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869.

ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS.

[From the American Jowrnal of Mathematics, vol. 1X. (1887), pp. 193—224.]

THE algebraical theory of the Transformation of Elliptic Functions was established
by Jacobi in a remarkably simple and elegant form, but it has not hitherto been
developed with much completeness or success. The cases n=3 and n=5 are worked
out very completely in the Fundwmenta Nova (1829); viz. considering the equation

Mdy n dx
Vi—y. 1-Ny V1l-x*.1-Fkx’

(k=wu*, A=v*; say this is the Mkr- or Muw-form), Jacobi finds, in the two cases
respectively, a modular equation between the fourth roots w, v, say the ww-modular
equation, and, as rational functions of u, », the value of M and the values of the
coefficients of the several powers of # in the numerator and denominator of the
fraction which gives the value of y; but there is no attempt at a like development
of the general case. I shall have occasion to speak of other researches by Jacobi,
Brioschi and myself; but I will first mention that my original idea in the present
memoir was to develop the following mode of treatment of the theory :

In place of the Mk\-form, using the paB-form

dy o pdz
V1=2By*+y* N1—2az*+at

(I write for greater convenience 2a, 28 in place of the a of Jacobi and Brioschi and
the B of Brioschi), we can, by expanding each side in a series, integrating, and
reverting the resulting series for y, obtain y in the form

y=pz(l+ILa*+ Ia*+ ...),
G 64
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506 ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS. (869

where II,, II,, TI,,... denote given functions of p, o, 8. Taking n odd and =2s+1
we assume for y an expression

_w(As+ AP+ ... + A, 2% 4 2%)
e + A2+ ...+ A 22+ Aga® ’

where the last coefficient A4, is at once seen to be =p. Comparing with the series-
value y=pz (1 + I,2*+ II,2* + ...), we have an infinite series of equations. The first
of these is, in fact, A;=p; the next (s—1) equations give linearly 4,, 4,,..., 4,
in terms of the coefficients II; that is, of p, @, B8: the two which follow serve in effect
to determine p, B as functions of a: and then, p and B having these values, all the
remaining equations will be satisfied identically.

The process is an eminently practical one, so far as regards the determination
of the coefficients 4,, 4,,..., A,_, as functions of p, a, B; it is less so, and requires
eliminations more or less complicated, as regards the determination of the relations
between p, a, 8. As to this, it may be remarked that the problem is not so much
the determination of the equation between p and a (or say the pa-multiplier equation,
or simply the pa-equation), and of the equation between B, a (or say the aB-modular
equation, or simply the afB-equation), as it is to determine the complete system of
relations between p, a, B; treating these as coordinates, we have what may be called the
multiplier-modular-curve, or say the MM-curve, and the relations in question are those

which determine this curve.

In the absence of special exceptions, it follows from general principles that the
coefficients 4,, 4,, ..., A5, qua rational functions of p, a, B, must also be rational
functions of a, B or of a, p; and I think it may be assumed that this is the case;
the method, however, affords but little assistance towards thus expressing them.

In connexion with the foregoing theory, I consider the solutions of the problem
of transformation given by Jacobi’s partial differential equation (“Suite de Notices sur
les Fonctions elliptiques,” Crelle, t. 1v. (1829), pp. 185—193), and by what I call the
Jacobi-Brioschi differential equations. The first and third of these were obtained by
Jacobi in the memoir*, “De functionibus ellipticis Commentatio,” Crelle, t. 1v. (1829),
pp- 371—390 (see p. 376); but the second equation, which completes the system, was,
I believe, first given by Brioschi in the second appendix to his translation of my
Elliptic Functions : Trattato elementare delle Funzioni ellittiche : Milan, 1880. I had,
strangely enough, overlooked the great importance of these equations. I shall have
occasion also to refer to results, and further develop the theory contained in my
memoir, “On the Transformation of Elliptic Functions,” Phil. Trans., t. cLxiv. (1874),
pp- 397—456, [578], and the addition thereto, Phil. Trams., t. CLXXXIX. (1878), pp.
419—424, [692].

I remark that, while I have only worked out the formule for the cases n=3
and n=25, and a few formule for the case » =17, the memoir is intended to be a
contribution to the general theory of the paB-transformation; I hope to be able to
complete the theory for the case n=T7.

[* Ges. Werke, bd. 1., pp. 295—318; in particular, p. 303.]
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869] ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS. 507

Comparison of the Mk\- and paf3-Forms. The Modular and Multiplier Equations.
Art. Nos. 1 to 12,

1. The equation
~ Mady dx

Aoy iow Ar i

if we write therein
A Y Y

X 5" b y=;/'7\', E’

L
o
becomes

Mdy dw

1)2‘\/1—(’U‘+v_“)y2+y4=2{?’\/l——(u“+u““)x‘-’+a:"

viz. this is
dy i sdz
N1=28y+y* VN1-2az*+a*

if only

1 1 v?
2 =yt 7 2 = — =—,
il g Y s s wM
2. We have a uv-modular equation, and, as shown in my Transformation Memoir¥,
p- 450, this may be converted into a w'*modular equation; in particular, n =3, the

equation is
Y+ 622y + 2t — day (4a°y® — 3a® — 3y + 4) =0,

where «, y dencte u!, v* respectively; say the equation is
F (2, y), =+ a* (— 16y° + 12y) + #* (63°) + z(12y* —16y) +y*, =0.
From the equation F(z, y)=0, we derive
a?F(x; y).a?F (e, y2)=0;
say this is ,
(Aa*+ Bz + C + Do+ Ez™) (A2 + Bo+ C' + Do + E'z2) =0,

viz. the equation is
AA'z* +(AB +A'B)a*+ ... + EE'z—4=0,

where, by reason of the symmetry of F(z, y), the coefficients A4, EE’ of ', x—,
those of ?, #—3, &c., have equal values; the form thus is

A@+a)+B@+2)+C(@+a)+D(@+a2 )+ E=0,
where a* +a~4, #* 4+ a5 *+ 272, are given functions of # + 2!, =2a; viz. we have
o +al= 2a,
s2+at= 4o — 2
B +a?= 8a®— 6a,
4o t=16a* — 16a2 + 2.

[* This Collection, vol. 1x., p. 170.]
64—2
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508 ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS. [869

The coefficients 9, 9B,... are in like manner expressible as functions of y+y™% =28;
thus we have =1,

B=AB +A'B
=—16(P+y)+12(y+y), =—16(88°—68)+12.28;

or, finally, B=-1288°+1208; and so for the other coefficients. The numerical
coefficients contain, all of them, the factor 16; and, throwing this out, we obtain, for
n=3, the aB-modular equation in the form

ot o? o? a 1
B il
B — 64 ‘ + 60
B2 — 186 +192 | =0,
B + 60 — 64
j A | + 192 — 192
e | CUEE SR R Ty T R |

where observe that the form is symmetrical as regards a, B; and, further, that the
sums of the numerical coefficients in the lines or columns are the binomial coefficients
1, —4, +6, —4, +1. Observe, further, that the sums in the direction of the sinister
diagonal are —64, — 64, +320, —192; viz. dividing by — 64, it thus appears that,
writing 3= a, the equation becomes

a*+at—b5a?+3=0;
that is, (a?—1)*(a®+ 3)=0.
Again, writing 8=—a, then dividing by 16, the equation becomes

4ot —19a* + 2802 —12=10;
that 1s,
(402 —3) (a2—2)2= 0.

