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One-dimensional model of shape memory alloys 

F. FALK (PADERBORN) 

THE AIM of this paper is to present a one-dimensional model of shape memory alloys. The pur­
pose of this model is not so much to give quantitative results but to reflect the qualitative beha­
viour of those alloys. Within the framework of Landau theory we restrict ourselves to single 
crystals, which have a slowly varying shear strain e. We look for a Helmholtz free energy density 
F as a function of the strain e and of the temperature T which gives us the equations of state. 
Further, in the Ginzburg-Landau theory, we add a term depending on the gradient of the 
strain which accounts for the presence of phase boundaries and measures the lattice cur­
vature. The most simple possibility is chosen and the gradient of strain squared with a constant 
coefficient ~ is added. 

Celem praoy jest przedstawienie jednowymiarowego modelu stop6w z pami~ci~ ksztaltu poz­
walaj~cego uzyskac nie tyle ilo8ciowe, ile raczej jako8ciowe wla8ciwo8ci tego rodzaju stop6w. 
W ramach teorii Laddaua ograniczamy si~ do monokrysztal6w z powolnie zmieniaj~cym siC( 
odksztalceniem 8cinaj(lcym e. Wyrazenia na g~stosc energii swobodnej Helmholtza poszuku­
jemy w postaci' funkcji odksztalce'nia e i temperatury T, co prowadzi do uzyskania r6wnania 
stanu. Nastcttmie, zgodnie z teori~ Ginzburga-Landaua, uzupelniamy r6wnanie czlonem za­
lei:nym od gradientu odksztalcenia uwzgl~dniaj~cym wplyw obecno8ci granic mictdzyfazowych 
i okreslaj~cym krzywiznct sieci. Wybrano najprosts~ moZiiwosc dodaj(lc czlon zawieraj~cy 
kwadrat gradientu odksztalcenia ze stalym wsp61czynnikiem ~. 

Ue.111>ro pa6oTbi HBJIHeTCH npe~CTaBJieHHe O,lUIOMepHoH: Mo~eJIH cnnasos c naMHTI>IO cl>opMLI, 
ll03BOJIHIOilleH non~' He CTOJILI<O I<OJIHl.J:eCTBeHHble, HO CI<Opee J<al.leCTBeHHbie CBOHCTBa 
3Toro THna cnJiaBOB. B paMI<ax TeopHH JlaH~ay orpa.HHl.J:HBaeMCH MOHOI<pHCTaJIJiaMH c Me~­
JieHHo H3MeHHIOmeH:cjJ ~e<I>opMa~eH: c~Hra e. BLipa>KeHHH .rvm rmornocrH cso6o,~:U~oH: 3Hep­
rHH reJibMrOJILI.la HmeM B BH~e cl>Ylii<I.lHH ~ecl>opMaQHH e H TeMnepaT}'pbi T, l.J:TO npHBO~ 
I< llOJiyl.J:eHHIO ypaBHeHHH COCTOHHHH. 3aTeM, COrJiaCHO TeOpHH rHHa6ypra-JI~ay, llOllOJIHH­

eM ypaBHeHHe l.J:JleHOM, 3aBHCHillHM OT rpa~eHTa ~e<l>opMaQHH, Yl.J:HTbiBaiOillHM ~JIHHHHe 
npHcyTCTBHH Me>K<PaaHLIX rpaHHQ H onpe~eJIHIOmHM I<pHBH3HY peweTJ<H. M36paHa caMaH 

npOCTaH B03MO>KHOCTL, ~o6aBJIHH l.J:JleH, CO~ep>KaBWHH J<Ba~paT rpa~eHTa ~ecl>opMa~H 
C llOCTOHHHbiM I<03cl><l>HI.lHeHTOM ~. 

1. Introduction 

THE AIM of this paper is to present a one-dimensional model of shape memory alloys. 
The purpose of this model is not so much to give quantitative results but to reflect the 
qualitative behaviour of these alloys. -

It is well known that the shape memory effect is due to a first-order martensitic phase 
transition. This phase transition is responsible not only for the shape memory effect in 
these alloys but also for their pseudoelastic and ferroelastic behaviour (see for example 
the review papers [1, 2, 3, 4]). In Fig. 1 the typical stress-strain curves are plotted for 
different temperatures. At high temperature the alloys show linear elastic behaviour. At 
intermediate temperature we get a pseudoelastic (superelastic) stress-strain relation whereas 
at low temperature the material behaves ferroelastically. 
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FIG. 1. Typical stress-strain curves of shape memory alloys at different temperatures. a) Low temperature, 
ferroelastic behaviour. b) Intermediate temperature, pseudoelastic behaviour. c) High temperature, linear 

elastic behaviour. 

Austenite 

Martensite twins 

Fro 2. Crystal structure of austenite and martensite. 

