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On the initial value problem in non-linear thermoelasticity

Z. DOMANSKI and A. PISKOREK (WARSZAWA)

THE initial value problem for the dynamic equations of non-linear thermoelasticity is solved in
the Sobolev space. This problem is reduced to the initial value problem for the wave equation
and to the initial value problem for the non-linear system of the heat equation and the wave
equation. Then, using the principle of contraction mapping a solution to the problem under
consideration is found.

Problem poczatkowy dla rownad dynamiki nieliniowej termospr¢Zystosci zostal rozwigzany
w przestrzeni Sobolewa, Problem zostal sprowadzony do zagadnienia poczatkowego dla nie-
liniowego réwnania przewodnictwa ciepla i réwnania falowego. Wykorzystujac nastepnie za-
sade odwzorowania zwezajacego znaleziono rozwigzanie rozwazanego problemu.

HavanmbHas sagaua QA ypasHeHHiE QHHAMMKH HEIMHEHHOH TEPMOYIPYTOCTH pellleHa B IIPo-
crpanctBe CoGonesa. 3ajjaua cBefieHa K HAUANBHON 3ajaue JUIA HENHMHEHHOrO YpaBHEHHA
TEIUIONPOBOJHOCTH H IUIA BONMHOBOTO YPAaBHEHMA. 3aTeM HMCTIONL3YA NPHHIMI OTOOpayKEHHA
OKaTHA HalJIeHO pellleHHe paccMaTpuBaemo#t mpobriemel.

WE consider Shalov’s basic equations of continuum mechanics (see [7], p. 919, Egs. (30),
(31)) in the following form:

o Vid" -0 x*Vid X' —pdix' = F', 1=1,2,3,
. T opH .
2) cluafT_vk A 'EF + (f + T'a'e';-_ eu = 00°,

where o*' is the symmetric stress tensor, ¢ — the mass density, T — the local absolute
temperature, x' — the function of motion, which determines the spatial position occupied
by the material point at time ¢ (Euler’s coordinates), V, = 9/dx*+IY{, — covariant
derivative, & — Lagrangian coordinates of the material point, \‘7, &= b‘faskif’i,—-
covariant derivative with respect to the Lagrangian coordinates, F' and Q° are the body
force and the intensity of heat sources respectively, p* is the part of the stress tensor,
which is independent of the velocity e, of the strain tensor &; (cf., [7], p. 915, for-
mula (14)), and ¢* = o*'—p*, ¢, — the specific heat at constant deformation, A — the
coefficient of heat conduction.

For the sake of simplicity we assume (cf., [7], p. 920) that

o =E4+d, ), 1=1,2,3,

where «' is the displacement vector field of the medium.

Now, the Egs. (1), (2) can be written as

) Vit—odtd = F', 1=1,2,3,
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In the case of a homogeneous, isotropic, thermoelastic medium where the familiar
relation of Duhamel-Neuman (cf., [8], formula (2.25), p. 320) is used in the form

®) o = (AWl —yT)gH +2pe¥,

where A, p are the two Lamé constants of the medium, y = (34+2u)- a,, o, is the linear
coefficient of thermal expansion, g* — the metric tensor and &% = (g¥Vu! + g"Viut)/2,

from Egs. (3), (4) under assumption g% = 0 we obtain
1 9 12 9 1 0T mo O g 9
(6) jﬁgk k 4 . m (g ! un) ‘—}’8‘ k +F(g. vtvmuj +g* vaku")
2 o0& 0
-3 =F, 1=1,23,

™ CoyOiT— A~ —3‘;—, (gmg..

aT A A
aém) +)’T8“at(vlum+vmﬂl)f2 = Q’Q‘!
where g = det(gy) and g, are covariant components of the metric tensor g™.
Now, we assume that the coordinates & are rectangular and we set & = x. In these
coordinates the Egs. (6), (7) have the following form

@®) pdu+ (A+p)graddivu—ygrad T—pd?u = F,
©) %19, T—AT+nTdivo,u = %Q',

where x = A!c‘u, n=ylA.