3. So also, for n =5, we have the uf*-modular equation inr the form
@® + 655x%® + 65527y + y° — 640a%y* — 640a*y*
+ &y (— 256 + 3202 + 320y> — 702* — 660a%> — T0y4} = 0;
+ 3202y + 3202%* — 2562*y*)
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and in precisely the same manner, we obtain the aB-modular equation; viz. casting
out a factor 64, this is

B B B g 5 B 1
ab +1
a® — 4096 + 6400 — 2310
o + 69120 — 172785 + 103680
o’ + 6400 — 133140 ; + 126720 =0
o’ — 172785 + 276480 — 103680
a — 2310 + 126720 — 124416
1 +1 + 103680 — 103680
+1 —6 + 15 — 20 + 15 -6 +1

where the form is symmetrical as regards a, B; the sums of the numerical coefficients
in the lines or columns are 1, —6, +15, —20, +15, —6, +1. The sums in the
direction of the sinister diagonal all divide by — 4096; viz. throwing out this factor,
we have, for 8 =a, the equation

' — 200 + 1184 — 180a* + 81a*=0;
that is, :

@ (a*— 1) (a2—9)=0.
If B=—a, the coefficients divide by 64; and throwing out this factor, the equation is

6401 + 880a° — 32474’ + 36000t — 129622 =0 ;
that is, A
o (a + 160 — 16) (8a> — 9)* = 0.

1
e 2u3——1)=0 (see
Memoir*, pp. 420—422), but we cannot, by the preceding formule, deduce thence a

2
pa-multiplier equation; in fact, writing therein Jl”___uP

4. We have a Mu-multiplier equation of the form F# (

the resulting equation is

2 ?

2’

2
F (ﬂ } -—2103)= 0, which is a pa-multiplier equation only on the assumption that
1—2u8, u* and »* are therein regarded as given functions of a But it is very

[* This Collection, vol. x., pp. 334, 335.]
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510 ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS. [869

remarkable that the pa-equation, in fact, is F(p, @) =0. To prove this, assume that

the equation
dy pdx

VI—2B8y +y* V1-2a+ o

has a pa-multiplier equation F(p, a) =0. Starting from the equation

Mdy s dx

Vi—y l-ny Vi-x.1-kx’

we may, by effecting on each side a quadric transformation, convert this into

dy R i
NI-22¢-Dyr+y* V1-2Qu—-1)a*+a*

and this being so, we have, between M~' and 2u® — 1, the relation
P, 2w
(‘M’ 2 — 1) =0;
or, conversely, if this be the form of the Mu-multiplier equation, then the pa-multiplier
equation is F (p, a)=0.

5. The quadric transformations are

=R . dIZF

T ivi—re YT viowy

We have then only to show that
dz el dx ;
V1i-2Q@uw—-1)a*+a ~V1-x.1-kx’

for then, in like manner,

dy & dy
Vi-2@2v¥ -1y +y* VI—y.1-Ny

and we pass from the assumed differential relation between x, y to the above-mentioned
differential equation between @, 7.

6. For the quadric transformation between z, .., write

R =k—ak, 0F=Fk+F,
h 100—@“—"’?') " sherk
(W ence als i) erefore
P+t =2k 0+6"=2-2k"=202k—-1), =2(2u—-1);

we have
gi 1-—x2 23 1

x2(1-kx?)’ — x*(1-—k%2)
ok (1 — 07 %kx2);
k*x*) ]

-

1—-06a22=1— {—9+(0+1)x2—k2x4},
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869] ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS. 511

and similarly,

6_

1-6%= % (1 — ix?) (1 — Gex?)>.
Consequently,
1-02)1=-6"2)=1-22u—1)a*+ a*= 5 Clv—llgiﬁ (1 — 2k°x® + kixd)?;
or say
WIS BTG SIRTN, S 5. I 1
Vi-2Q2ut—1)a*+at= © (= oz (1 — 2k2x® + k%)
Moreover,
dx

dz = % (1= ) (1 = )l (1 — 2k + k*xY),

and thence the required equation
dz N dx \
Vi—2(0-2w)a*+a* VI—x.1—Fkx
this completes the proof.

7. Thus, referring to the Mu-equations given in the place referred to, we obtain
the following pa-multiplier equations. When n =3, we have

pt—6p*— 8ap—3=0.
This may be written in the forms
8ap =p'=6p"—3,
8(a+1)p=(p—1y(p+3),
8(a=1)p =(p+1) (o —3).
Next, for n =15, we have p®—10p° + 35p* — 60p° + 55p* + (38 — 64«aﬂ)p+ 5=0.
This may be written in the two forms
64a’p =({@E'~4p =1y (p*~ 2p +5)
64 (2~ 1)p=(p — 1) (p — ).
And, for n=17, we have
Pt —28p° — 112ap5 — 210p* — 2240p® + (— 1484 + 1344a°) p* + (— 5600+ 5120%) p + 7 = 0.

8. The relation between p and B, or say the pB-multiplier equation, may be
obtained by a known property of elliptic functions; viz. writing po = + n (the sign is —
for n=3, n=17, or generally for any prime value 4p+3: and it is + for n=5 and
generally for any prime value =4p+1), then we have between o, B the same relation

and

as between p, a Thus, if n=3, a'=-§, for p, a writing o, B, the equation is
—602—8Ba—3=0; or, as this may be written,
P+ 8Bp* 4+ 18p* — 27 =0;
and so for the other cases; but it is perhaps more convenient to retain the o;

thus, if n=25, a-=%, we have

—100° + 850* — 600° + 550° + (38 — 643%) & + 5 = 0.
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512 ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS. (869

9. We are hence able to express 8 as a rational function of p, a.. We, in
fact, have

e ol L 1 e
8a=:/1;(p2—4p—1)vp2—2p+ 5, 83:—%(02—40—1)‘\/02-—2o’+5,

(the signs must be opposite), and then for o, substituting its value =1p, and observing
that ¢®>— 20 +5 is thus =§2(p2— 2p + 5), we find

B_ p+20p—25
a p(p*—4p—1)
which is the required formula.