[64) 
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ONE-DIMENSIONAL MODEL OF SHAPE MEMORY ALLOYS 65 

In order to develop the model, we look at the crystal structure of these alloys (Fig. 2). 
At high temperature most of them, as for example NiTi, CuZn, CuSn, AuCuZn2 , AuCd, 
AgCd, have an ordered bee structure. This high-temperature phase is called austenite 
(or P-phase). On cooling the first-order martensitic phase transition takes place trans­
forming the crystal to martensite. This transformation is nearly volume preserving. The 
change in volume typically is less than 0.5%. Essentially the transformation is a shear 
on a plane near to { 110} with the direction of shear ( 11 0). The order of magnitude of 
the shear is 10%. Since there is more than one such plane and direction, we can get 24 
variants of martensite from one given austenite crystal. 

2. One-dimensional model 

In the one-dimensional model we restrict ourselves to an applied shear stress on one 
(110)-plane in one [1IO]-direction, positive or negative. Therefore we can get only two 
martensite variants which are twins. 

In the model we construct the crystal by stacking layers which are parallel to the shear 
plane (Fig. 3). Each layer is homogeneous and may deform by shearing to the right or 
to the left. The amount of shear is denoted by e. Undeformed austenite corresponds to 
vanishing e. This reference state is used throughout this paper even at temperatures where 
austenite is unstable. 

Shear direct/on 

FIG. 3. One-dimensional model. The crystal is built up by stacking of crystal layers parallel to the (110)­

-plane. Stacking direction [110], shear direction [llO]. 

3. Landau theory 

3.1. Free energy 

Within the framework of the Landau theory [5, 6], we restrict ourselves to single 
crystals which have a slowly varying shear strain e. In order to apply the theory of thermo­
elasticity, we have to look for a Helmholtz free energy density F as a function of the strain 
s and of the temperature T which gives us the equations of state. 

5 Arch. Mech. Stos. nr 1/83 
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This function has to meet the following requirements: 
1) F is symmetric with respect toe since shearing to the right and to the left are equiv­

alent. 
2) At high temperatures only undeformed austenite is stable. Therefore F must have 

only one minimum at vanishing e. 
3) At low temperatures only martensite is stable. F must have two symmetric minima 

corresponding to the martensite twins. 
4) At intermediate temperatures austenite and martensite are stable or metastable . 

. F has three minima. 
5) F should go to infinity for big e. 
The simplest function satisfying these conditions is 

(3.1) F(e, T) = a.E6 -{1e4 +y(T-T1)e2 +F0(T), a., {1, y, T1 > 0, const. 

F0 (T) is some smooth function of temperature which for most purposes does not matter. 
In the following we shall discuss the mechanical and thermodynamic consequences 

of this one-dimensional Landau free energy function. We find that Eq. (3.1) gives us 
qualitatively the whole variety of observed behaviour of shape memory alloys. Further­
more it is possible to derive a free energy function from statistical mechanics, which is of 
the same type [7, 8]. 

In order to simplify the discussion, it is convenient to introduce dimensionless quan­
tities which in the following are denoted by lower case letters 

(3.2) 

We get 

(3.3) f = e6 -e4+ {t+ ! ) e2 +f0(t). 

The Landau model contains 4 parameters a., f1, y, T1 which have to be chosen according 
to the specific material (see Chapter 3.10). In rescaled units the free energy is independent 
of any parameter. This means that we have a theorem of corresponding states as known 
from a van der Waals gas. 

In Fig. 4 the Helmholtz free energy is plotted as a function of shear strain e for 
different temperatures. The 5 requirements we posed on fare complied with. 

Fort > 1/I2 the free energy has one minimum ate = 0 only. Only austenite is stable 
in this range of temperature. 

For - I/4 < t < 1/12 there are three minima. 
If t > 0, the austenitic minimum at e = 0 is the lowest one. Therefore austenite is 

stable and the martensite twins are metastable. 
If t = 0, all three minima are of equal depth . 

. For - I /4 < t < 0 the mar~ensitic minima are lower than the austenitic one and 
therefore austenite is metastable and martensite is stable. 

For t < - I /4 there is no austenitic minimum. Only martensite is stable. 
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F 

e 

-1/16 

FIG. 4. Helmholtz free energy /over shear strain e with temperature t as parameter (Eq. (3.3),/0 {1) omitted). 
In the dotted region the crystal is unstable. 

The martensitic minima are located at the strain 

(3.4) -.I 1 1 .. 1-
eo = ± V T + 6 v 1- 12t , t < 1/12. 

Note that one free energy function applies to three different phases. The dotted parts of 
the curves correspond to unstable regions which will become apparent in the next chapter. 
Since Helmholtz free energy is a the~modynamic potential as a function of strain and 
temperature, all thermodynamical functions can be derived. We shall do this i.n the 
following. 

