.pl



STABILITY OF NONLINEAR a>NVECI'ION IN A POROUS MEDIUM 105 

The steady-states A, B, F, G represent two-dimensional convective rolls. The other 
branches: C, D, E, H correspond to three-dimensional convection. Figure 3a shows 
the isotherm pattern for three-dimensional flow represented by branch E while Fig. 3b­
the isotherm pattern for three-dimensional flow represented by branch C. The linearized 
stability analysis of steady-states of convection was examined. 

b 

FIG. 3. The isotherm pattern for three-dimensional flows represented by a) E and b) C branches, respectively. 

For the purpose of the stability analysis the real part of the eigenvalues of the Jacobi 
matrix of the system (5.6) for fixed points were designated. 

The stability of branches A, B, C could be directly determined. The characteristic 
equations of other branches were solved in the numerical way. The stability analysis 
shows that the branches of three-dimensional convection, D, E and two-dimensional 
convection F, G are entirely unstable. The steady-states A and B are at first stable, and 
lose stability when Ra crosses the Hopf bifurcation point Ra = 18n2 • 

The stationary solution C, starting from Ra = 4.5n2
, is unstable in the range of 

4.5n2 < Ra < 4.78n2 and stable in the range of 4.78n2 < Ra < 2ln2 • 

According to the basis (5.5), it has the form 

C = (o,- Ra
1
- 4·5n

2

, 0, 0, 0, 0, ± yR.3 yRa-4.5n2 , o). 
l 2 Ran a 

Ra = 2ln2 is also the Hopf bifurcation point of this branch. When the Rayleigh number 
exceeds 2ln2 , the solution C becomes unstable. 

6. Conclusions 

At Ra = 4n2 three branches of steady-state solutions of the Darcy-Boussinesq equa­
tions emanate. Two of them representing two-dimensional flows are stable. The third 
which describ.es three-dimensional flow is unstable. However, very close to the first criti­
cal Rayleigh number, at Ra = 4.5n2

, one branch of stable three-dimensional flow ema­
nates. 
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106 W. KORDYLEWSKI AND B. BoRKOWSKA-PAWLAK 

The Galerkin analysis, made for a finite basis truncated to eight elements, increased 
the number of branches of steady-state solutions to seven, but only three of them having 
been discovered earlier by the perturbed method are stable. The stable branches starting 
at Ra = 4n2 and Ra = 4.5n2 lose stability at the Hopf bifurcation points Ra = I8n2 

and 2In2 , respectively. 
At present the stability of bifurcating periodic solutions from these points is not known. 

It is an interesting problem because the transition from laminar to turbulent flow is abrupt 
when subcritical bifurcation takes place [II] (unstable orbits) and is preceded by compli­
cated periodic and quasi-periodic states [I2] for the supercritical point of bifurcation 

(stable orbits). 
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