813.

[NOTE ON MR GRIFFITHS' PAPER "ON A DEDUCTION FROM THE ELLIPTIC-INTEGRAL FORMULA $y = \sin (A + B + C + ...)$ ".]

[From the Proceedings of the London Mathematical Society, vol. xv. (1884), p. 81.]

CONSIDER, for instance,

the cubic transformation

$$y = \frac{x \left[1 + 2\alpha' - (1 + \alpha')^2 x^2\right]}{1 - \alpha^2 x^2},$$

where $\alpha^2 + \alpha'^2 = 1$.

This implies

$$\sqrt{1-y^2} = \frac{\sqrt{1-x^2} \left[1-(1+\alpha')^2 x^2\right]}{1-\alpha^2 x^2},$$

viz., $\sqrt{1-y^2}$ = a rational multiple of $\sqrt{1-x^2}$.

Also the quadric transformation

$$z = \frac{1 - (1 + \beta'^{2}) x^{2}}{1 - \beta^{2} x^{2}};$$

where $\beta^2 + \beta'^2 = 1$.

This implies

$$\sqrt{1-z^2} = \frac{\sqrt{1-x^2} \cdot 2\beta'x}{1-\beta^2x^2},$$

 v^{z} , $\sqrt{1-z^{2}}$ = a rational multiple of $\sqrt{1-x^{2}}$.

Hence, assuming

$$u = yz - \sqrt{1 - y^2} \sqrt{1 - z^2},$$

which is a rational function

$$=\frac{x(a_0-a_2x^2+a_4x^4)}{1-\alpha^2x^2\cdot 1-\beta^2y^2},$$

we have

$$\sqrt{1-u^2} = y\sqrt{1-z^2} + z\sqrt{1-y^2}$$

which is $=\sqrt{1-x^2}$ multiplied by a like rational function.

That is, in defining the a_0 , a_2 , a_4 , functions of the two arbitrary coefficients α , β , as above, we have in effect so determined them that $\sqrt{1-u^2}$ shall be $=\sqrt{1-x^2}$ multiplied by a rational function of x.

We can then further determine a_0 , a_2 , a_4 in such wise that the change of x into $\frac{1}{kx}$ shall change u into $\frac{1}{\lambda u}$; and, this being so, making the change in $\sqrt{1-u^2}$, we obtain $\sqrt{1-\lambda^2 u^2}$ in the form, $\sqrt{1-k^2 x^2}$ multiplied by a rational function of x; viz. u is a function of x such that

$$\frac{du}{\sqrt{1-u^2 \cdot 1 - \lambda^2 u^2}} \! = \! \frac{Mdu}{\sqrt{1-x^2 \cdot 1 - k^2 x^2}}.$$

The theory is thus in effect Jacobi's—with the *novelty* of combining two lower transformations in such wise that the assumed expression for u as a rational function of x shall give

$$\sqrt{1-u^2} = \sqrt{1-x^2}$$
 multiplied by a rational function of x .

It is not necessary that the equations

$$y = \text{rational function of } x$$
 and $z = \text{rational function of } x$

should be elliptic-function transformations. All that is required is that they should be such as to give $\sqrt{1-y^2}$ and $\sqrt{1-z^2}$ each $=\sqrt{1-x^2}$ multiplied by a rational function of x.