Observe that, for p=o=45, the formule with the sign —, as above, give
B =—a, whereas with the sign + they would have given B8=a. For the value in
question, p=4/5, the equation

6do® = % (p*—4p - 1) (p* — 2p + 5),
gives

64a? = v—s 16 (1 — /5): (10 —2 v/5);

that is,
== (3-VH)(G-v5), =(B=v5)W5-1D);

that is, a®=—8+44/5, or a*+ 16a®—16=0; it appears, ante No. 3, that this value
belongs to the case 8 =-—a and not to B=a

10. But there is another way of arriving at a formula containing B. Starting

from Jacobi’s equation

2 dEe
Me=
e a

and introducing for A, N, k, ¥, M their values in terms of u, v, we have

n' v (1 —o) widu

wp ~ ut (1= ) vdv’

that is,
dv _p*ut(l—1¥)
du n »*(1—u)’

but, from the values of a, B, we find

dv _v(1—u)dp
du w(1—)da’
and, combining these results,
d8 _p*u* (1 —ofy B, i 8
n

dd ; (1 _u8)2’ ( _u—4)2’
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869] ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS. 513

that 1s,
fd__é ik Pz Bz %,

de na'—1
We have, consequently,
g pda

B—1" n(@—1)’

and therefore
B—=1_1 [ pda
bl [

where p* must be regarded as a function of a, or a of p; and from the form of
the equation, it appears that the integral must be expressible as the logarithm of
an algebraic function of p, a.

11. Thus, when n=3, we have

3
S8a=p:— 06 - =
v
whence
da 8 3
8—=38p> —6+—, =— (p*—=1)p
dp P P p,(P )

and thence easily
0/8—1_[ 8pdp ¥ fdp dp
%10°IB+1_ P-1.02—9’ St p‘~’—1+9fp2—9’

A p—1 p—3.
- 1}logp+1 +%logp+3,

that is,
B-1_(p=38)(p+1)
B+1 (p+3P(p—1)

as may be at once verified.

12. In the case n =35, I verify the equation under the form

g _ p* do
-1 5'a@-1°

From the equations
64 (a2 — 1) = % = 1EC56), knd 8a.= N/lp (0 —4p - 1) VAT 25—,

we have
128ada 5 (p*—4p—1)dp

#=1 " plp=1)(pg—5)"

16da _ 5dp
=1 (p=1)(p=5)Vp(p* =20 +5)

and thence

Similarly, observing the — sign of 88, we have
16d8 _ —bdo
B-1 (c—-1)(c—5)Vo(c*—20+5)
C. XIL 65
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514 ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS. [869

whence, substituting for ¢ its value =§, we have
P

16da
a’—1

16d8 _ p*dp
B=1 (p=1)(p-5)Vp(p*—2p+5)

P2
0
which is right.

Conmezion of the Mk~ and pafB-Theories. Order of Modular Equation.

Art. Nos. 13 to 18.

13. In the Transformation Memoir [578], starting from the equation

1v:y_1~X<P—QX>2
14y 1+x\P+Q@x/’

I sought to determine the coefficients of P, @ by the consideration that the relation

between x, y remains unaltered when x, y are changed into ]%, h_ly respectively.

This comes to saying that, when for x, y we write 1%, ;,y‘s respectively, the relation

between 2 and y presents itself in the form

_z(4s+ A5+ ... + A2%)
T A+ A2+ ... A

where s=14 (n—1), as before. For instance, when n=17, P=a+ yx° @ =/ + 6x2

If, solving for y, we then for x, y write 5’;, %2, we find

1k vu—z {(a® + 2aB8) + (2ay + B2 + 2a8 + 2By) a*u~* + (v* + 288 + 2v8) atu~t + Fatu~}
= T ar+ (2ay + B+ 2aB) atu— + (7 + 280+ 2ad + 2By) 2w + (& + 2yd) au?

and comparing this with

_w(ds+ 4ya* 4+ Aot + A,2°)
T A+ A+ Ayt + Ay
we have for each of the coefficients 4 two different expressions. Equating these and
making a slight change of form, we obtain the relations between u, v, a, B, v, 8 used
in the Memoir: thus,
Ay=0=v?u™8, A, =vu™ (v + 280 + 2¢8) = u™* (2ay + B>+ 2a8), &c.;

in the Memoir, k(=) is used instead of w, and Q (=v?) instead of v, and the
equations thus are ‘

ka2 = Q8
k (2ary + 208 + 8°) = Q (y* + 298 + 289),
v+ 2By + 2a8 + 288 = Qk (20y + 2By + 2a8 + 3°),
& + 298 = Qk* (o + 203) ;
viz. these are the equations [Coll. Math. Papers, vol. 1X., p. 119]. The idea in the
present Memoir is that of considering the coefficients 4 in the stead of a, 3, ...
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869 ] ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS. 515

14. We have here, and in general for any odd value of », equations of the form

! A
(Q=)7’_—I_’7=”.’
where U, V,..., U’, V', ... are quadric functions of the coefficients a, B, v, ...; and
these equations serve to establish between Q and k a relation called the Q&-modular
equation, and which in regard to Q is of the same degree as the wuw-modular equation
is in regard to ». Leaving out the equation (=), we have

U0 il R i e O

T | SN
and to each system of values of a, B, v, 8, ... (or say of their ratios) given by these
equations, there corresponds a single value of ; the number of values of Q, or the
degree in Q, of the Qk-equation is thus found as =(n+1)2t»=3. This is far too

high; for n=3, 5, 7, ..., the degrees are 4, 12, 32, ... those of the proper Qk-equations
srelid 65 KUt :

15. I showed, or endeavoured to show, that in the case n=25, the extraneous
factor was (2 —1), (2 —1=0, the Qk-modular equation belonging to n =1, for which
the transformation is the trivial one y =), and that in the case n=7, the extraneous
factor was {(Q, 1)4% (2, 1)*=0, the Qk-modular equation for the case n=3);
generally the extraneous factors seem to depend on the Qk-functions for the values
n—4, n—8, &c. The ground for this is that, in the assumed formula for any given

value n, we may take P, @ to contain a common factor 1 + kx? (observe that, to a
A " | At At 1
factor pres, this is unaltered by the change x into o ViZe 1t becomes Tt (1 % kx2),

a condition which is necessary) , and we thereby reduce the equation to

l1-y 1-x P’—Q'x)2
1+y—1+x<P'+Q’x !

in which equation the degrees of the numerator and the denominator are each

diminished by 4, and the equation thus belongs to the value n—4.

16. I remark here that, in the case of = an odd prime, the degree of the
modular equation is =n+1; but for any other odd value, the degree is

& )) = <1+ %) (1 +-;-)

where @, b, ... are all the unequal prime factors of m; thus, if n=0? the degree is
0 (1 + %) —as (a +1).
In the case of a number n=abc..., without any squared factor, the degree is

abo ... (1+7) (1 #3) (147) s =@+DE+DE+D o
65—2
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the sum of the factors of n. We have

o’ (n) = coeff. 2” in Z¢ (zV),

where
_z(1+a?

T (A-atp’

¢x=w+3w"+5w5+...,

and the summation extends to all odd values of N having no squared factor; thus,

¢ (2) = +38c+ 50 + a7 + 92°+ 11a" + 130 + 152° ...

P = 1a? + 32° + 5a",
¢ (2°) = 1a? + 3aY,
$ (a7) = a7

b (@) = : 1o

b (@)= 1%

$ (@)= 10"

...........................................................................

...........................................................................