3.2. Stress-strain relation 

By definition the shear stress a is the response of the system on deformation. 

(3.5) u =! = 6e5 -4e3 +2 (t+ ! ) e. 

The s~ress strain-curves are antisymmetric with respect to strain (Fig. 5). At high tempera­
ture the stress-strain curve is nearly linear. The crystal is linear elastic. For lower tem­
perature we have a nonlinear behaviour. In the range 7/20 > t > 1/12 we have pseudo­
elasticity. On loading austenite deforms continuously until the maximum of the curve 
is reached. In the dotted region the shear stress would diminish on further deformation. 
This part of the curves is an unstable region. In reality the crystal undergoes a phase 
transition from austenite to martensite along the upper arrow. This means that on load-

5* 
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68 F. FALK 
---- -----------

ing more and more austenite transforms to martensite until no austenite is left. Along 
the arrow we have a mixture of two phases. Further loading leads to a deformation of 
martensite. If we reduce the load, the deformation of martensite goes back until the mini­
mum of the c~rve is reached. The r~transformation from martensite to austenite takes 
place along the lower arrow. In the pseudoelastic temperature domain we have a hyste­
resis in the stress-strain curves. On cooling, the hysteresis grows until at t = 1/12; it is so 
big that its lower boundary arrives at vanishing stress. This means that for t < 1/12 unload-

1 e 

cr~ 
0.5 

t•-1/16 

\ 

cr 

as 

·•· .... 

1 e 

.. 
1 8 

\. 
-t•-5/16 

FIG. 5. Shear stress a over shear strain e for different temperatures t (Eq. (3.5)). Unstable regions are dotted. 

ing of martensite results in stress-free martensite with strain e0 (Eq. (3.4)). For these 
temperatures the crystal is ferroelastic. The reverse transformation to austenite occurs 
only on loading in the opposite direction. If 1 /12 > t > 1/60, the reverse transformation 
goes from the right martensite twin M+ to austenite and only on further reverse loading 
to the left martensite twin. If t < 1 /60, the reverse loading leads to a phase transition 
from the rigl,lt martensite twin directly to the left one. If t < -1/4, the austenitic part 
of the stress-strain curves disappears and we have a ferroelastic behaviour of the marten­
site twins. 

Notice that the stress-strain relation is not one-to-one. To each stress there correspond 
up to three values of strain. In order to make this relation unique we have to know which 
phase of the system is considered. In this way we get a first-order stress induced phase 
transition with hysteresis, if temperature is lower than fer = 7/20. On the isotherm tcr 

we have a critical point at ecr = 1 /V 5, Gcr = 16/(25 y5). 
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Up to now we were engaged with the highest possible hysteresis which was deter­
mined by the dotted region of instability. If we are interested in the equilibrium phase tran­
sition, we have to look more closely at our curves. If there is an unstable region with 
a negative slope in the stress-strain relation, we have a concave part in the free energy 
(Fig. 6). Therefore there is a common tangent at two points of the free energy curve which 
gives us a lower free energy than the curve itself. This tangent represents the mixture of 
austenite of strain e .. and martensite of strain eM. Since in equilibrium free energy is mini-

a 

e 

b 

e 

r·\··· ... 
FIG. 6. Maxwell's rule of equilibrium phase transition in the .f-e-plot (a) and in the a-e-plot (b). 

FIG. 7. Spinodal (solid curVe) and line of equilibrium phase transition (dotted curve) in stress-strain space. 
The shaded area bound by the spinodal is an unstable region. The domain between both curves is the 

region of superstraining. 
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mal, the equilibrium phase transition goes along this tangent. When we arrive at point 
A phase separation begins. On ·loading more and more austenite transforms to marten­
site until the whole crystal has transformed at point M+. Translating this construction 
to the stress-strain curve we get Maxwell's line which equates the shaded areas. The con­
struction is well known in the liql:Jid-vapour phase transition of a van der Waals gas. 

Now we can construct in stress-strain space the region of instability (Fig. 7). In the 
language of phase transition the curve binding the unstable region is called spinodal. 
In the region inside the spinodal a stable one-phase configuration does not exist. In the 
same diagram we can draw the curve where the equilibrium phase transition takes place. 
This curve bounds the region where in equilibrium austenite and martensite coexist. The 
region between the curves is · the .domain of superstraining. 

3.3. Elastic constant 

The next point is to calculate the elastic shear "constant", which is defined as deriva­
tive of the stress with respect to the strain and therefore depends on strain and tempera­
ture. 

c ~ ~: ~ ;;{ ~ 30e4 -12e2 +2 (t+ ! ). 
In our model the shear is on an (110)-plane in the [IIO]-direction. Therefore the elastic 

1 
constant corresponds to C' = 2 (C11 - C12). 

