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Generation of waves on a running stream in electrohydrodynamics
B. K. SHIVAMOGGI (CANBERRA)

THE PRESENT paper is concerned with the electrohydrodynamic effects on the generation of
two-dimensional waves by an oscillating pressure acting at the surface of a running stream of
a conducting fluid of finite depth. It is found that in the ultimate steady state either two or four
waves may exist, depending on the relative values of the speed of the fluid, its depth, the fre-
quency of the applied pressure, and the magnitude of the electrostatic forces at the free surface.
The conditions separating these two possible states of the wave system are found to be influ-
enced by the electrostatic forces. Thus the critical stream velocity U, for the the generation of
waves on the downstream side of the source which is a steady pressure acting on the free sur-
face decreases in the presence of electrohydrodynamic effects. Further, the electrohydrodynamic
effects slow down some of these waves and speed up some others.

Rozwazono wplywy elektrohydrodynamiczne na proces generacji dwuwymiarowych fal w ply-
nacym strumieniu cieczy przewodzacej pod dzialaniem oscylujacego cisnienia na powierzchni.
Stwierdzono, ze w stanie ustalonym moga istnie¢ dwie lub cztery fale, zaleznie od wzajemnych
stosunkéw predkosci cieczy, glebokosci strumienia, czesto$ci drgan, ci$nienia i wielkoéci sit
elektrostatycznych. Stwierdzono, Zze na warunki zapewniajace osiggniecie jednego z tych dwbch
stanow maja wplyw sily elektrostatyczne. Tak wi¢c krytyczna predkoéé strumienia U, generu-
jaca fale w dot od Zrédia stanowigcego ustalone ci$nienie na powierzchni, maleje w obecnosci
efektow elektrohydrodynamicznych. Efekty te spowolniaja niektére z pojawiajacych sig fal,
a przy$pieszaja inne.

PaccMoTpeHbI 3NEeKTPOrMAPOAHMHAMHYECKHE BJIMAHHA Ha MPONECC TEHEPalMH ABYXMEPHBIX
BOJIH B TEKYILEM IIOTOKE INPOBOIAIUEH YKHIKOCTH Ioj AeHCTBHEM OCUWUIMPYIOUIEr0 JaB-
JIeHUs Ha noBepxHocTH. KOHCTaTHPOBaHO, UTO B YCTAHOBMBIUMMCH COCTOAHHH MOTYT CYLUECT-
BOBaTh [JBE€ HJH 4YeTbIpe BOJHbI B 38BHMCHMOCTH OT B3aHMHBIX OTHOLUEHHH CKOPOCTH »KHI-
KOCTH, TJTyOHHBI IIOTOKAa, YacTOTbI KOJIeOAaHHMM AABJICHHA M BEJHYHHBI JIEKTPOCTATHUYECKHX
cmn. KoHcTaTHpOBaHO, UTO Ha YCJIOBHA, 00eCTIEUNBaIOIHe JOCTIYKEHHE ONHOrO M3 9THX HABYX
COCTOSHMIT, MMEIOT BIIMSAHHE JJIEKTPOCTATHYECKHE CHIbl. MTak KpHTHUecKasi CKOPOCTH IIO-
ToKa U, remepupyiolmias BOJIHBI BHH3 OT HMCTOUHHMKA, COCTABJIAIONIEr0 YCTAHOBJIEHHOE Na-
BJICHHE Ha TIOBEPXHOCTH, YOBIBae€T B IPUCYTCTBHH INIEKTPOTMAPOAMHAMHYECKUX 3hdheKToB.
ITH 3 deKTHI 3aMEIIAIOT HEKOTOPBIE U3 MOABJIAIONINXCA BOJNH, 3 YCKOPAIOT APYTHe BOJHEI.

