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881.

ON HERMITES H-PRODUCT THEOREM.

[From the Messenger of Mathematics, vol. xvii1 (1889), pp. 104—107.]

I arve this name to a theorem relating to the product of an even number of
Eta-functions, established by M. Hermite in his “Note sur le calcul différential et le
calcul integral,” forming an appendix to the sixth edition of Lacroix’s Differential and
Integral Calculus, and separately printed, 8vo. Paris, 1862. It is the theorem stated
p- 65, in the form

¢ (z)=F(2*) + ‘é—i 2], (%),

where

¢(w)=AH(:z:—al) Hgm—(:;) H(w-um),

where a,+a,4... +4, =0, and z=sn2, cnz or dnz at pleasure; F(z*), F,(z*) denote
rational and integral functions of 2° of the degrees m and n —2 respectively; 4 is a
constant, which we may if we please so determine that in F(z*) the coefficient of the
highest power 2** shall be =1.

If, for shortness, we write s, ¢, d for sna, cna, dna respectively; and to fix the
ideas, assume z=sna, =s, then the theorem is

AH (z—o) H(z—a,) ..

O ) _ P (#) 4 udF, (0

viz. the theorem is that the product of the 2n H-functions (&, +ay+... +@, =0 as
above), divided by @=(z), is a function of the elliptic functions sn, en, dn, of the
form in question.

Hermite uses the theorem for the demonstration of Abel’s theorem, as applied to
the elliptic functions; or as I would rather express it, he uses the theorem for the
determination of the sn, cn, and dn of &+ a4+ ... + @y, ;.
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To show how this is, observe that F(s®), qud rational and integral function of s*
of the degree m, with its first coefficient =1, contains n arbitrary coefficients; and
F,(s*), qud rational and integral function of s* of the degree n—2, contains n— 1
arbitrary coefficients: hence F (s%) + scdF,(s) contains 2n—1 arbitrary coefficients; and
considering @, @, ..., au— as given, the function in question must vanish for each of
the values @=a, a,,..., tm; and we have therefore 2n—1 equations for obtaining
the 2n—1 coefficients, which are thus completely determined: in. particular, the constant
term, say L, of F,(s®) is a given function of &, a,, ..., @m_,, that is, of the sn, en,
and dn of these quantities; and the theorem shows that the function thus determined
vanishes also for z = a,,, that is, =— (g, + & + ... + @)

Now writing —« for # in the formula, and recollecting that H is an odd function,
® an even function, we find
AH (z+a) H(z + a,) .
@ ()
and multiplying together the two sides of these equations respectively,
H@-a)H@+a) H(@—an) H(@+a)
2 s 2\12 _ o222 )12
y.| @ @) ={F(s*)}* — s*c*d? { I, (s)}*,
where the right-hand side is a rational and integral function of s* of the degree 2n,
and the coefficient of the highest term s is =1; in fact, this term arises only from
the square of F(s*), which has its highest term = s™,
H(z—a) H(z+a)
@ (x)
§ —sn*ey; (this well-known theorem is, in fact, the particular case n=2 of Hermite’s
theorem); and similarly for the other terms: we must clearly have A* multiplied by
the product of the factors thus introduced, =1; and thus the theorem becomes
(8* —sna,) (s* — sn®a,) ... (8° — sn® a,,) = {F (s%)}? — s’c*d? {F, ()}
And putting herein s =0, and writing as before L for the constant term of F(s%),
we have

ot H(a:+%n)=p(3=) — scdF, (s%) ;

Now

is a mere constant multiple of sn*z—sn®e,, or say of

sn? ey sn? o ... SN2 oy = L2,
or, the sign + being properly determined, say
SN o, SN 0 .., SN Oy =+ L,
where, by what precedes, L is a given function of the sn, cn, and dn of a;, &, ..., ty,.

Hence we have sn ay,, that is, —sn (&, + 6+ ... +@,,—,) as a given function of the sn, ecn,
and ‘dn of ay e e A

Similarly writing z=cn#, =¢, and z=dna, =d, we have cn (% +a+ ...+ ty_,)
and dn (@ +a;+ ...+ dy—) each of them as a given function of the sn, ecn, and dn of
7 AR R T

It is hardly necessary to remark that F (z’)+z%ﬂ (¢*) is a function of the same

d.

form, whether we have z=s, ¢ or d; in fact, the functions F and F, are rational in

s% ¢® or d? and we have zéf'-:scd, —scd, and — k%cd for the three values respectively.

dx
O, X1. 74

www.rcin.org.pl



586 ON HERMITE'S H-PRODUCT THEOREM. [881

The number of terms a, a,, ..., 0y, has been odd, but by taking one of them
=0, the formul® give the values of the sn, cn, and dn for the sum of an even
number of terms.

It has been seen that Hermite’s H-product theorem gives, say Abel’s theorem, in
the form ‘
IT (s* — sn? a) = {F (s*)}? — s°c*d? { F, (%)%,
each side of this relation being the product of two factors, viz. for the left-hand side
the factors are

H é)x(w)a), AT H_(E)w(;—) a)’
and for the right-hand side they are the rational functions of s,
F(s?) + scdFy (s*), F(s*)—scdF,(s*);
these factors are by Hermite’s theorem equal each to each; viz. this is the relation
in which Hermite’s stands to Abel’s theorem.

ATl

The H-product theorem is given as one out of a group of four theorems; the
other three may be called the H-product, H;-product and ®,-product, odd theorems
respectively,

0,(2)=0 (z+ K), H,(z)=H («+K)},
viz, these are

AR (o a) H (00 o Byl g B8 1 i

®m+1(w)
AH (z—a) H, (2 —a,) ... H, (£ — &y,
&l a)H@()fwc(xw)) M=) _opey — sdg (@)
A3®1 — o @1 — ®1 - 1 x
Ot A s =) _aR () — oo @)

where F, ¢ are rational and integral functions of the degrees m and n—1, having
their proper values in the three equations respectively, and in each case

O+ =0,
It was seen above that, for n=1, the H-product theorem became
AH(z—a) H(z+ a)

@ (a) f=gn & —sn®aq,

which is the most simple case; for the odd theorems, the most simple case is n=0,
viz. we then have

A H (ﬁ) i AH, (z) 4,0, (z)
Y snz, —g = g cn z, 0 ()
to complete the formule observe that the values of the constants are
2K K 1 K ;
A=[E®2_(’a—): Al—/\_/(_k), A2“N/(‘E)’ Ab‘—'\/(k)'
The three theorems may be used, in like manner with the H-product theorem, to
give the values of the sn, cn, and dn respectively of the sum o, +a + ... + %,

= dna’;
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