Fro111 the definition we get the elastic constant as a function of strain and tempera­
ture. Of particular interest are the values for austenite and martensite at vanishing stress. 
For austenite this is equivalent with vanishing strain. In the case of martensite we have 
to insert the value e0 (t) denoting the strain of stress-free martensite (Eq. (3.4)). 

cA(t) = 2t+ 1/2, 

CM(t) = 2/3(1-12t)+4/3vl-12t. 
(3.6) 

0.4 t 
FIG. 8. Elastic shear constant c of stress-free austenite (A) and martensite (M) as a function of temperature 

t (Eq. (3.6)). 
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The result is remarkable (Fig. 8). On heating we have a rapid decrease of the elastic con­
stant of martensite until it vanishes at t = I I I2 where martensite becomes unstable. 

The elastic constant of austenite, however, decreases on cooling linearly, vanishing 
at the stability boundary of austenite at t = - I /4. This behaviour is irregular. Experi­
ments, however, show this lattice softening. One says that the phase transition is induced 
by an elastic instability. ZENER was the first to notice this fact for bee metals in I947 [9]. 

3.4. Entropy, internal energy, Gibbs free energy 

I 

The entropy is defined by s = - offot and we get 

(3.7) s = - e2 -df0 (t)/dt. 

We notice that the entropy is added up by a strain dependent and a temperature-depend­
ent part. From entropy and Helmholtz free energy we can calculate the internal energy 

(3.8) 
u =f+(t+t0 )s , 

u = e6 -e4 + (! -t0 )e2 +/0 (1)-(l+to) ~; . 
The term t0 appears because the rescaled temperature t is shifted against the absolute 
temperature T (Eq. (3.2)). 

We find that the internal energy splits in two independent parts too. Therefore the u 
over e curves for different temperatures are simply displaced parallel without changing 
shape. 

If we look at the definition of the internal energy (Eq. (3.8)), we notice that the great 
variety off over e curves results from the term ts. Therefore the characteristic stress-strain 
relations of shape memory alloys are due to entropy. Thus these alloys are called entropy 
elastic or rubber elastic since in rubber elasticity is due to entropy, too. 

Gibbs free energy is defined by 

(3.9) g(a, t) = f(e(a, t), t )-ae(a, t). 

Gibbs free energy is a thermodynamic potential only as a function of stress and tempera­
ture, and we have to replace the strain by the stress. This, however, can be done only 
numerically (Fig. 9). We have to bear in mind that the stress-strain relation is not one-to­
one. For each of the phases austenite, right, and left martensite twin, we have a separate 
stress-strain relation. Therefore we get three different curves for Gibbs free energy, one 
for each phase. Each curve ends at the point where the corresponding phase loses stability. 
In equilibrium the system exists in the phase with the lowest Gibbs free energy. The equi­
librium phase transition takes plac.e at the intersection of the Gibbs free energy curves. 
The part between the intersections and the ends of the curves correspond to superstrain· 
in g. 

Because of the nonuniqueness of Gibbs free energy~ Helmholtz free energy which 
is unique seems more convenient for describing shape memory alloys. 
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FIG. 9. Gibbs free energy g over stress a for different temperatures t. The curves marked by A, M+, and 
M- apply to austenite, right, and left martensite twin, respectively. The curves end at the dots where the 

corresponding phases become unstable. 

3.5. Specific beat 

The specific heat is defined by the heat supply over the change of temperature 

(3.10) 
dQ as 

C = dT =ToT. 

We have to distinguish whether stress or strain is fixed. 

In the case where strain is fixed we simply get 

(3.11) 
os(e, t) d2fo 

Ce(t) = (t+to) Ot = -(t+to) dt2 , 

which is a continuous function of temperature alone. Ce is independent of strain and there­
fore the same function for austenite and martensite. 

If we fix the stress, we have 

(3.12) ( ) ( 
. ) os(u, t) - ( ) ( os(e, t) os(e, t) oe(u, t)) 

Co U, t_ = t+to ot - t+to ot + oe ot 

oe(u, t) 
= Ce(t)-·2e(u, t)(t+to) ---ai- , 
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ca is different for austenite and martensite even at the same stress and temperature since 
the strain as a function of stress differs for both phases. In the stress-free case we get for 
austenite with vanishing strain at vanishing stress 

Ca)(] = 0, t) = ce(t). 

For martensite at (] = 0 we have e = e0 (t) (Eq. (3.4)) getting (Fig. 10) 

t+t0 
CaM((]= 0, t) = Ce(t)+ tl . 

1-12t 
(3.13) 

The difference between the specific heat at vanishing stress of austenite and martensite 
has an integrable singularity at the temperature where martensite becomes unstable . 

.dC 

-0.25 0.1 t 

FIG. 10. The difference L1c between specific heat of martensite with stress or strain fixed (Eq. (3.13)) plotted 
over temperature t. There is an integrable singularity at t = 1/12 where martensite becomes unstable. 

t0 is taken from Eq. (3.8) with rx , p, and y according to Chapter 3.10 (t0 = 1.91). 