1. Introduction

BESIDES applications to such areas as electro-fluid dynamics of biological systems, di-
electrophoretic orientation and expulsion of liquids in zero-gravity environments, insula-
tion research in liquids and gases, electrohydrodynamics seems to be closely associated
with the atmospheric and cloud physics, physicochemical hydrodynamics, bubble and
drop dynamics, and the electrostatics of thunderstorms. Early studies of electrostatic
effects on the motion of fluids were made by RAYLEIGH [8], who considered the effect of
surface charges on the vibration of spherical drops. MICHAEL [5, 6] studied the effects of
electrostatic forces on the stability of radial oscillations of a jet of conducting fluid and
found that the effect of electrostatic forces on the vibrations of a system of fluid conduc-
tors depends only on the geometry of the conducting surfaces and not on the fluid motion
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produced. MicHAEL [7] and SHivamoGaI [9] studied the effects of electrostatic forces on
the linear and nonlinear stability of wave-motion at the surface of highly-conducting
fluids, and found that the electrostatic forces have destabilising effects on the wave-motion
at the surface. The present paper is concerned with the electrohydrodynamic effects on the
generation of two-dimensional waves by an oscillatory pressure acting at the surface of
a running stream of a conducting fluid of finite depth, (the hydrodynamic counterpart
of this problem was studied by DEBNATH and ROSENBLAT [1]). It is found that in the ulti-
mate steady state either two of four waves may exist, depending on the relative values of
the speed of the fluid, its depth, the frequency of the applied pressure, and the magnitude
of the electrostatic forces at the free surface. The conditions separating these two possible
states of the wave system ace found to be influenced by the electrostatic forces.

2. The initial-value problem

Let us assume that in its undisturbed state the conducting fluid which is of infinite
horizontal extent, has uniform depth # (the conducting fluid being supported on a con-
ducting plate at z = —h, see Fig. 1). The wave-generating mechanism is a periodic press-
ure, of frequency w, applied at the free surface given by z = 0. The applied pressure is
two-dimensional so that the resulting wave-motion occurs wholly parallel to the flow.
The conducting fluid is taken to be inviscid, incompressible, and the capillary effects
(produced by the surface tension) at the free surface are ignored.

Conducting plate at a pofential V,
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In treating steady-wave problems by the method of Fourier-transforms, one has to
impose an appropriate radiation condition (LIGHTHILL [3]) to ensure uniqueness. One
may avoid this by posing a more realistic initial-value problem, the applied pressure being
“switched on™ at time ¢ = 0. An asymptotic development in time then leads to the ulti-
mate steady-state solution.
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It is convenient to pose the problem in a coordinate frame which is at rest with respect
to the applied pressure at the surface. In this frame the fluid streams with speed U in the
x-direction. The applied pressure is taken to be of the form

(2.1) p(x, 1) = poo(x)e™,

d(x) being the Dirac-delta function. A conducting plate maintained at a potential ¥,
lies at a distance b above the free surface of the fluid (see Fig. 1) so that in the undisturbed
state the electrostatic potential is given by

(2.2) W=V %
Let ¢(x, z,1), w(x, z, t) be perturbations respectively in the velocity potential, elec-

trostatic potential, and %(x, t) the elevation of the free surface in the disturbed state.
Then one has the following linearised initial-boundary-value problem:

. ¢ 0%
(2.3) z<0: %2 + =5 3.2 =0,
2y o
(2.9) z>0: %2 T 0,
. 09
(2.5) z= —h: 'a—z—o,
(2.6) z=b: y =0,
o B an on _ 0
(2.7) z=0: W"‘UE—“a—z‘,
(2.8) p+q¥, =0,
o o9 _ _ Do -
(2.9) ¥ 3 +U—a— +gn+ — 4 V,p, = ?6(x)e s
(2.10) t=0: p=yp=n=0,

where g is the acceleration due to gravity. The relation (2.5) describes the condition of
impenetrability of the fluid at the boundary z = —A. The relation (2.7) describes the
kinematic condition on the velocity field at the interface. The relations (2.6) and (2.8)
describe the constraint that the electrostatic potentials at the conducting surfaces are
kept fixed, (alternately, one may keep the charge fixed at these surfaces, but this situation
is not considered in this paper). The relation (2.9) describes the force balance at the inter-
face.
Let us Fourier-transform the various quantities according to

@.11) 3k = '1/;—5 l 2(x)e-"dx

so that one obtains

$(k,z,t) = A(k, t) - coshk(z+h),
(2.12)

w(k,z,t) = Bk, 1)- -’;Lsinhk(z-b)
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and using Eqgs. (2.12) in the relations (2.7), (2.8) and (2.9), one obtains

