226.

ON PROFESSOR MAC CULLAGH'S THEOREM OF THE POLAR PLANE.

[From the Proceedings of the Royal Irish Academy, vol. vi. (1858), pp. 481-491.]

A ray of polarized light, incident on the surface of an extraordinary medium, may give rise to a reflected ray and a single refracted ray; but this will be the case only for a particular position, or positions, of the plane of polarization of the incident ray. According to Professor Mac Cullagh's theory, the plane of polarization, and the relative vibrations of the three rays, are deduced from two assumed principles, which may be referred to as
1°. The principle of equivalent vibrations.
2°. The principle of equivalent moments.
And from these principles are deduced
3°. The principle of vis viva.
4°. The theorem of the polar plane.
The directions of the vibrations are completely determined by means of 4°, the theorem of the polar plane; and the relative magnitudes are then given by 1°, the principle of equivalent vibrations. The other principles, viz. : 2°, the principle of equivalent moments, and 3°, the principle of vis viva, must therefore follow as mere geometrical consequences from the first-mentioned two principles, or theorems; and I have found that the deduction depends immediately upon the following two theorems in spherical trigonometry.

Suppose (Fig. 1) that $R R^{\prime} R^{\prime \prime}$ is a spherical triangle, and let W be any point in the base $R R^{\prime \prime}$, and N be the central point of the base; then joining $W R^{\prime}$ and

Fig. 1.
producing this arc (in the direction from W to R^{\prime}) to a point L, such that

$$
\cot W L=\frac{\sin ^{2} N W}{\sin W R \sin W R^{\prime}} \tan W R^{\prime}
$$

and joining $N R^{\prime}$, then
Theorem I.

$$
\frac{\sin ^{2} R^{\prime \prime} L R^{\prime}-\sin ^{2} R L R^{\prime}}{\sin ^{2} R^{\prime \prime} L R}=\frac{\sin N W \cos N R^{\prime}}{\cos W R^{\prime} \sin N R \cos N R}
$$

and if we suppose also, that an arc through N, perpendicular to the base $R R^{\prime \prime}$, cuts $L R, L R^{\prime}$, and $L R^{\prime \prime}$ produced in the points $U, U^{\prime}, U^{\prime \prime}$, then

Theorem II.

$\sin R^{\prime \prime} L R^{\prime} \cos R U \sin N U R+\sin R L R^{\prime} \cos R^{\prime \prime} U^{\prime \prime} \sin N U^{\prime \prime} R^{\prime \prime}$

$$
=\sin R^{\prime \prime} L R \frac{\cos N W}{\cos W R^{\prime} \sin N R} \cos R^{\prime} U^{\prime} \sin N U^{\prime} R^{\prime}
$$

The present memoir contains the proof of the two theorems, and the application of them to the optical theory.

To prove the first theorem, I write for shortness $R, R^{\prime \prime}, W$ to denote the angles $L R R^{\prime \prime}, L R^{\prime \prime} R, N W R^{\prime}$, respectively; we have then,

$$
\begin{aligned}
& \frac{\sin ^{2} R^{\prime \prime} L R^{\prime}-\sin ^{2} R L R^{\prime}}{\sin ^{2} R^{\prime \prime} L R}=\frac{\sin \left(R^{\prime \prime} L R^{\prime}-R L R^{\prime}\right)}{\sin R^{\prime \prime} L R} \\
& =\frac{1}{\sin R^{\prime \prime} L R}\left\{\begin{aligned}
& \left.\sin R^{\prime \prime} L R^{\prime} \cos R L R^{\prime}-\sin R L R^{\prime} \cos R^{\prime \prime} L R^{\prime}\right\}
\end{aligned}\right. \\
& =\frac{1}{\sin R^{\prime \prime} L R}\left\{\frac{\sin R^{\prime \prime} W \sin R^{\prime \prime}}{\sin L W} \cdot \frac{\cos R W-\cos L R \cos L W}{\sin L R \sin L W}\right. \\
& \left.\quad-\frac{\sin R W \sin R}{\sin L W} \cdot \frac{\cos R^{\prime \prime} W-\cos L R^{\prime \prime} \cos L W}{\sin L R^{\prime \prime} \sin L W}\right\}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{1}{\sin R^{\prime \prime} L R \sin ^{2} L W}\left\{\begin{array}{l}
\sin R^{\prime \prime} \\
\{\sin L R \\
\sin R^{\prime \prime} W(\cos R W-\cos L R \cos L W)
\end{array}\right. \\
&\left.-\frac{\sin R}{\sin L R^{\prime \prime}} \sin R W\left(\cos R^{\prime \prime} W-\cos L R^{\prime \prime} \cos L W\right)\right\}
\end{aligned}
$$

