803.

ON MR ANGLIN'S FORMULA FOR THE SUCCESSIVE POWERS OF THE ROOT OF AN ALGEBRAICAL EQUATION.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xix. (1883), pp. 223, 224.]

SUPPose $x^{m}-p x^{m-1}+q x^{m-2}-\ldots=0$, then the successive powers $x^{m}, x^{m+1}, x^{m+2}, \& c$. of x can be expressed in the form $P x^{m-1}-Q x^{m-2}+R x^{m-3}-\& c$. Mr Anglin has obtained for this purpose a very elegant formula, with a demonstration which (it occurred to me) might be presented under a somewhat simplified form; and he has permitted me to draw up the present Note.

Take, for greater convenience, the equation to be

$$
x^{4}-p x^{3}+q x^{2}-r x+s=0,
$$

and let $h_{1}, h_{2}, h_{3}, \ldots$ be the sums of the homogeneous products of the roots, of the orders $1,2,3$, \&c. respectively; then, writing also $h_{0}=1$, we have

$$
\begin{aligned}
& h_{1}=h_{0} p, \\
& h_{2}=h_{1} p-h_{0} q, \\
& h_{3}=h_{2} p-h_{1} q+h_{0} r, \\
& h_{4}=h_{3} p-h_{2} q+h_{1} r-h_{0} s, \\
& h_{5}=h_{4} p-h_{3} q+h_{2} r-h_{1} s,
\end{aligned}
$$

And this being so, starting from the equation
that is,

$$
\begin{aligned}
x^{4} & =p x^{3}-q x^{2}+r x-s, \\
& =h_{1} x^{3}-h_{0} q x^{2}+h_{0} r x-h_{0} s,
\end{aligned}
$$

C. XII.
we obtain successively

$$
\begin{aligned}
x^{5}= & h_{1}\left(p x^{3}-q x^{2}+r x-s\right) \\
& -h_{0} q x^{3}+h_{0} r x^{2}-h_{0} s x \\
= & h_{2} x^{3}-\left(h_{1} q-h_{0} r\right) x^{2}+\left(h_{1} r-h_{0} s\right) x-h_{1} s, \\
x^{6}= & h_{2}\left(p x^{3}-q x^{2}+r x-s\right) \\
& -\left(h_{1} q-h_{0} r\right) x^{3}+\left(h_{1} r-h_{0} s\right) x^{2}-h_{1} s x \\
= & h_{3} x^{3}-\left(h_{2} q-h_{1} r+h_{0} s\right) x^{2}+\left(h_{2} r-h_{1} s\right) x-h_{2} s, \\
x^{7}= & h_{3}\left(p x^{3}-q x^{2}+r x-s\right) \\
& -\left(h_{2} q-h_{1} r+h_{0} s\right) x^{3}+\left(h_{2} r-h_{1} s\right) x^{2}-h_{2} s x \\
= & h_{4} x^{3}-\left(h_{3} q-h_{2} r+h_{1} s\right) x^{2}+\left(h_{3} r-h_{2} s\right) x-h_{3} s,
\end{aligned}
$$

and so on, the characteristic feature being that by the introduction of the symbols h, the coefficient of x^{3} presents itself at each step as a monomial, and the coefficients of the lower powers require no reduction. It is obvious that the process is a perfectly general one, and that for the equation

$$
x^{m}-p_{1} x^{m-1}+p_{2} x^{m-2}-\ldots+(-)^{m} p_{m}=0,
$$

the formula is

$$
\begin{aligned}
& x^{m+\theta}=\quad h_{\theta+1} x^{m-1} \\
& \text { - } \quad\left(h_{\theta} p_{2}-h_{\theta-1} p_{3}+\ldots\right) x^{m-2} \\
& +\left(h_{\theta} p_{3}-h_{\theta-1} p_{4}+\ldots\right) x^{m-3} \\
& +(-)^{s-1}\left(h_{\theta} p_{s}-h_{\theta-1} p_{s+1}+\ldots\right) x^{m-s} \\
& +(-)^{m-1} \cdot h_{\theta} p_{m} \quad x^{0},
\end{aligned}
$$

where, as regards each power of x, the series forming the coefficient thereof is continued as far as possible, that is, up to the term which contains p_{m} or h_{0} as the case may be.