(2.13) i;’l +ikUn —kAsinhkh = 0,
(2.14) Bsinhkb = —7,
(2.15) 4V;;2 Bkcoshkb+(%i~ +1kUA)coshkh +gn = 9'/ = e,
(2.16) t=0: =A=B=0
from which there follows
‘Ttanh Lh iot __ ,im,t iot __ im,t
@17) ik, 1) = ol ianhiics A ]
2 —m, —my
29]/21: (g— : bkz cothkb)
where
Vik
(2.18) my,my; = —kU+ l/(gk— Anb? cothkb)tanhkh
Upon inverting the Fourier integral, one obtains
= 1271 iot _ ,im,t iot _ ,im,t
@19) (e, = 2 f ’;}f,‘(’hkh ["’w_” Sy Atns ]e""‘dk.
L. &= 42 cothkb ™ 2
3. Asymptotic development of the solutions
Let us rewrite Eq. (2.19) in the form
_ _Po it
(3.1) a1 = oo (1o -),
where
2r q1/2
(32 = f ’;t:‘:hkh [w 1m T 1m ]eikxdk’
U __o* — iy 2
o hg 4mb? cothkb

J= ([ ktanhkh ][ eime eimat
(3.3) = f [

2k w—m w—m | k.
1 2
Lg ——cothkb

The dominant contr:butnons to I as x = o come from the poles of the integrand,
which are given by

vik?
w—m; = w+kU— (gk 4nb? cothkb) tanhkh = 0,
3.4)

LY

2
w—m; = w+kU+]/(gk Z ;;2 cothkb) tanhkh = 0.
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These points are shown in Figs. 2 and 3 as points of intersection of the curve

"~ 4ab?
sets of values of U, w, h, V, and b, (for comparison the curves for the hydrodynamic
case are also shown in dashed lines).

2.2
l/(gk Vok® coth kb) tanh kh and with the lines (w+kU) and — (o +kU), for different
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Corresponding to a situation represented in Fig. 2, Eqs. (3.4) each produce one pole
at locations,

(3.5) — —Sl: = ‘52,

respectively.. Corresponding to a situation represented in Fig. 3, in addition to the poles
at locations given by Eq. (3.5), Eq. (3.4); produces two more poles at locations

(3.6) k=0, k=oa,.
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Corresponding to a certain value U, (which will be calculated in Sect. 4) of U, o, and o,
degenerate into a double pole, o, = o, = o. Note then that the poles a,, o, exist only
if

3.7 U<U.,.
It may seem from Eq. (3.2) that there are at least two poles produced by
Vik
e v cothkb = 0.

However, the contributions from these poles will be zero because inspection of the inte-
grand in Eq. (3.2) shows that the corresponding residues vanish.
Using the theorem of residues (LIGHTHILL [4]), one then obtains

(3.8) I~ misgnx[£(—s,)e "% —{(—s5,)e" 2"
+H(U.—~ U){f(vl)e'”*"+C(o'z)e‘°=’]+0(IIJ)

where H(x) is the Heaviside step function, and

B q1/2
)=~ thanhx}’ (cg:‘) .
. bz cothkb k=x
3.9 - f
3.9 i xtanhxh Ha dm,
) = - Vex dk
g———7 cothkb
B 47b

The dominant contributions to J as ¢ = o come from the poles of the integrand in
Eq. (3.3) at locations given by Egs. (3.4), and the point where the phase of the integrand
is stationary, which occurs at

i (n"1 + ﬂ) —_ 0’

dk t

d +kx 0
ak \"T ) =

Following DEBNATH and ROSENBLAT [l], let us consider the asymptotic limit |x| = o0,
t = oo such that |x| € Ut. Then Egs. (3.10) become

d VZk?
T ]/(gk T cothkb)tanhkh =U,

e l/ ( = ;‘2 cothkb)tanhkh

(3.10)

(3.11)

-U.

I

It is clear from Figs. 2 and 3 that Egs. (3.11) each have at most one real root given by

(3.12) k=o¢ and k= —p,
respectively. A necessary and sufficient condition for these roots to exist is seen from
Figs. 2 and 3 to be

(3.13) U< ygh
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(which is the same as the one for the hydrodynamic case found by DEBNATH and ROSEN-
BLAT [1]), l/ gh being the slope at the curve

2

§ V2 k?
]/ (gk =T cothkb)tanhkh at k=0.

