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ne influence of microstructure on material properties 

I. A. KUNIN and A. I. CHUDNOVSKII (NOVOSYBIRSK) 

THE paper concerns the discussion of the inftuence of microstructure of a material on its mechani­
cal properties. Two types of phenomena connected with microstructure of a material are con­
sidered. In the first type the microstructure influences the values of macroscopic parameters and 
it appears directly only during some comparatively fine experiments. The microstructure effects 
on the second type are those which are observable in macroexperiments. Ideal models which can, 
describe both phenomena are discussed. The stochastic character of some problems connected 
with structural defects in real bodies are pointed out. Some examples are considered. 

Praca dotyczy wplywu mikrostruktury materialu na jego wlasno8ci mechaniczne. Rozpatrzono. 
dwa typy zjawisk zwi~nych z mikrostruktunt. W pierwszym przypadku mikrostruktura wy­
wiera wplyw na wartosci parametr6w makroskopowych nie ujawniajctc si~ bezposrednio w ma­
kroeksperymentach. W drugim przypadku zmiany mikrostruktury SCl obserwowalne bezposrednio­
w eksperymentach makroskopowych. Om6wiono idealne modele osrodk6w pozwalajctce opisywac 
oba typy zjawisk. Zwr6cono szczeg61nct uwag~ na stochastyczny charakter problem6w zwi~­
nych z defektami strukturalnymi w cialach rzeczywistych. Rozpatrzono kilka przyklad6w. 

Pa6oTa KacaeTCJI BJIIDIHHJI M.HKpOCTpYJ<TYPhl · MaTepuana ua · ero Mex&BHtleCKRe csoitCTBa. 
PacCMOTpeBbi ABa THDa m~ne!Uiit CB~ c MHKpOCTpYKTYPOit. B nepBOM cnyqae MHKpO­
CTpYJ<Typa OK83&maCT BJIHJIBHC B8 3B8'1eBIDI Mal<pOCKODH'IecKHX IIapaMCTpOB Be DpOHBJ~Hj~Cb 
uenocpe)l;CTBellHO B M8Kp03KcnepHMeBTaX. Bo. BTOpoM cnyqae H3MeBeBWI MHKpoCTpYJ<TYPDI 
Ba6JDO)l;aiOTCH BeDocpe,ll;CTBCBBO B NUUqX>CKODH'ICCKHX 3KCDepHMCilT8X. 06cy>lc,J::(eBhl H)l;eaJib­

Bbie MO)l;eJIH cpe,ll;, D03BO.IDIIOIInfC ODHCDIBaTI> 06a THDa mmeBHit. 06paii.lCBO oco6eBHoe BBH­
MaBHe H;a CTOX8CTIAeaadi xapaKTep npo6JICM CB.fl3aBBbiX CO CTpYJ<TYPBhiMH )l;~KT8MB 
B peam.HDIX TeJiaX. PaCCMoTpeBo HecKOJibKO npHMepoB. 

1. General considerations 

1.1. lntroductioo 

LET us differentiate two types of microstructure effects. The first is one which vanishes in 
macroexperiments (for macroscopic volumes as well as for sufficiently long waves, etc.). 
Here, the microstructure contributes to the effective (averaged) properties of the material 
and this appears directly only when some comparatively exact experiments are carried out. 
The appropriate properties of materials called structurally-insensitive are observed both 
in thermodynamically-reversible processes (such as elasticity) and non-reversible ones 
(thermoconductivity, diffusion). 

The microstructure effects of the second type are those which are retained in macro- . 
experiments. Some structurally-sensitive materials usually observed in thermodynamically 
non-reversible processes (of plasticity, fracture, are related with these effects). As a rule, 
such processes are connected with a change of microstructure and hence with a variation. 
of entropy configuration. 
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In both cases the characteristic feature of the microstructure is the presence of scale 
parameters. This is why microstructure effects are often interpreted as scale effects. The 
latter ones are observed in particular when structurally-sensitive pr~perties are measured. 
On the one hand, :they occur as the direet dependence' on . the microstructure :parametei'S 
(for exact experiments) or, on the other hand, as the dependence on size and shape of 
a sample (for macroexperiments). 

Now, we shall consider examples of.microstruCture' effects of. both types. 