Observing that $\frac{\sin R^{\prime \prime}}{\sin L R}, \frac{\sin R}{\sin L R^{\prime \prime}}$, are each equal to $\frac{\sin R^{\prime \prime} L R}{\sin R^{\prime \prime} R}$, this becomes

$$
\begin{aligned}
& =\frac{1}{\sin R^{\prime \prime} R \sin ^{2} L W}\left\{\sin R^{\prime \prime} W(\cos R W-\cos L R \cos L W)\right. \\
& \left.-\sin R W\left(\cos R^{\prime \prime} W-\cos L R^{\prime \prime} \cos L W\right)\right\} ;
\end{aligned}
$$

and, substituting for $\cos L R, \cos L R^{\prime \prime}$, the values

$$
\begin{aligned}
& \cos R W \cos L W-\sin R W \sin L W \cos W, \\
& \cos R^{\prime \prime} W \cos L W+\sin R^{\prime \prime} W \sin L W \cos W,
\end{aligned}
$$

the foregoing expression becomes

$$
\begin{aligned}
& =\frac{1}{\sin R^{\prime \prime} R \sin ^{2} L W} \times\left\{\sin R^{\prime \prime} W\left(\cos R W \sin ^{2} L W+\sin R W \sin L W \cos L W \cos W\right)\right. \\
& \left.\quad-\sin R W\left(\cos R^{\prime \prime} W \sin ^{2} L W-\sin R^{\prime \prime} W \sin L W \cos L W \cos W\right)\right\}, \\
& =\frac{1}{\sin R^{\prime \prime} R^{\prime \prime}\left\{\sin R^{\prime \prime} W \cos R W-\sin R W \cos R^{\prime \prime} W+2 \cot L W \sin R W \sin R^{\prime \prime} W \cos W\right\}} \\
& \left.=\frac{1}{\sin R^{\prime \prime} R}\left\{\sin \left(R^{\prime \prime} W-R W\right)+2 \cot L W \sin R W \sin R^{\prime \prime} W \cos W\right)\right\} ;
\end{aligned}
$$

and, putting $R^{\prime \prime} W-R W=2 N W$, and substituting also for $\cot W L$ its value, which gives $\cot L W \sin R W \sin R^{\prime \prime} W=\sin ^{2} N W \tan W R^{\prime}$, the expression becomes

$$
=\frac{1}{\sin R^{\prime \prime} R}\left\{\sin 2 N W+2 \sin ^{2} N W \tan W R^{\prime} \cos W\right\} ;
$$

but we have

$$
\cos W=\frac{\cos N R^{\prime}-\cos N W \cos W R^{\prime}}{\sin N W \sin W R} ;
$$

and therefore

$$
2 \sin ^{2} N W \tan W R^{\prime} \cos W=2 \frac{\sin N W}{\cos W R^{\prime}} \cos N R^{\prime}-\sin 2 N W
$$

thus the expression becomes

$$
=\frac{1}{\sin R^{\prime \prime} R} 2 \frac{\sin N W}{\cos W R^{\prime}} \cos N R^{\prime} ;
$$

and $\sin R^{\prime \prime} R=\sin 2 N R=2 \sin N R \cos N R$, so that finally the expression becomes

$$
=\frac{\sin N W \cos N R^{\prime}}{\cos W R^{\prime} \sin N R \cos N R^{\prime}}
$$

which proves the theorem.