3¢ (@V) =z + 42® + 62° + 827 + 122° + 122" + 14a™ + 240" ...

17. Supposing that the reduction is completely accounted for as above, then, to
obtain the numerical relations, the numbers 1, 4, 12, 32,..., (n+1)2}»= have to be
expressed linearly in terms of 1, 4, 6, 8,..., o' (n), viz. (n+1)2}»=9 ag a linear function
of ¢’ (n), o’ (n—4), ¢’(n—8),..., and we have

g aLh
4= 4,
12i=' 6+ 6. 1,
32= 8+6. 4,
80=12+6. 6+32. 1,
192=12+6. 8+ 33. 4,
448 =144+6.12+33. 6 + 164. 1,
1024 =24+ 6.12+ 33. 8 +166. 4,
2304 =18 +6.14 +33.12 4+ 166. 6 + 810.1,
5120 =20+ 6.24 + 33.12 + 166. 8 + 817.4,
11264 =32+ 6.18 + 33.14 + 166. 12 + 817 .6 + 3768.1,
24576 = 24 4+ 6.20 + 33.24 + 166.12 + 817.8 + 3778. 4,

..............................................................................

..............................................................................

but it is of course very doubtful whether these relations have any value in regard to
the present theory. :
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18. In the same way that, by assuming a common factor, 1+%x? in the values of
P and @, we pass from the case n to the case n—4, so, by assuming a common factor,
1+4% in the numerator and denominator of the expression for y in terms of x and
the coefficients B, we pass from the case n to the case m—2. Contrariwise, in the
solutions given by the Jacobi-Brioschi differential equations and by the Jacobi partial
differential equation, the solution for a given value of »n does not thus contain the
solution for an inferior value of n; see post Nos. 36 and 43.

I pass now to the theory before referred to.

The Development y=px (1l +II,2* + IL,a* 4+ ...). Art. Nos. 19 and 20.
19. Starting from the equation

dy pda

Vi-28y+y Wl-2ar+at

and writing for shortness

Ri=}%a, Si=%B,
R,=1(3a—13), S=3(§8 -1)
B=4(§a—%0), S=4(§ 8 —§8)
R=3(@a'—1fa*+3), Si=§EB -8 +D),

...............................................................

...............................................................

(viz. save as to the exterior factors §, 1,..., 3R, 5R,, ... are the Legendrian functions
of a, and 38, 58,,... the Legendrian functions of B), we have

dy (1 + 38,9+ 58,9+ ...)= pda (1 + 3R, 2* + 5R.a* + ...),
whence integrating, so that y may vanish with «, we have
Y+ 8,92+ 8y +...=p @+ Ba*+ Rya® + ...),
say this is
= U

20. We then have y=wu—fy, where fy=8%+S,5°+...; and thence, expanding by
Lagrange’s theorem,

y=u—fu+%(f“u)'—2%(f3u)"+§%_-4(f4u)'”—- i

we have
Ju =8+ Syud 4+ Syu” + Sud + ...,

.and thence
Sy = Sput + 28, Syt + (28,85 + SF) v + ...,
Sfu= SEu? + 3828,ut + ...,
Su= Stu24...;
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consequently,
Y =it

+ ur (= 8),

+w (=S, + 38p2),

+ 7 (— 8, + 88,8, — 125,

+u? (— S, + 108,8; + 58,2 — 55828, + 558:%)

and writing herein

z +Ra*+ R,a° + Rya”+ Ra® + ...},
a* 4+ 3R,2° + (3R, + 3R?) 2"+ (3R, + 6 R, R, + R/®) 2® + ...},

p i
P’
S {2+ 5R a7 + (5R, + 10R?2) 2° + ...},
{
{2

ll

P
p’m+7Rw9 s

w

9

P

we have the required series
y=pz{l +I,a* + IIa* + Ta® + ...},

where the values of the coefficients are

IO, =R, 4+ (—8) p

II,=R,+(— S, 3R,p*+ (— S+ 352) p¢,

II, = R+ (— 8,) BR,+ 3R?) p* + (— S + 38%) bR, p* + (— S; + 88,8, — 128;%) p°,

I, = R+ (= 8) (3R, + 6 R, R, + R?) p* + (— S: + 352) (5R. + 10R?) p*

+ (=8 + 88,8, — 128°) TR, p° + (— Si+ 108,8; + 58 — 558,28, + 558,%) p*,

and so on, as far as we please.

The Cubic Tranmsformation, n=3. Art. Nos. 21 to 28.

21. We have here
p+a
1+ pa?

=p(1+ Lo+ L+ ...);

whence, developing the left-hand side and equating coefficients,

plli=—p*+1, pll,=p*—p, pIl;=—p'+p" ...
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It will be convenient to write

O, =pIl, +p*—1, = =8 p+p*+Rp-1,
0,= II,—p*+1, =8 +38»)p'—BR,S,+1)p*+ R,+ 1,
O;= I +p*—p, =(—=8 +88,8,—1252)p°
+ (= 5R.S, + 15R,82) p*
+ p?
+ (= 3R,8, — 3R38)p*

.................................................................................

.................................................................................

where observe the difference of form in the function ®,, and in the subsequent
functions ®,, @;,.... In these last, a factor p is thrown out.

22. The two equations @, =0 and ©,=0 serve to determine p, 8 in terms of a;
the subsequent equations ®,=0, ©,=0,... will then be, all of them, satisfied identically.
This implies that ®;, @O,,... are each of them a linear function of ©,, ©,. The
@ posteriors verification and determination of the factors is by no means easy; I have
effected it only for ®;; we have

70,=(p*—38,p*—2p + 27R,) O, + (- 8,p* = 10p + 25R,) ©,,
or, at full length,

(= 8+ 88,8, — 1282 p*

+ (= 5B.8, +15R,8%)pt

7 +gt

+(~3R,8, — 3B:8)p
i

B,

=(p*—=38,p°— 2p+27TR) (= 8p*+p*+ Bip—1)
+(= 8,p*=10p+25R) (= 8. +352) p'=(BR,S,+1)p*+ R, + 1);

in verifying which we must, of course, take account of the relations between the
expressions R and those between the expressions S; we have

a=3R, and thence 10R,=27TR2—1, 14R,;=135R?—-9R,;

similarly,
i 108, = 2782 —1, 148;,=13582 —98,.

Equating the coefficients of pf, we have

— 78, + 568,89, — 8482 = — 8, + 5,8, — 38,%;
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viz. multiplying by 2, this is

— 148, +1108,8,—16282 +28,=0;
or, finally, it is

(— 18582+ 98,) + (2978 — 118,) — 16282 + 28, =0,

an identity, as it should be. The identity of the coefficients of p° p p? p? p, 1 may
be verified in like manner.

23. Considering « as known, the values of p and B are determined by the fore-
going equations ®, =0, ©,=0; that is,

—8,p*+ p*+ Rip—1=0,
(=8,+382) p*—(BR,S,+ 1) p*+ R, + 1 =0,
where, of course, the R’s and S’s are regarded as given functions of a« and B respectively.