The contributions to J from the points of stationary phase at locations given by Eq.
(3.12) are then

1/2

. 12
G.14) T, ~ H|ygh -U) (_ 27 ) stanhoh

tmy' (o) 5o
~ i b2 cothkb
elml(a)l+iaxu ? ( 27 )112
) m7 (=)

1/2 'mz(—o)f—lgx—%i
otanhoh e +0(l).

Ve w—my(—0)
8= Gmb? coth b

Note that the point of stationary phase at k& = o necessarily exists if the poles o,, o,
given by Eq. (3.6) exist because Eq. (3.13) is automatically satisfied if Eq. (3.7) is true
(U, being less than 1/§F, see Sect. 4).

Next, in order to evaluate the contributions to J from the poles of the integrand in
Eq. (3.3), one changes the variable of integration from k to m; , = m,,(k), as in DE-
BNATH and ROSENBLAT [1], and uses the theorem of residues (LIGHTHILL [4]) as before to
obtain

(3.15)  J, ~ mie![—&(—s,)e" T +(s,) e >

+H(U.— U) {&(0,) €% — £(a,) €% }] + 0( [JICJ )

Note that Eq. (3.14) is a transient contribution while Eq. (3.15) is a steady-state con-
tribution. Using Eqgs. (3.8) and (3.15), one obtains from Eq. (3.1) for the ultimate steady
state

.(3.16)

lzpe e (=s)e T —L(=s)e” 5+ H(U.~ U) - (02)e7], x>0,
ns(x, t) ~ i

PD H(U U) E(U )eim¢+na,x x < 0.

Equation (3.16) shows that

(i) if U > U,, there are two waves propagating downstream of the origin with speeds
w/s; and w/s, in the positive x-direction; whereas the former wave is slowed down, the
latter whve moves faster in the presence of electrohydrodynamic effects;

(i) if U < U,, in addition to the above two waves, there are two waves — one moving
with speed w/¢; on the upstream side of the origin, and the other moving with speed
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w/o, on the downstream side of the origin; whereas the former wave is slowed down,
the latter wave moves faster in the presence of electrohydrodynamic effects;
(iii) for the case w = 0, one has

S =8=0=0

and the wave system degenerates to only one wave moving on the downstream side with
speed w/a, if U < U,; the hydrodynamic counterpart of this wave is the one found by
-STOKER ([4] Ch. 7).

4. Determination of U,

Corresponding to U = U,, the poles o,, 0, degenerate into k = ¢, = ¢, = ¢ so
that k = o simultaneously satisfies Eqs. (3.4), and (3.11),. Putting
4.1) ; A= ch,

equations (3.4), and (3.11), give

2
4.2) (gh) ( ) + AU, — l/(gh - _ﬁ;'—z coth ab) Vitanh ik = 0,

Vio Via? 5
] i prery cothob+——— ate cosech?ab
(4.3) Vgh = tanh A
2)/Atanh Ah 'I/ 4 (;,2 cothob

2 2
+]/(1 —ﬁ-f—cozhab) (_'“’Eg) = U,.
dnb’g 2}/ itanh 2

Corresponding to the case with 4 = o0, Egs. (4.2) and (4.3) give

(1 - Va? cosechzab)

I 4nbg Vio Véo? "

“44) U, = o Vag ( — Inbg cothob + b cosech?ab]|.
1- Tnbig cothob

In the hydrodynamic limit (¥, = 0), Eq. (4.4) réduces to the result derived by KAPLAN [2].
Corresponding to the case with w = 0, Eqs. (4.2) and (4.3) give

L Via 1/2
4.5 = :
4.5) U, =Vgh [ Tnbgh cothcrb]

In the hydrodynamic limit (V, = 0), Eq. (4.5) reduces to the result derived by STOKER
([4]), Ch. 7). Equation (4.5) shows that for the critical stream velocity -U, for the genera-
tion of waves on the downstream side of the source which is a steady pressure acting on
the free surface decreases in the presence of electrohydrodynamic effects.
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