To prove the second theorem, take as before $R, R^{\prime \prime}, W$, to denote the angles $L R R^{\prime \prime}, L R^{\prime \prime} R, N W R^{\prime}$, respectively; and moreover, $U, U^{\prime}, U^{\prime \prime}$ to denote the angles $N U R, N U^{\prime} R^{\prime}, N U^{\prime \prime} R^{\prime \prime}$, respectively ; then considering, first, the function on the left-hand side, viz. :

$$
\sin R^{\prime \prime} L R^{\prime} \cos R U \sin U+\sin R L R^{\prime} \cos R^{\prime \prime} U^{\prime \prime} \sin U^{\prime \prime}
$$

we have

$$
\begin{aligned}
\sin U & =\frac{\sin N R}{\sin R U} \\
\cos R U \sin U & =\sin N R \cot R U \\
& =\sin N R \cos R \cot N R=\cos R \cos N R
\end{aligned}
$$

and, in like manner,

$$
\begin{aligned}
\sin U^{\prime \prime} & =\frac{\sin N R^{\prime \prime}}{\sin R^{\prime \prime} U^{\prime \prime}} \\
\cos R^{\prime \prime} U^{\prime \prime} \sin U^{\prime \prime} & =\sin N R^{\prime \prime} \cot R^{\prime \prime} U^{\prime \prime}=\sin N R^{\prime \prime} \cos R^{\prime \prime} \cot N R^{\prime \prime} \\
& =\cos R^{\prime \prime} \cos N R^{\prime \prime}=\cos R^{\prime \prime} \cos N R
\end{aligned}
$$

the expression thus becomes

$$
=\cos N R\left\{\sin R^{\prime \prime} L R^{\prime} \cos R+\sin R L R^{\prime} \cos R^{\prime \prime}\right\}
$$

which is

$$
\begin{aligned}
&=\cos N R\left\{\frac{\sin R^{\prime \prime} W \sin W}{\sin R^{\prime \prime} L} \cdot \frac{\cos W L-\cos R W \cos R L}{\sin R W \sin R L}\right. \\
&\left.\quad-\frac{\sin R W \sin W}{\sin R L} \cdot \frac{\cos W L-\cos R^{\prime \prime} W \cos R^{\prime \prime} L}{\sin R^{\prime \prime} W \sin R^{\prime \prime} L}\right\}
\end{aligned}
$$

or, substituting for $\cos R L, \cos R^{\prime \prime} L$ the values

$$
\begin{aligned}
& \cos R W \cos W L-\sin R W \sin W L \cos W \\
& \cos R^{\prime \prime} W \cos W L+\sin R^{\prime \prime} W \sin W L \cos W
\end{aligned}
$$

the expression becomes

$$
\begin{aligned}
& \frac{\cos N R \sin W}{\sin R L \sin R^{\prime \prime} L}\left\{\begin{array}{r}
\quad \frac{\sin R^{\prime \prime} W}{\sin R W}\left(\cos W L \sin ^{2} R W+\sin W L \sin R W \cos R W \cos W\right) \\
\\
\left.+\frac{\sin R W}{\sin R^{\prime \prime} W}\left(\cos W L \sin ^{2} R^{\prime \prime} W-\sin W L \sin R^{\prime \prime} W \cos R^{\prime \prime} W \cos W\right)\right\}
\end{array}\right. \\
& =\quad \frac{\cos N R \sin W}{\sin R L \sin R^{\prime \prime} L}\left\{2 \cos W L \sin R W \sin R^{\prime \prime} W+\sin W L \sin \left(R^{\prime \prime} W-R W\right) \cos W\right\} \\
& =\frac{\cos N R \sin W \sin W L}{\sin R L \sin R^{\prime \prime} L}\left\{2 \cot W L \sin R W \sin R^{\prime \prime} W+\sin \left(R^{\prime \prime} W-R W\right) \cos W\right\} .
\end{aligned}
$$

Hence, putting for $\cot W L$ its value, which gives

$$
\cot W L \sin R W \sin R^{\prime \prime} W=\sin ^{2} N W \tan W R^{\prime}
$$

and putting also

$$
\sin \left(R^{\prime \prime} W-R W\right)=\sin 2 N W=2 \sin N W \cos N W
$$

the expression becomes

$$
=\frac{2 \cos N R \sin W \sin W L \sin ^{2} N W}{\sin R L \sin R^{\prime \prime} L}\left(\tan W R^{\prime}+\cot N W \cos W\right)
$$