It is to be observed that the equations are satisfied by p*=1, a=p8; viz. we
o(t1+a9)

14z
of the first order, n=1. The two equations represent surfaces of the orders 4 and 6
respectively, and they have thus a complete intersection of the order 24. As part of
this, we have, as just shown, each of the two lines (p=1, a=2) and (p=—1, a=f);
but there is a more considerable reduction of order to be accounted for, the proper
MM-curve being, as will appear, a unicursal curve of the order = 6.

have the transformation y = that is, ¥ =+ #, which is the transformation

24. Multiplying the second equation by 10p% and for 10R, and 10S, writing their
values 27R?—1 and 2782—1 respectively, we have

(382 +1) pf — (30R,S, + 10) p* + (2TR. + 9) p* = 0;

and if herein we substitute for S,p? its value from the first equation, =p®+ R,p—1,
we have
3(p*+ Rip—1P+p*—30Rp (p*+ Rip—1) — 10p* + (2TR2 + 9) p*=0;
that 1is,
pt—Tp* — 24R,p*+ 3p*+ 24R,p+ 3 =0;
viz. this is
(p*— 1) (p*— 6p* — 24R,p — 3) =0,
containing, as it ought to do, the factor p*—1. Throwing this out, and repeating the
first equation, we have
- 8p°+ p*+ Rp-1=0,

(o —6p>—24R,p—-3=0,
which two equations may be replaced by

p* — 248, p* + 18p? —-27=0,

P — 6p*—24Rp— 3=0,
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which are the pB- and pa-equations respectively. Recollecting that R, and S, denote
ta and 1B, they agree with the results obtained in No. 7. The aB-modular equation
is obtained by the elimination of p from these two equations, and may be at once
written down in the form, Det. =0, where the determinant is of the order 8, but
contains S; and R,, that is, 8 and a, each of them, in the fourth order only: the
form is thus the same with that of the aB-equation obtained in No. 2; but the
identification would be a work of some labour.

25. The equations may be written
248, p® = p* + 18p* — 27,
24R,p =p*— 6p*— 3,

and, treating R,, S,, p as coordinates, it hence appears that the MM-curve is (as
mentioned above) a unicursal curve of the order 6; in fact, we have R,, S,, each of
them given as a rational function of p; and cutting the curve by an arbitrary plane
AR, + BS,+ COp+ D=0, the substitution of the values of R,, S, in this equation gives
for p an equation of the order 6.

26. The same conclusion may be obtained from the foregoing system of a cubic
and a quartic equation in p. Considering R,, S,, p as coordinates, they represent, each
of them, a surface of the order 4, and the complete intersection is of the order 16;
but this is made up of a line in the plane infinity counting 10 times, and of the
MM-curve, which is thus of the order 16 — 10, =6. In fact, introducing, for homo-
geneity, a fourth coordinate 6, the two equations are

=8.pP+ p*F+ Rpb*— 6'=0,
p — 6p*0* — 24 R, p6* — 36¢= 0,
and the line p=0, 6=0 is thus a triple line on each of these surfaces; viz. cutting
them by an arbitrary plane, we have for the first surface an ordinary triple point, as
shown by the continuous lines of the annexed figure, and for the second surface a
triple point = cusp + two mnodes, as shown by the dotted lines of the figure. There is,
moreover, as shown in the figure, a contact of two branches, and the number of inter-
sections is thus = 10.

27. If we assume po=—3, that is, p=—§ , and substitute this value in the
" equation for S,, the two equations become

248,60 =d* — 602 — 3,

24R,p=p* —6p* —3;
C. XIL 66
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viz. B is the same function of o-(=—g> that a is of p. This accords with the

theorem in Elliptic Functions that a combination of two transformations leads to a
multiplication.

28. We have
24 (R, +1)p=p'—6p*+8p—3, =(p—1)(p+3),

or, what is the same thing,
24(Bi+%) =(p—-10(p+o+2);

and, in like manner, ‘
24 (R,—4)p=p'—6p*—8p =3, =(p+ 1) (p—3),
U(R-1) =(p+1F.(p+0-2);

with the like equations between S,, o, p. It will be recollected that

Ry =}a, =%(u‘+l);

u

and, consequently,

hence
1 1\2
24’(Rli%)=4'<u‘+a;i'2), =4<u’ia—2> !

The formule just obtained are useful for obtaining the uy-modular equation from the
foregoing equations; or say

4«<v4+$)o'=a"—60"—3,

ik
4‘(u“+2—04)p = p* —6p* — 3,
where po=—3, and we have to eliminate p and o; the elimination gives

22 A 2
AT aAy ol 0
W d uUY
that is,
¢ 4+ 20%u8 — 20u — ut=0.

The Quintic Transformation, n =5, Art. Nos. 29 to 32.

29. We have here

p+ A2+ x

m=P(l +H1.’L‘“"+H2$4+n3$6+...),
1

and multiplying by 1+ 4,2°+ pa#, we obtain an infinite series of equations, the first

three of which are
Al — PHI = Alps

1= Pnz + AlPHn
0= PHs i AIPH2 = Pznn

..............................

..............................
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The first of these gives
pIl, _®1—P2+1.
SRl o mptl

4,=

and the other two equations then determine the MM-curve. These being satisfied, the
remaining equations will be satisfied identically. It is proper to introduce ®,, @,, @,
into the equations instead of II,, II,, II,. We have first

0,—-p+1

- 2
that 1is,
— p2 2
0=p(®2+p2—1)—(®‘—pf—1’£1—)+p2—1;
viz. this is

P(p=1)(O;+p—1)— (O, —p*+ 1} +(p* =1 (p—1)=0;

or, finally, this is
p(p—1)0,—-02+206,(p*—1)=0.
Secondly, we have

1. 4 PILIL ki
0_U3+_p+1+pH1 G;
that is,
— p2 8
®3‘P3+P+(®1 P+_1,2i®12+P l)+®1—p2+1=0;
viz. this is

O+ 0, p —ptp 1) (—p + 1) +(B, —p'+ 1) (@, +p* = 1) =0;
or, finally, it is
O;(—p+1)+0,0,+0,(p*—p)—0,(p*—1)=0.
30. We have thus the two equations
(pP—p) O, — 02+ 206, (p*—1) =0,
O (= p+1)+©,0,+ O, (o —p) — O, (o' — 1) = 0;

and recollecting that @, is of the form L®O,+ MO, we see that each of these
equations is satisfied if only ®, =0, ®,=0 (the formule belonging to the cubic trans-
formation). This ought to be the case, for we can, by writing A4,=p+ 1, reduce the
z(p+ A2*+ a*) z(p+ 22)
_—_“1+A1w2+pa;4 to the form ———1+pr ;
formation (see ante No. 17). The equations may be written

expression which belongs to the cubic trans-

0’
PO:=—(20 +2)0,+ ;:'1 >

@2 i 0

PO, = (Bp*+4p+2)0,—(3p+3) 1 (—-1p

p
66—2
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31. The investigation may be presented in a slightly different form by intro-
ducing the functions ® at an earlier stage; viz. writing

pIL=0,—p*+ 1, pll, = p@, +p* —p, ...,

we have
A At tek. ks v
1+A1w2+pw4-”+(®1 p*+ 1) a2+ (p®, + p* — p) @* + ...
_pta p
=it O Bt + 8t + ..