These last equations were given by W. NOWACKI in [5). From Shalov’s concepts of
continuum mechanics [7] it follows that the natural functional spaces in which one finds
the solution of initial-boundary value problems is (cf. [7], p. 918, definition 3) the family
of Sobolev’s spaces H® (= B, in the notation of [3], Chapter II, where k,(¢) is the tem-
perate weight function defined by k,(£) = (1+|£]3)"?).

For the Egs. (8), (9) we consider the initial value problem in the half-space-time R{
(cf. [6], p- 993) with the initial conditions
(10) u(x, +0) = u°(x), (Gu)(x, +0) = w'(x), T(x, +0) = To(x),
where u°, u! are the given vector fields of classes(*) H*(Rj, Rs) H*~!(Rj, R;) respective-
ly for s> —;— +r, r some positive integer > 4, and T is the given scalar function of class
H'R, R,).

For the sake of simplicity we assume that the body forces F and the intensity Q¢ vanish
in Rf.

Under the foregoing assumption we seek the solution u, T of the initial value problem
for the Egs. (8), (9) with the conditions (10) in the class(?) C([0, 9], H®).

(*) We denote by H*(D, R,,) the space of maps from D to R, of class H*.

(*) We denote by C(I, E) the space of continuous functions defined on the interval I < R, taking
values in the Banach space E. The elements of C(I, E) are called the continuous curves in E. Here E = H®
means that E = H5(R3,R;) or E = H*(R;,R,).
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Using Helmholtz’s decomposition 4 = v—grad¢ we reduce (cf. [6], p. 994, formulae
4), (5), (6)) the initial value problem for the Eqgs. (8), (9) with the conditions (10) under
the assumptions F = 0 = Q° to the following initial value problems:

(11) Ly =0, o(x, +0)=2°x), (o), +0) =0'(x),
(12) %10, T—AT = nT43,$, T(x, +0) = To(x),
(13) Ly = % T, ¢, +0) = po(®); (2)(x, +0) = p,(»).

Here L; for j = a, b, the propagation speeds a, b of shear and compressional waves
respectively, and the initial data ¢, ¢* for k = 0, 1 are defined by

L =3-j*4, a=ul)'? b= ((A+2u)/e)"?,
(14)

ge(x) = — (@)t [ |x—y|"'(divit)()dy, o = v —gradgy.
Ry

Remark 1. The initial data ¢, for k = 0, 1 belong to the classes H**!(R;, R,),
H*(Rj, R,) respectively. This follows from the assumptions on u#* and some integral
representation of ¢, for k = 0, 1 (see [6], p. 994, formula (7) and [4], p. 31). The initial
data o* for k = 0,1 belong to the classes H*(R;, R3), H*~!(R;, R;) respectively. This
follows immediately from Helmholtz’s decomposition and the regularity of u°, ' and
Pos P1-

The initial value problem (11) is the classical initial value problem for the wave equation
(cf. [9], pp. 161-163, 168-190) and its solution takes the explicit form

(15) v = G*30' +(8,Go)*30°.

Here G.(x, t) = (4=a®t)~'H(t) 6(at — | x|) is the fundamental solution for the wave equation
Lo = 0, H denotes Heaviside’s function, & is the one-dimensional Dirac delta distribu-
tion and *; denotes the three-dimensional convolution.

In order to solve the initial value problem for the Eqgs. (12), (13) we may assume b = 1
without loss of generality, and then we reduce this problem to the following equivalent
problem

(16) o, U = A3;,U+6, U(x, +0) = U°x),
(17 ¥ 19 T—AT—nAU)T =0, T(x, +0) = To(),

where (16) is the symmetric hyperbolic first order system (see [2], pp. 588-589) with the
vector functions

U 0
v=\|,*], 6=]| 0

U,

U, ¥4
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and the given initial data
‘31970.
0,9
Uo = 2%0
93¢0
1.
here 9; = ox;.