The right-hand side of the equation to be proved is

$$
\sin R^{\prime \prime} L R \frac{\sin N W}{\cos W R^{\prime} \sin N R} \cos R^{\prime} U^{\prime} \sin U^{\prime}
$$

and we have

$$
\sin R^{\prime \prime} L R=\frac{\sin R R^{\prime \prime} \sin R}{\sin R^{\prime \prime} L}, \quad \sin R=\frac{\sin W L \sin W}{\sin R L}
$$

and consequently

$$
\sin R^{\prime \prime} L R=\frac{\sin R R^{\prime \prime} \sin W L \sin W}{\sin R L \sin R^{\prime \prime} L}=\frac{2 \sin N R \cos N R \sin N L \sin W}{\sin R L \sin R^{\prime \prime} L}
$$

or the expression is

$$
=\frac{2 \cos N R \sin W L \sin W}{\sin R L \sin R^{\prime \prime} L} \cdot \frac{\sin N W}{\cos W R^{\prime}} \cos R^{\prime} U^{\prime} \sin U^{\prime}
$$

But we have

$$
\sin U^{\prime}=\frac{\sin N W}{\sin W^{\prime} U^{\prime}}
$$

and therefore

$$
\begin{aligned}
\frac{\sin N W}{\cos W R^{\prime}} \cos R^{\prime} U^{\prime} \sin U^{\prime} & =\sin ^{2} N W \frac{\cos R^{\prime} U^{\prime}}{\cos W R^{\prime} \sin W U^{\prime}} \\
& =\sin ^{2} N W \frac{\cos \left(W U^{\prime}-W R^{\prime}\right)}{\cos W R^{\prime} \sin W U^{\prime}} \\
& =\sin ^{2} N W\left(\tan W R^{\prime}+\cot W U^{\prime}\right)
\end{aligned}
$$

Moreover we have $\cot W U^{\prime}=\cot N W \cos W$, and the expression thus becomes

$$
=\frac{2 \cos N R \sin W \sin W L \sin ^{2} N W}{\sin R L \sin R^{\prime \prime} L}\left(\tan W R^{\prime}+\cot N W \cos W\right)
$$

which is the expression previously found as the value of the left-hand side of the equation, and the theorem is therefore proved.

It is obvious that the point L might have been constructed by taking on $R^{\prime} W$, produced in the direction from R^{\prime} to W, a point K such that

$$
\tan K W=\frac{\sin ^{2} N W}{\sin R W \sin R^{\prime \prime} W} \tan W R^{\prime}
$$

and then taking the arc $K L$ in the reverse direction equal to 90°.
Passing now to the optical problem, it will be recollected that in Mac Cullagh's theory the direction of vibration in an extraordinary medium is perpendicular to the plane of the ray and wave normal, and that the polar plane of a refracted ray is by definition a plane through the point of incidence parallel to the direction of vibration, and also parallel to a line joining the extremity of the ray with the corresponding point on the Index surface, -the last-mentioned surface being the polar reciprocal of the refracted wave-surface, taken with respect to the reflected wave-surface, or wavesphere, contemporaneously generated. We have to consider a ray of polarized light incident on the surface of an extraordinary medium, and giving rise to a reflected ray and a single refracted ray. Let the incident ray and the reflected ray be respectively produced within the medium, and let the three rays, viz., the incident ray produced, the refracted ray, and the reflected ray produced, be represented in direction (see Fig. 2) by $A R, A R^{\prime}$ and $A R^{\prime \prime}$; and take $A R=A R^{\prime \prime}=1$ as the radius, of the wavesphere and $A R^{\prime}$ as the radius of the wave-surface, corresponding at a given instant

Fig. 2.
of time to the first or ordinary medium and the extraordinary medium respectively. Take also $A W$ as the perpendicular on the tangent plane of the wave-surface at R^{\prime}, or 'wave-normal,' corresponding to the refracted ray $A R^{\prime}$; and let $A N$ represent the normal to the plane of separation of the two media, and $A H$ the intersection of the last-mentioned plane with the plane of incidence. The lines $A R, A R^{\prime \prime}, A W, A N, A H$ are of course all of them in the plane of incidence, the line $A N$ bisects the angle made by the lines $A R, A R^{\prime \prime}$, and the lines $A N, A H$ are at right angles to each other. The length of the wave-normal $A W$ is given by the equation $A R \sin N A W=A W \sin N A R$, or putting, as above, $A R=1$, and representing the two angles at A by $N W, N R$ respectively, then, if p denote the length of the wave-normal, we have $\sin N W=p \sin N R$.