3.6. Temperature-induced phase transition 

The martensitic phase transition can be induced not only by loading at fixed tempera­
ture but also by heating or cooling at fixed load. 

Figure 11 shows the strain-temperature curves at constant load. For large load insta-

bility does not occur nor does a phase transition. For a < 16/(25{5) = (]en cooling of 
austenite leads to a phase transition at that temperature where the boundary of stability 
is reached, namely at the broken curve. The crystal transforms to martensite M+ which, 
on further cooling, does not deform very much. On heating the boundary of instability 
for martensite is reached at higher temperatures only. Then the reverse transformation 
to austenite occurs. Therefore we get thermal hysteresis. The broken curve bounds the 
unstable region and is called spinodal. 

The dash-dotted curve connects the points where the equilibrium phase transition 
takes place. Therefore the region between the broken and the dash-dotted curves indi­
cates the possible superheating or supercooling. 
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In practice it is not obvious to what extent supercooling or superheating takes place. We 
can only argue that in an elastically homogeneous, unstressed single crystal the tempera­
ture at which, on cooling, the formation of martensite starts has to be in the domain 
( -1 /4,0]. Analogously the temperature where, on heating, the formation of austenite 
starts has to be in the domain [0,1/12]. 

1.0 

0.8 

..... ·········· 

~---------- D.OB 

0.5 

FIG. 11. Strain e over temperature t for different stresses u. The dotted regions correspond to unstable 
states which are bounded by the dashed curve. The arrows indicate the temperature-induced phase 
transition in the case of highest possible hysteresis. At the dash-dotted curve the equilibrium phase 

transition takes place. 

If there are lattice defects, the crystal" is self-stressed. Thus we have a distribution of 
shear stress which in the neighbourhood of the defects varies rapidly. Since the tempera­
ture of the equilibrium phase transition as well as the boundaries of the stable domains 
depend on the stress, these temperatures will vary within the crystal, too. Consequently, 
on cooling the austenite-to-martensite phase transition begins earlier in regions where by 
self-stress the temperature of the phase transition is raised. In this way defects serve as 
nuclei for the new phase. 

In this model it is possible to have a continuous transition from austenite to ma­
rtensite if we heat austenite to f > fer, then apply a load a > acr and cool down below 
fer, that is if we go round the critical point. This is in analogy to the liquid-vapour phase 
transition. 

The driving force for the phase transition at fixed stress is the difference between the 
Gibbs free energies of both phases. In the case of vanishing stress the driving force is 
plotted as a function of temperature in Fig. 12. At f = 0 the driving force vanishes. This 
means that at this temperature the phases are in equilibrium. At lower temperature the 
driving force from austenite to martensite is positive. The curve ends at that temperature 
at which austenite or martensite becomes unstable. The driving force varies riearly linearly 
with supercooling. 
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Fro. 12. Driving force for the phase transition from austenite to martensite over temperature at vanishing 
stress. The curve ends at t = -0.25 and t = 1/12 since beyqnd these temperatures only one of the phases 

is stable. 

3.7. Latent heat 

The latent heat of the phase transition from austenite to martensite is defined by 

(3.14) q = (t+t0)Lls = (t+t0)(s(eA, t)-s(eM, t)), 

eA and eM are the strain of austenite and martensite, respectively. We get 

(3.15) q = (t+t0)(e~-e~). 

For vanishing load we have eA = 0 and eM = e0(t) (Eq. 3.4) and, consequently, (Fig. I3) 

(3.16) (
I I ·-· ) 

q(a=O,t)= (t+t 0 ) T+"6- y'I-I2t. 

In the domain -1/4 < t < 1/12, where both phases can coexist, the latent heat does not 
depe~d very much on temperature, that is on supercooling or superheating. Its lowest 
possible value lies at that temperature where martensite becomes unstable. 

q 

- O.Z5 0.1 t 

FIG. 13. Latent heat of the phase transition from martensite to austenite if stress vanishes (Eq. (3.16)). 
The curve ends at t = -0.25 and t = 1/12. 
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3.8. Phase diagram 

With the calculated data we can plot a phase diagram in stress-temperature space 
(Fig. 14). 

0.4 

FIG. 14. Phase diagram in stress-temperature space. Capital letters (A, M+, M_) denote stable phases, 
small letters (a, m+, m_, m) metastable phases. A(a), M+(m+), M_(m_), and m correspond to austenite, 
right martensite twin, left martensite twin, and either martensite twin, respectively. The solid lines separate 
the region where a phase is metastable from the region where the same phase is unstable. The bold broken 
line separates regions of metastability from regions of absolute stability. At t = 0, a= 0 three phases are 
stable. In the neighbourhood of this point, three phases, one stable and two metastable, may coexist. 