Transposing, reducing, and dividing by #* we have

(A-a)[p*—1+4,(—p+1)]
(1 + pa®) (1 + 4,4 + pa)

=0, + p®,2° + pBO,at + ..

whence clearly p*—1+4,(—p+1)=0,, giving for A, the before-mentioned value; and
we then have

1+4‘11.9z:2+p:v“=1+(p+1)a:"’+p:(:“—,?laf2 —(1+x2)(1+px”)—9—wli.
The equation thus becomes
—_—2
(L owrn e =0,+p0,2° + pO,a* + ...,
2 2)2 el 1
(I End + iy <1 p—l.l+w’.1+px’>

and expanding the left-hand side, first in the form

(1-2?) 6, + (1 -2°) 2°0,? (1 —a?) 20,?
A+a) (L +pay T =D (A+ay (1 +pay T (o= D) A+ 2P L+ pa

and then each of these terms separately in powers of #° and comparing with
O, + pB,a2 + pB,z* + ..., we have the two equations in the last-mentioned form, and an
infinite series of other equations, which will be satisfied identically.

32. The successive coefficients might be called ®,, ®,,...; say
D, =(p*—p)0,—07+2(p*—1)0,,
@y =(=p+1)0;+0,0,+(p*—p) O, —(p*~1) B,

and similarly for ®,....; and it would then be proper to show @ posterior: that each
of the equations ®,=0, ®;=0,... is satisfied identically in virtue of the two equations
®,=0, ®, =0, or, what is the same thing, that the functions ®,, P;, ... are each of
them a linear function (with coefficients which are functions of p) of the two functions
®, and ®,. I do not attempt to do this, nor even to discuss the MM-curve by
means of the equations ®,=0, ®,=0; but I will obtain equivalent results, and com-
plete the solution by means of the Jacobi-Brioschi equations, in effect reproducing the
investigation contained in the third appendix of the Funzion:i ellittiche.
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The General Transformation, n=2s+1. Art. No. 33.

33. The equation here is

p+A8_1.z“"+...

o T =p(l+ILz*+...).

The general theory is sufficiently illustrated by the preceding particular cases, and I
wish at present only to notice the equation obtained by comparing the coefficients
of a?; viz. this is 4, ,—pd,=pll;, or, substituting for II, its value,

A — pd, =} (ap — Bp®).

The Jacobi-Brioschi Equations. Art. Nos. 34 to 42.

34. These were obtained for the differential equation

da " dy ¢
Vdor + 0o +ca* +da+e  Nay + by +cy* +dy+e’

viz. if this be satisfied by y= U+ V, where U, V are rational and integral functions
of # of the degrees n and n—1 respectively, then, writing for shortness

p=adr+ b+ cr+du+e,
and using accents to denote differentiation in regard to @z, the numerator and denom-
inator U, V satisfy the equations

(VV" =V g+3 VV'. ¢ + alP+ DUV + pVi=0,
— (VU +V'U-2V'UYp—% (VU + V'U)$+ 4 bU? +(c — 2p) UV +4dV? =0,
(UU" =U"¢p+3 UU . & + plr+  3dUV+ eVr=0,

where p is a function =as?+ba +c, with coefficients a, b, ¢, the values of which have
to be determined. By way of verification, observe that, multiplying by U2, UV, V?
and adding, we obtain

— (VU =V'UpP¢+alU+bUV +cUV*+dUV?+eVi=0;
that is,

1
— (VU = V'UpR(da*+ V0" + o+ do + €) + ay'+ by’ + cy* + dy + e =0,
the result obtained by substituting for y its value, = U+ V, in the differential equation.

35. Considering the foregoing special form

du ¢ dy
V1-2az+a* pV1—2Br+y

so that a, b, ¢, d, ¢ have the values p% 0, —28p% 0, p* and ¢ is =1 - 2xa®+ ¢ the
. equations are

(VV//_ V/2)¢+ 1} VV/.¢/+P2U2 i p’V2=()’
—(VU"+V'U-2V'U) ¢+ (VU + V'U) ¢ - 2Bp* +2p) UV =0,
(T’ - U ¢+ JUU .¢ +pl2 + PV =0,
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where, writing as before, n=2s+1, and assuming that the last coefficient, A}, or
4, is =p, we have

U=z(p+As®+As ot + ...+ 4,222+ 2%),
V= 1+ A2+ Ad,2*+...+ A4, %+ pa*,

and where, as is easily shown, p has the value =-—{24,+(2s+1)2?. In comparing
with Brioschi, it will be recollected that 2a, 28 are written in place of his a, B.

36. The equations contain =, and they are not satisfied by values of U, V
belonging to any inferior value of n; U, V may each of them be multiplied by any
common constant factor at pleasure, but not by a common variable factor P; viz. it
is assumed that the fraction U+ ¥ is in its least terms, and consequently that (save
as to a constant factor) U, V are determinate functions. It is easy to verify that
the equations (being verified by U, V) are not verified by PU, PV, but it is inte-
resting to show & priort why this is so. The equations are obtained as follows.

de _ dy
VX JY’
equation is given in the form F =0 (¥ a rational and integral function of #, y); we
thence deduce a relation Ldz+ Mdy=0 between the differentials, and this must agree
with the given differential equation; that is, we have L /X + M /Y =0, or, rationalizing,
L*X — M*Y =0; viz. this last equation must agree with the equation F'=0, or, what
is the same thing, Z2X — M*Y must contain F as a factor; say we have

X —MY=F.G,

Consider the differential equation in the form and suppose that an integral

where G is a function of @, y. In the particular case where the integral is of the
form
y=U=+7V,
we have
F=Vy-U,
and we have therefore

DX -MY=GVy-0);

and it is by means of this identity that the equations are obtained. But suppose
that there is a common factor P, or that we have y=PU~+ PV; then, if we write
F=PVy—-PVU, =P (Vy—"U), there is no necessity that L*X — M*Y should contain
as a factor this expression of F, and it will not in fact contain it; all that is
necessary is that L?X — M*Y shall contain the factor Vy — U; and thus the equations
obtained for U, V do mnot apply to PU, PV. We might, of course, introduce an
arbitrary constant factor ©; contrast herewith the solution by means of the Jacobi
partial differential equation, post No. 43, where ® is not arbitrary but has a determinate
value.

37. In virtue of the assumed forms of U, V, the first and the third equations give
each of them the same relations between the coefficients 4; and only one of these
equations, say the first, need be attended to. It will be observed that this equation

www.rcin.org.pl



869] ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS. 527

does mnot contain B; it consequently serves to determine the coefficients 4 in terms
of p, & and to establish a relation between p, o, that is, the multiplier equation.
We can from this, as will be explained, deduce the equation between p, B; the theory
thus depends entirely upon the first equation; say this is

(VV” = V) (1 — 2aa? + ) + VV' (— 202+ 20%) + p*U* — (24, + (25 + 1) 22} V2 = 0.