> c. IV.

Take κ the pole of the tangent plane of the wave-surface at R^{\prime} (or, what is the same thing, the image of the point W), in respect of the sphere radius $A R$, then κ will be the point on the index-surface corresponding to the point R^{\prime} of the wave-surface; and let $A K$ be drawn through the point A parallel to $R^{\prime} \kappa$. Take $A T^{\prime \prime}$ perpendicular to the plane $W A R^{\prime}$ (or, what is the same thing, the plane $K A R^{\prime}$) as the direction of the refracted vibration, the plane $K A T^{\prime \prime}$ will be the polar plane; and by 4°, the theorem of the polar plane, the directions of the incident and reflected vibrations are given as the intersections of the polar plane with the wave-fronts or planes through A normal to the directions of the incident and reflected rays respectively; these intersections are represented in the figure by $A T$ and $A T^{\prime \prime}$. The relative magnitudes of the vibrations are then determined by 2°, the principle of equivalent vibrations, viz., considering these vibrations as forces acting in the given directions $A T^{\prime \prime}, A T, A T^{\prime \prime}$ respectively, the refracted vibration will be the resultant of the incident and reflected vibrations : the terminated lines $A T^{\prime}, A T, A T^{\prime \prime}$ in the figure are taken to represent in direction and magnitude the vibrations corresponding to the refracted ray and to the incident and reflected rays respectively, and the lines $R^{\prime} t^{\prime}, R t, R^{\prime \prime} t^{\prime \prime}$ are drawn through the extremities $R^{\prime}, R, R^{\prime \prime}$ of the three rays equal and parallel to $A T^{\prime \prime}, A T$, and $A T^{\prime \prime}$ respectively. Let $m^{\prime}, m, m^{\prime \prime}$ denote the masses of ether set in motion by the three rays respectively, then, according to Mac Cullagh's hypothesis of equal densities, we have

$$
m=m^{\prime \prime}: m^{\prime}:: A R \cos R N: \frac{A W \cos R^{\prime} N}{\cos W R^{\prime}},
$$

(where $R N$, \&c., denote the angles $R A N$, \&c.); or writing as before, $A R=1, A W=p$, where $\sin N W=p \sin R N$, we have

$$
m=m^{\prime \prime}: m^{\prime}:: \quad \cos R N: \frac{p \cos R^{\prime} N}{\cos W R^{\prime}}\left(=\frac{\sin N W \cos R^{\prime} N}{\cos W R^{\prime} \sin R N}\right)
$$

This being premised, then, 3°, the principle of vis viva is that

$$
m(R t)^{2}=m^{\prime}\left(R^{\prime} t^{\prime}\right)^{2}+m^{\prime \prime}\left(R^{\prime \prime} t^{\prime}\right)^{2} ;
$$

or, what is the same thing,

$$
\frac{R t^{2}-R^{\prime \prime} t^{\prime \prime 2}}{R^{\prime} t^{\prime 2}}=\frac{m^{\prime}}{m}=\frac{\sin N W \cos R^{\prime} N}{\cos W R^{\prime} \sin R N \cos R N} ;
$$

and 2°, the principle of equivalent. moments, is that the moment of $R^{\prime} t^{\prime}$ round the axis $A H$, is equal to the sum of the moments of $R t$ and $R^{\prime \prime} t^{\prime \prime}$ round the same axis. It only remains to show that these two properties are in fact contained in the Theorems I. and II.