3.9. Shape memory effect 

The shape memory effect is characterized by the fact that a permanent strain created 
by loading at low temperature vanishes on heating. This effect is accounted for in our 
model (Fig. 15). 

M- A 1 M+ e 
FIG. 15. Shape memory effect in an f-e-plot (see text). 
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We start at low-temperature t1 with undeformed austenite. If in a first step we apply 
a big enough load, the crystal transforms to martensite M+. Since the free energy curve 
has a martensitic minimum, the crystal remains in this phase even when we remove the 
load. We have generated a permanent strain. Now if we, in a second step, heat the crystal 
to the temperature t11 , we shift to a free energy curve which has no martensitic minimum 
at all. The crystal spontaneously retransforms to undeformed austenite and retains its 
original shape. If we cool to the starting temperature th nothing more happens. To get 
this behaviour we have. to start with a temperature in the range -1/4 < t1 < 1/12 and 
heating must exceed t = 1/12. 

3.10. Determination of parameters 

The Landau-model can be fitted to a specific material only by the (our parameters 
IX, {J, y, T1 • The model is adapted to single crystals and experiments for the compari­
son should have been done on single crystals, too. 

Measurements concerning hysteresis phenomena are not suitable because we can 
calculate the highest possible hysteresis for crystals without defects only, which may not 
be reached. Since the properties of shape memory alloys strongly depend on chemical 
composition, so do the parameters. Therefore one has to be careful in using data from 
different authors. 

For the alloy Au23Cu30Zn47 Y. MURAKAMI [10] published a sufficient set of data, 
namely latent heat, equilibrium phase transition temperature T0 at vanishing stress and 
the elastic shear constant of austenite at different temperatures. The latter shows a linear 
decrease on cooling which is in agreement with the model. 

The slope of the elastic constant gives us the parameter y. By extrapolating the elastic 
constant to zero, we find the stability boundary of austenite at zero stress which is T1 • 

From the latent heat and the equilibrium phase transition temperature we get {3 and IX: 

ex = 7.5-106 Jcm- 3 , y = 24 Jcm- 3K-t, 

fJ = 1.5-105 Jcm- 3 , T1 = 208 K. 

From ~hese values we can calculate the strain of unstressed martensite at the equilibrium 
phase transition temperature to 0.10 corresponding to the shear angle 5.7°. Unfortunately 
Murakami did not mention an experimental value. However, a shear of this magnitude 
typically occurs in martensite with the crystal structure of Au23Cu30Zn47 • 

3.11. Summary of Landau model 

Let in now summarize the essentials of the Landau model. It is in some sense a semi­
microscopic model since it is made for describing single crystals containing very many 
atoms without defects if the applied shear stress has a definite orientation. 

The model obviously applies to single crystallites of polycrystalline material. This 
means that for polycrystals the model works on a microscopic level compared with the 
dimension of the body. It may serve as a base for dealing with polycrystals in the same 
sense as the theory of anisotropic elasticity serves as a base for dealing with real poly-
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crystalline material containing defects. To this end an averaging process over the single 
crystallites has to be performed. We can expect that the resulting mean constitutive rela­
tion has the same character as the Landau model suggests for the crystallites, yet with 
modified parameters which may be measured directly. 

The Landau model substantially is nonlinear to such an extent that even unstable 
domains exist. To my knowledge very little is known about the elasticity theory of such 
materials. Some considerations in this direction have recently been made by ERICKSEN 
[11], JAMES [12], and PARRY (13]. 

From the point of view of the catastrophy theory, the Landap model is an example 
for the butterfly catastrophe whereas the liquid-vapour phase transition corresponds 
to the much simpler cusp catastrophe. 

To finish this part I wish to emphasize that the aim of the model is not to give exact 
quantitative results but to reflect the behaviour of shape memory alloys qualitatively. 
It allows for deriving the whole variety of phenomena observed in these alloys from one 
simple free energy function. 

4. Ginzburg-Landau theory of the one-dimensional model 

4.1. Free energy 

In the Landau theory we build up the crystal by stacking crystal layers with slowly 
varying strain along the stacking direction. In this way we get a deformed crystal without 
phase boundaries. In the Ginzburg-Landau theory we give up this restriction and allow 
for rapidly varying shear. 

In the Landau theory the free energy density FL at a point x depends on the strain 
at the point x (Eq. (3.1)). In the Ginzburg-Landau theory we add a term which depends 
on the gradient of the strain at that point which is a measure of lattice curvature. This 

. term is beyond the scope of the classical nonlinear theory of elasticity. The simplest possi­
bility of adding a curvature term is chosen here, namely, the gradient of the strain squared 
with a constant coefficient b. A linear term cannot occur because of symmetry. We have 

(4.1) . F(x, t) = FL(<(X), t)H ( ~; r = 1X<(x)6 -P<(x)4 +y(T-T,)<(x)'H ( ~; r. 
ex, p, y, b, T1 > 0, const. 