38. We have V=1+ A,2*+ A.,z*+ ..., but the equation contains the quadric
functions VV” — V’2, VV’, and V?; it is convenient to write

VV'—-V2=K,+ K,2>°+ K,o*+...,
Vi=L,+ Lo + Lyt +...;

whence of course

VvV = oL,z + 4L,2* + ...,
and we have
K,= K= K= K= K= Ke= K,= K=
24, | 124,| 304, | 564, 904, 1324, 1824, 2404,

—242|-94,4, |+84,4, | +264,4, | +524,4, | +864,4, |+1284,4,
— 442| - 64,4, | + 44,4, | +224,4, |+ 484,4,

- 642 | —104;4, |- 04,4,
-~ 842
L= | L= L,= L,= L,=
1 24, 24, 24, 24,
+ A7 |+24,4, | +24,4,
I P

The coefficients of U? are at once obtained; say we have U= A2+ Ayt + A2®+ ...,

Ay= A= A= Ag= A=
p’ 2pd;-, 2pd,_, 2p4,_, 2pd-,
+ 4%, +24,.,4,, +24,,4,
+ A%
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Substituting in the equation and equating to zero the coefficients of the several
powers of #?, we find

K, —24,L, =
K, —24,L,+(—2s—1) L, — 2a (K, + L,)+ p*A,=0,
K,+ K, —24,L,+ (— 25+ 1) L, — 2a (K, + 2L,) + p*A, = 0,
K,+ K,—24,L; + (— 2s + 3) L, — 2a (K, + 3L;) + p*A, =0,
K+ K,—2A4,L,+ (— 28+ 5) L, — 2a (K, + 4L,) + p*A; = 0,

...........................................................................

...........................................................................

The number of equations is =2(s+1), for the equation contains terms in ', 2% #*,...,2%%%;
but the first equation, and also the last and last but one equations, are in fact
identities ; there remain thus 2(s+1)—3, =2s—1 equations; but these are equivalent
to s independent equations, serving to determine the s—1 coefficients 4,, 4,,..., 4, ,
and to determine the relation between p and a In writing down the equations for
a determinate value of s, the coefficients 4,, A, must be taken to be =0 and p
respectively; and coefficients with a negative suffix or a suffix greater than s, must
be taken to be each =0.

39. Thus, (n=3) s=1, we have the 2(s+1), =4 equations:
2p -2p.1 ='0,
— 2p* —20.204+(=3)1 —2a( 2p +2p) +p*. p*=0,
04+2p —2p.p* +(—1)2p — 2a(— 2p*+ 2p*) +p*.2p=0,
0-202—2p.0 +(+1) p*—2a( 043.0)+p*.1 =0,
where the first, third and fourth equations are each of them an identity: the second
equation is —2p* —4p*— 3 —8ap+ p*=0; viz. in accordance with what precedes, writing
a=3R,, this is the foregoing equation
pt—6p*—24R,p—3=0.
To complete the solution, we use the theorem in elliptic functions referred to
ante (No. 8); viz. writing po=—3, then we have B the same function of o that

o is of p; whence
ot — 60— 248,06 —3=0,

and we thus have two equations giving the MM-curve.

40. In the case, (n=5) s=2, we have the 2(s+1), =6 equations:

24, —24,.1 . =0,

12p — 24 —24,(24,) —-5.1 —2a.24, +p.p2 =0,
— 204,424, -24,(2p+ 42 —38.24;, —2a{12p0—242+2(2p+ A1)} +p*.2p4,=0,
—4p*+12p —2472—24,.24,p—12p+4?) —2a{—2p4,+3.24,p}+p*(2p0+ 4) =0,

0 —2pd4, —24,.p +1.24,p —2a{—4p* +4.p% +p*.24,=0,

0 —4p> —24,.0 +3.p° —2{ 0 +5.0} +p2.1 =0,
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where the first, fifth and sixth equations are each of them an identity. The

remaining equations are
(P*—2p+5)(p°+2p—1)—64.2—84,a=0,

2p%4,— 6pA, —32pa— 24,2 — 44, =0,
20 (p*—2p + 5) + 10p — 442 — 8ad,p + 34,2 =0.
41. Writing the first and third of these in the forms
—64.2 —84,a +(p*—2p+5)(p*+2p - 1) =0,
A2 (p*—4p+3)—84,ap + (p*— 2p + 5) 2p =0,
they determine A,%, 84,a in terms of p; viz. we find

A= (p*=2p+5) p,
84,a=(p*—2p+5)(p*—4p—1);

and then, writing the second equation in the form
(p°—3p—2)A2—16pad, — A4,4=0,

and substituting these values of A4,* and 84,a, and omitting the factor p*—2p—35,
we have the identity

p(pP—38p—2)—2p(p*—4p—1)—p*(p*—2p+5)=0;
viz. the second equation is then also satisfied.

Forming the square of 84,a, and for A2 substituting its value, then omitting a
factor p*—2p +5, we find

64pa® = (p* —2p +5) (p*—4p— 1)%,
= p® — 10p° + 35p* — 60p® + 55p* +38p + 5 ;
or, as this may also be written,
64p (@ —1)=(p — 17 (p —5),
and we then have also, as before,
640 (82— 1)= (s —1) (o = 5),
which two equations determine the MM-curve.

The coefficient 4, is given by the foregoing equation for 84,a, say the value is

1) z
A1=@(p2—2p+0) (p*—4p —1).

1T
The value A1=;%Hi1 ;

obtained in No. 29, on substituting for II, its value, is
1 8 <

-Al =13 (BP ap )
p—1

and these two values are, in fact, equivalent in virtue of the value of B obtained

in No. 9.
@, XII. 67

!
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42. I consider the case n=17, in order to show the form of the equations which
have to be solved; these equations are
24,-24,.1 =0,
124,—242—24,.24,-7.1—-2a(24,+1.24,) +p*.p* — 0
30p — 24,4,+24,—-24, (24,+ 4,)—-5.24,
— 20 (124, — 242 +2(24,+ 4.2)+ p*.2p4, =0,
84,p— 442 +124,—-24,>—24,(2p +24,4,) -3 (24, + 4.
—2a(30p— 24,4, +3 (2p + 24, 4,)) + p*(2p4, + 4°) =0,
— 6A.p+30p — 24, 4,— 24, (24:p + AF)— 1 (2p + 24, 4,)
—2a(84,p— 442+ 4(24,p+ A2) +p* (20 +24,4,) =0,
—6p® +84,p—442—24,(24,p)+ 1 (24,p + 42
' — 20 (= 644p +5 (24:p)) + p* (24, + 4, =0,
0 —64,p0—24,.0*°+3(24.p) —2a(— 6p* + 6. p*) +p*. 24, =0
0 —6p°+5.p2—2a(0+7.0)+p%.1 =10}

viz. the first, seventh and eighth equations are satisfied identically, and there remain
five equations connecting p, a, 4,, 4..