Let || || denote the H*-norm (cf. p. 674) for function U° defined on R, taking values
in Ry, let X be the set of continuous curves (see, p. 674, the footnote(?)) 2:[0, 4] —
H*(R;, R,) such that 2(0) = U%e H (R3,Ry) and ||Q(1)-U°|, < M for 0 <t < ¥
Thus, X is a complete metric space and we define §

I 0
t 1 0
(18) X350 (S = U+ [ A1os)s)ds+ [ 0 ds,
o 0

—5 Gdo.*aro) )

where the integration is done as a curve in H*~*(R3, Ry) and G, denotes the fundamental
solution of the generalized heat equation x»~'9,T—AT—(ndQ)T = 0.

Remark 2. If a continuous curve V:[0, #] - L¥Ry) for g > N/2 is given, then,
fundamental solution Gy of the generalized heat equation d,T—AT— VT = 0 has the form
(l) Gv(x,}’; f)=P(x—y;f)m(x;}’»f)-

Here, I' is the fundamental solution of the heat equation (cf. [6], p. 995 formula (12)
for x = 1), belongs to L*(Ry)®L®(Ry) ®L®(0, #) and satisfies the following integral
equation:

@) o0 y,0-CE-y,0)* [ [Tx-z,1-9VE, ) z~y, Doz, y, s)dzds = 1.
0 Rw

For this fundamental solution the following estimate holds:
(iii) [1Gy,(x, ...s )=Gy,(x, ..., Dller = ClIV ()= V2(t)]]a.-

The proof of this remark is easy and quite the same as for the corresponding statements
in Lemmas 1.1 and 1.2 of [1].

Using Young’s inequality and the fundamental property (iii) for ¥, = 4Q,, V, = 0,
g = 2 we obtain
(19) 1G4 *sT)(lls < CllAQ4(]]22 [ Tolls-

Now, from the linear theory of first order symmetric hyperbolic systems it follows that
there is such a unique map S:X — X, namely for Q € X the unique solution W of the system

0
0

(20) oW = AW+ 0 , W0 =U,
Y
‘é‘Gan“sTo
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is exactly S = W and belongs to X if 9 is sufficiently small. In fact, for 2 € X and T,e
H*(R;, R,) from the energy estimate (see [2], p. 647-650) of the solution W and the
inequality (19) we conclude that S maps X into X if # is sufficiently small.

Let Y be the completion of X with respect to the norm || ||,—,. Now, we note that
by virtue of the energy estimate (see[2], p. 650, formula (12a)) and inequality [iii] the
map S:X — X if & is sufficiently small, is a contraction mapping in the H*~-topology,
i.e., for 2, Qe X and sufficiently small
21) 1(S2) (£)— (S @)l -1 < PlILE)—L2()]l; -4
with p < 1.

Thus S extends to concentration mapping on the complete metric space Y, therefore, by
the contraction mapping principle S has a unique fixed point Uin Y, i.e. SU = U, a solu-
tion in C([0, #], H*~!) of the initial value problem for the Egs. (16), (17) when T =
= G4u,*sTo. By standard technique (differentiation with respect to x = (x,, x,, x,) the
Egs. (16)) it can be easily seen that the fixed point U is in fact in C[(0, #], H?). From
Helmholtz’s decomposition, formula (15) and the existence of a fixed point of map S it is
clear that the vector field u and the scalar function T = Gyyy,4*37) satisfy the Eqgs. (8), (9)

and the initial conditions (10). Then we deduce the following
THEOREM 1. Let u°, u* be vector fields of classes H°(R;, R3) H*~'(R;, R;) respective-

ly and let T, be a scalar function of class H*(R;, R,) for s > % +r, r some positive

integer > 4. Assume that F = 0 = Q°. Then there exist # > 0 and unique solution ,
T of the initial value problem for the Egs. (8), (9) with condition (10) in C([0, 8], H®).

Remark 3.From our proof of Theorem 1 it follows immediately that: 1) the solution
u, T depends continuously on u°, u' T, in the H*-topology, 2) if r = oo, then u, T are
C®-smooth.
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