For convenience we rescale the variables F, e and T as well as the coordin~te x to get 

(4.2) 

f(/;, t) = !L (e(/;), I )+e'2 = e{E)6 -e(/;)4 + (t+ ! )e(~)2 +e'(/;)2
, 

, de 
e =(if' 

-.IfF 
~= V (X(fx, 
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The response of the system to deformation is twofold. Firstly we have the stress a which 
is the response to strain: 

(4.3) a = of = ofL = 6e5- 4e3 + 2 (t + __!___) e' oe oe 4 

a is the same as in the Landau theory (Eq. (3.5)). Secondly we have the couple stress fl 
which is the response to a lattice curvature e' 

(4.4) 11 = :: = 2e'. 

In this special form of the free energy the couple stress is linear in the lattice curvature 
and depends only on the curvature itself. It does not depend on strain and temperature. 
The equations for a and fl are the constitutive equations or equations of state. 

4.2. Conditions of equilibrium 

The total free energy results from integrating the free energy density over the stacking 
direction 

~l 

(4.5) ftot(t) = f J(~, t)d~, 
~1 

~ 1 and ~ 2 are the boundaries of the system. 
Deriving the equations of equilibrium, we restrict ourselves to the case in which no 

external load is applied. The one-dimensional model has the disadvantage that a surface 
load can be applied only if a volume force is applied, too, which compensates the torque 
of the former. 

If there is no external load, the equilibrium configuration is determined by the minimum 
of the total free energy with respect to a variation of the strain. After some calculation 
we get the equations of equilibrium: 

(4.6) 
(J- fl' = 0 

fl=O 

m the interior, 

at the surface. 

Inserting the constitutive equations (4.4) and (4.3) into the equations of equilibrium (4.6), 
we get the field equations: 

(4.7) 6e' -4e3 +2 (t + ! ) e-2e" = 0 

e' = 0 

in the interior, 

at the surface. 

The field equations always have the simple solution e = e0 = const. The constant strain 
is such that the stress vanishes. This means we have unstressed austenite (e = 0) or mar­
tensite (e0, Eq. (3.4)) corresponding to the minima of the Landau free energy fL· This 
solution is trivial but it always gives us the absolute minimum of the total free energy. 
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4.3. Structure of domain walls 

If t < 1 112, that is if the Landau free energy has more than one minimum, there is an 
additional solution of the field equations corresponding to two coexisting phases which 
are separated by a domain wall. 

To get this second solution, we integrate the field equation once: 

(4.8) 

From the surface condition which says that the lattice curvature e' has to vanish at the 
surface, we find that the constant of integration fLo has the meaning of the Landau free 
energy of the surface points which has to be the same at either end. 

We notice that in order to have a well-defined real curvature e', the Landau free energy 
of each point in the interior has to be not lower than the Landau free energy of the surface 
points. From Eq. (4.8) we can construct the shape of domain walls (Fig. 16). The structure 
of the walls depends on temperature since so does the Landau free energy. 

F r 

e 

1 e 

t<-0.25 -0.25<t<O t•O 

Fro. 16. Structure of domain walls in an infinite crystal as constructed from the Landau free energy func­
tion (Eq. (3.3), Fig. 4, upper part of this figure) with the help of Eg. (4.8). In the lower part the strain e 
across the wall (coordinate e) is plotted. The left two pictures correspond to a wall between martensite 

twins, the right picture corresponds to an austenite-martensite wall. 

Fort < 1/4 fL has only martensitic minima. The domain wall between right and left 
martensite twin may be called kink in analogy to kinks in dislocation lines. In this tempera­
ture dontain the Landau free energy is highest in the middle between the martensitic 
minima. Therefore the strain goes from one martensite valley to the other on a relatively 
straight way. 
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For - 1/4 < t < 0 we have an additional austenitic mm1mum of the Landau free 
energy which is not so deep as the martensitic ones. Now the strain does not cross from 
left to right martensite twin in such a straight manner as before. In the region of the 
austenitic minimum it has a little delay. This means that the domain ":'ali between the 
martensite twins includes a tiny sheet of austenite in this temperature domairi. 

If t = 0, all the minima ate of equal depth. In this case we have a domain wall between 
austenite and martensite. 

If t > 0, we cannot have a domain wall between martensite and austenite which both 
extend to infinity. 

In order to have analytical results, we must integrate once more getting an elliptic 
integral, the evaluation of which strongly depends on the shape of the Landau free energy, 
that is on temperature. 