The point κ is the image of W in a sphere, radius unity. Hence, $A \kappa=\frac{1}{p} \kappa W=\frac{1}{p}-p$, and therefore

$$
\tan W \kappa R^{\prime}=\frac{p^{2} \tan W R^{\prime}}{1-p^{2}}=\tan K W
$$

but we have, as before, $\sin N W=p \sin R N$, and consequently,

$$
\begin{aligned}
\tan K W & =\frac{\sin ^{2} N W \tan W R^{\prime}}{\sin ^{2} R N-\sin ^{2} R W} \\
& =\frac{\sin ^{2} N W}{\sin R W \sin R^{\prime \prime} W} \tan W R^{\prime}
\end{aligned}
$$

Suppose now that the points $R, R^{\prime}, R^{\prime \prime}, W, N, H, K$, of Fig. 2, are all of them projected by radii through the centre A upon a sphere, radius unity (see Fig. 3, where the several points are represented by the same letters as in Fig. 2); and complete Fig. 3 by connecting the different points in question by arcs of great circles, and by producing $K W$ (in the direction from K to W) to a point L, such that $K L=90^{\circ}$, and by joining $L R, L R^{\prime \prime}$, and drawing the arc $N U^{\prime} U U^{\prime \prime}$ at right angles to $R^{\prime \prime} R$ (or, what is the same thing, with the pole H) meeting $L R^{\prime}, L R$, and $L R^{\prime \prime}$ produced, in the points $U^{\prime}, U, U^{\prime \prime}$ respectively. By what has preceded, the points K, L of Fig. 3

Fig. 3.
are constructed precisely in the same manner as the same points in Fig, 1, and in fact Fig. 3 is nothing else than Fig. 1 with some additional lines and points. The condition employed to determine the magnitude of the vibrations $R t, R^{\prime} t^{\prime}, R^{\prime \prime} t^{\prime \prime}$, gives that these vibrations are as

$$
\sin T^{\prime} T^{\prime \prime \prime}: \sin T T^{\prime \prime}: \sin T T^{\prime}
$$

or, observing that $L R, L R^{\prime}, L R^{\prime \prime}$ are the great circles whose poles are $T, T^{\prime}, T^{\prime \prime}$ respectively, these 'vibrations are as

$$
\sin R^{\prime \prime} L R^{\prime}: \sin R L R^{\prime \prime}: \sin R L R^{\prime} ;
$$

and, substituting these values, the equation given by the principle of vis viva becomes identical with that of Theorem I.

Proceeding to the condition given by the principle of equivalent moments, we have

$$
\begin{gathered}
\text { moment of } R t \text { round } A H \\
=R t \times A R \times \cos [A R, \perp \operatorname{dist} .(R t, A H)] \times \sin (R t, A H)
\end{gathered}
$$

and in Fig. 3, observing that the radius through U is parallel to the perpendicular distance of $(R t, A H)$ (for $L R$ has the pole T, and $N U$ the pole H) then

$$
\begin{aligned}
& \cos [A R, \perp \operatorname{dist} .(R t, A H)]=\cos R U \\
& \sin (R t, A H)=\sin T H
\end{aligned}
$$

or, since T and H are the poles of $L R$ and $N W$ respectively, $T H=\angle N U R$, and, putting $A R=1$, the moment is

$$
=R t \cos R U \sin N U R
$$

Similarly,

$$
\begin{aligned}
& \text { moment of } R^{\prime \prime} t^{\prime \prime} \text { round } A H \\
& =R^{\prime \prime} t^{\prime \prime} \cos R^{\prime \prime} U^{\prime \prime} \sin N U^{\prime \prime} R^{\prime \prime}
\end{aligned}
$$

and for the refracted ray,

$$
\begin{aligned}
& \text { moment of } R^{\prime} t^{\prime} \text { round } A H \\
& \quad=A R^{\prime} \times R^{\prime} t^{\prime} \cos R^{\prime} U^{\prime} \sin N U^{\prime} R^{\prime}
\end{aligned}
$$

But we have

$$
A R^{\prime}=\frac{A W}{\cos W R^{\prime}}=\frac{\sin N W}{\cos W R^{\prime} \sin N} \bar{R}
$$

and therefore the moment is

$$
=R^{\prime} t^{\prime} \frac{\sin N W}{\cos W R^{\prime} \sin N R} \cos R^{\prime} U^{\prime} \sin N U^{\prime} R^{\prime}
$$

Hence the vibrations $R t, R^{\prime \prime} t^{\prime \prime}, R^{\prime} t^{\prime}$, as before, are as

$$
\sin R^{\prime \prime} L R^{\prime}: \sin R L R^{\prime}: \sin R L R^{\prime \prime}
$$

and thus the equation given by the principle of equivalent moments is precisely that of Theorem II.