These equations* should lead to the before-mentioned aB-modular equation
p® — 28p° — 112ap° — 210p* — 224ap® + (— 1484 + 134da®) p* + (— 560a + 512a°) p + 7 =0,

and to expressions for 4,, A, as rational functions of a« p: and they should be, all
five of them, satisfied by these results; but I do not see how the results are to be
worked out; there is, so far as appears, no clue to the discovery of the rational
functions of a, p.

The Jacobi Partial Differential Equation. Art. Nos. 43 to 48.
43. Writing, as above, 2a in place of Jacobi’s a, this is
d*z dz 2 2 dz _
(1 —2a2° + a*) d—x2+(n—1)(2aw— 24°) (—ﬁ+n(n—- 1)xz—4snv(a - l)d_w—o’

satisfied by the numerator and denominator U, V, each of them taken with the
same proper value of the coefficient A4,, or, what is the same thing, by the values
U=0z(4;+ A ,2° + Ag ot + ... + 4,252 + 2¥),
V=0 (1 +A4,8* + A2 +...+ 4,25+ A.2%),

* [See this volume, p. 535.]
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where now A,=p as before: © has its proper value; viz. disregarding an arbitrary

merely numerical factor which might of course be introduced, the value is

or, what is the same thing,
svp 2 1‘ .
If for z we write ©¢, then the equation becomes

(1—-2aw2+m“) +(n—1)(2ax gxs)dg.}.n(n—l)ng 4n (a® — 1)( é)o(lio@

0,

satisfied by the foregoing values without the factor ® or, attending only to the

denominator, say by the value
V=1+4,22+ A0t + ... + Ay 8% + pa®.
1dO

44, To calculate the value of & e have

1d0 4dp, 18 dB8 1}«

Oda pda B—1da a—1’

but it has been seen (No. 10) that we have

a8 _p*p—1
de na—-1’

and the formula thus becomes

1d0 _4dp  n (B” i

®da pdaT @1
We have, as the first of the equations obtained by substituting in the partial
differential equation,

1d®
24, -dn(@-1) g =0
and we have hence the value of the first coefficient,
Ay =mn(a*— ) +%(BP —na);

i X 1d® ;
or we may, by means of this result, get rid of the term ® da from the partial
differential equation; viz. the equation may be written

2
(1 - 2a02* + z")%{+ (n—1) (2aw—2a¢f‘)2—g +{n(n—1)a*—24,} {—4n (a2 — 1) dé“
: 67——'.4
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Before going further, I remark that the last of the equations obtained by the

substitution gives the coefficient A, ,; but this is also given in terms of 4, by the
formula No. 33, 4,_, — pd,=14(ap — Bp®); combining the two formule, we have

_1 dp :
A, —;n(az—l)&a— na + 3 8p?,
:_1)%
dior=in(a —l)d—a+(—1}n+ 1) ap + 1 Bp"
45. In the case n=3, we have 4, ,=A4,=1, 4,=p; the two equations become
3= 1)~ hap—pt+ 8 =0,

3(=1) 32~ 1~ fop +48p° =
each of which is easily verified.

I remark also that, in the same case, (n=3), we have

432—1=<P’—9>2 =9
a—1 \p*-1)’ P =1’
hence

1 99 Lot il

®dp  (p°-1)(*-9)’

1d6
and writing the equation 4,— 2n (a®— 1)® Wi =0 in the form
| 1d® dp
oy : Jg s g 1| g
p—2n(a 1)®dpda s

we can verify this equation.

46. In the case m=35, we have for 4, two equations, each ultimately giving
the foregoing value

1
A1=$(P2_2P+5)(p2—4p—-1).

2 —_—
Moreover, the equation ® =4/p \/ e glves without difficulty, ®_,\/i 5

47. In the case n="1, the formule give the two coefficients 4,, 4,; viz. we have

1 d,
A4=2T@-Dgh—fa +18p%

d,
4= T(2— 1)~£ — 2ap + 8o,

d ) J
where the value of d—Z must of course be obtained from the before-mentioned pa-equation

(given in No. 7). T have not considered these results nor endeavoured to compare
them with the results for this case, obtained in the Transformation Memoir and the
addition thereto, [578, 692].
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48. Substituting the value 1+ 4,2°+ A2+ ... + A, 2%+ pa® in the last-mentioned
form of the partial differential equation, we obtain

24, = 24,
o d4,
124, =— 4(n—2)ad, +24* —nm-—1) +4n.(a2—1)m ;
: g d4,
304, =— 8(n—4)ad,+24,4, —(n—2)(n—3) A, + 4n (= 1) ol

564, = — 12 (n — 6) ad, + 24,4, — (n— 4) (n = 5) 4, + dn <a2_1>‘%,

The number of equations is of course finite and =s+ 2, but the last equation is an
identity. To obtain the last equation but one, it is convenient to write down the
general equation; viz. this is

2r+1)(2r+2)4,=—4r(n—2r)ad,+ 24,4,
—(n— 2+ 1) (n—2r + 2)A¢_1+4n(a2—1)%§—’-;
and then, writing herein r=s, we have
0=—4s(n—2s)ap+24,p
dp

—(n—2s+1)(n—28+2)A8_1+4n(a2—1)d—a;

viz. for n substituting its value 2s+ 1, the equation is

0==-2(n-1) ap+2A1p—6As_l+4n(a2—l)g—Z.

Recapitulation of Formule for the Cases n=3 and n=5, Art. Nos. 49 and 50.

49. In conclusion, it will be convenient to collect the formule as follows:

i LR I
i y= 1+pa*’ a= e
8ap = p* — 6p* — 3,
8(a+1)p=(p—-1P(p+3), 8(@a—=1)p=0p+1}(p-3)

S A G,

: 4

8(B+1)o=(r—1¢(c+3), 8(8—1)a=(c—1p(c+3);

af3-equation, see No. 2.

www.rcin.org.pl



534 ON THE TRANSFORMATION OF ELLIPTIC FUNCTIONS. [869

ot rAstad) o 1 p-5 1

o otk i o e DT [re— e g &l -
50. n=35, B o e e Ay=g (=20 +5)(p*—4p- 1),

6da’p = (p* — 4p — 1)* (p* — 2p + 5),
or say

8&/\/p=(p2—4~p—1)‘\/p2—2p+5:
64 (a* =1)p=(p—1)(p—5),

a=,§,, 648 = (o* — 4o — 1) (¢* — 20 +5),

-8B No=(0?—40—1)Vo*—20 + 5,
64(B*—1)oc=(ac—1)(a—5),

af3-equation, see No. 3.

The pa-equations for the cases in question, =38 and n=>5, are the so-called
Jacobian equations of the fourth and the sixth degrees, studied by Brioschi (in the third
appendix above referred to) and by others: the foregoing aB3-equations have not (so
far as I am aware) been previously obtained; as rationally connected with the
po-equations, they must belong to the same class of equations.

Cambridge, England, December 18, 1886.
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