(4.9) f de 
~(e)= . • 

Jle•-e•+ (t+ ! } e'-!L, 

For an infinite crystal the integral can be given by elementary functions: 

(4.10) 

( )

-1/2 

e(~) = e0 1 + sin~2 ;.[ sgn~, t < 0, 

3e5-1 
a=22 1; eo-

t = 0, 

(Eq. (3.4) ). 

~n this case we can easily calculate the width of the domain walls which is plotted in Fig. 
17 as a function of temperature. The domain walls betwee~ the martensite twins become 
bigger and bigger the higher the temperature is. At t = 0 this boundary grows to infinity. 
In place of that the austenite-martensite domain wall gets stable. 

-1 0 t 

Fro. 17. Width of the domain wall between martensite twins over temperature. The width diverges for 
t = 0. In this case an austenite-martensite wall is stable, the width of which is marked by a dot. 
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4.4. Energy of the domain walls 

Now the energy of a domain wall can be calculated. To this end the zero of energy 
has to be chosen in a way that at infinity, where we have undeformed martensite, the free 
energy is zero. Otherwise we would get an infinite energy. It is convenient to integrate 
with respect to strain instead of the coordinate ~. Note that the mapping of e to ~ is 
one-to-one along a wall (Eq. (4.10)). We must remember that the free energy is added 
up by the Landau free energy, depending only on strain and temperature and by the lattice 
curvature squared (Eq. (4.1)). From the equation of equilibrium we know that the cur­
vature squared equals the Landau free energy (Eq. (4.8)). Therefore we find that at each 
point of the wall in equilibrium half of the free energy comes from strain, the other half 
from lattice curvature. This fact simplifies the energy calculation considerably. 

; l ru(t) 

(4.11) f,o,(t) = JJ(g, t)d~ = 2 J [JL(e, t)fe']de = 
; I - ro(t ) 

1 [ - ··· -- e0 + y3e5--i ] = --
2 

e0 Jl 3e~- 1 + (2e~- 1 )( 6e~- 1) In - , 
· Jl2e5-1 

t < 0 martensite-martensite wall. 

(4.12) 
el t'o{t) 1 

ftot(t = 0) = J df(~, O)d~ = 2 J [fL(e, O)fe']de = 8~ 
$ t 0 

t = 0 martensite-austenite wall. 

We find that the free energy of a M +- M - wall decreases with increasing temperature 
nearly linearly (Fig. 18). 

-1 0 

FIG. 18. Total free energy !tot of the domain wall between martensite twins over temperature (Eq. (4.11)). 
The dot indicates the free energy of an austenite-martensite wall at t = 0 (Eq. (4.12)). 

4.5. Determination of parameters 

In the Ginzburg-Landau theory there are five parameters to fit the theory to a specific 
material (Eq. (4.1)). Four parameters, namely ex., p, y, T1 , are the same as in the Landau 
theory. The fifth one, ~, is an additional parameter which is involved in the rescaling of 
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the coordinate x. To get this value from experiments, we can either take the width of the 
boundary or its energy. From experiments we know that the walls are very narrow, only 
some lattice parameters wide. Therefore a continuum theory like the Ginzburg-Landau 
theory can be taken as an approximation only. As an example, we may take as width 
10 A, which gives 

c5 = 10-12 J /em. 

With this value we get the energy of a wall in the order of magnitude of 10 ergfcm2 which 
is typical for nonferrous alloys. 

5. Analogy between the martensitic phase transition and other phase transitions 

For ferroelectrics, DEVONSHIRE [14] suggested a Helmholtz free energy of the same 
type as Eq. (3.1). Ferroelectric materials show, depending on the material, a first or a se­
cond-order phase transition from the dielectric high temperature phase to the ferroelectric 
low temperature phase with different possibilities of orientation. There is a very close 
analogy between ferroelectrics and shape memory alloys [6, 7]. 

There is a somewhat looser analogy to ferromagnetic materials where the phase tran­
sition is of second order. In Table 1 the corresponding quantities of martensitic, ferro­
electric, and ferromagnetic phase transitions are listed. 

Table 1. Analogy between martensitic, ferroelectric, and ferromagnetic phase transitions. 

Martensitic phase transition 

first order 

austenite 
martensite 
strain 
stress 
equilibrium phase transition 
temperature at a = 0 
domain boundaries between mar­
tensite variants 
elastic constant 
Landau theory 
Ginzburg-Landau theory 

References 

Ferroelectric phase transition Ferromagnetic phase transition 

first or second order (depends on second order 
material) 
dielectric phase 
ferroelectric phase 
polarization 
electric field 
Curie temperature 

ferroelectric domain walls 

1/electric susceptibility 
Devonshire theory 

paramagnetic phase 
ferromagnetic phase 
magnetization 
magnetic field 
Curie temperature 

Bloch walls 

1/ma~etic susceptibility 
mean field theory (P. Weiss) 
micromagnetic equations (W.F. 
Brown) 
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