1.2. Microstructure effects in elastic media (1) 

The scale parameters in the elastic medium having a microstructure can be of: different 
origin. For example, these may be the parameters of the characteristic medium;· cell: the 
interatomic . distance in · a crystal, the size of the crystallite in a · polycrystal or that of the 
cell of a composite, polymer net, etc .. As for the medium with . occasional characteristics, 
the correlation distance plays the role of scale parameters. The scale parameter in approx­
imate equations of rods and·shells of finite thickness has a gemnetrical character. 

We shall briefly review below some effects which are closely related to the:available 
.scale· parameters. 

K 

FIG. l. 

In a macroscopic homogeneous elastic medium without dissipation the undamped. 
plane waves exp i(k • x-c.ot) can propagate the frequency c.o and wave vector k being 
connected with the· dispersion equation(.() = c.o(k). If the group velocity awtak depends 
upon lkl or, which is the same, c.o(k) is a non-linear function of k (Fig. 1), then we can 
say that space dispersion takes place. The phenomenon is typical · of all media having 
scale parameters. The dispersion of wave packets in the course of time is the direct conse-· 
quence of velocity dispersion. 

A maximum frequency of propagating waves (c.omax in Fig. 1) exists for discrete media 
and some other cases. Complex wave vectors correspond to the waves with c.o > C.Omax, i.e.; 
such waves must damp exponentially. In this case the medium is obviously the filter for 
low frequencies. 

As it can be seen in Fig. 1, a number of waves of different lengths may correspond to 
the fixed frequency c.o < C.Omax. Such new· types of waves have no analogues in the classical 
theory of elasticity. 
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THE INFLUENCE OF MICROSTRUCI'URE ON MATERIAL PROPERTIES 663 

A specific effect of gyrotropy, the rotation of wave plane polarization, occurs in media 
deprived of central symmetry. It is essential that the gyrotropy is shown even at the weak 
dispersion, i.e., for comparatively long waves. Now, the boundary between two media is 
the layer of the order of the scale parameter. Hence, the boundary conditions are to be 
given not on the surface but rather in the thin boundary layer. A part from Rayleigh waves 
new types of surface waves damping deep into the medium may propagate. 

Unlike the classical elastic medium the interaction force of defects is of a non-monoto­
nous character and this may serve as a mechanism forming steady couples of point defects 
of dislocations. 

The inner degrees of freedom (microrotations, microdeformations, etc.) which are 
in line with additional optical branches of vibrations may be important for sufficiently 
high frequencies (Fig. 2). These inner degrees of freedom are usually closely connected 
with scale parameters. 

w 

} Optic 
branches 

Acou~tic 
branch 

0 K 

FIG. 2. 

Finally, we should notice that a number of interesting effects appears when non-linear 
waves of finite amplitude propagate in media with scale parameters. Particularly, the wave 
packets tend to break asymptotically to the distinctive type of steady solitary waves, to 
the so-called solitons. 

1.3. Microstructure effects in quasi-brittle fracture (21 

Scale parameters, at fracture and in the elastic media described above, follow from the 
peculiarities of the structure of solid bodies at microlevel. But, owing to the specificity 
of the fracture the effects of microstructure are found even in macroexperiments. 

It is observed by many experimental data, that the failure stress a" depends on the site 
and shape of the samples at the fracture experiments. 

The scale effect takes place not only when strength properties are studied but also when 
various structurally sensitive properties are investigated. The latter are typical by their 
dependence on the microstructure parameters. For instance, the failure stress (Jb depends 
essentially on the size d of the crystallite in polycristals. This dependence is approximated 
by linear relations between (Jb and d112 • The data on these dependences at various sorts of 
loadings are of special interest. 

6 Arch. Mech . Stos. nr 4n6 
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664 I. A. KUNIN AND A. I. CHuDNOVSKU 

Microstructure reveals itself in a complicated manner at fracture in the presence of 
surface-active substances. The paradox is that in this case only the negligible part of the 
material interacts directly with the surfactant. The endurance and development of the 
fracture processes in time are also closely connected with the complicated microstructure 
change, microdefects progress, etc. 

Many micromechanisms of such processes are still not clearly understood. Conse­
quently, the most perspective approach to the investigation of these phenomena is the 
thermodynamical (phenomenologicical) one. 

The clearly defined stochastic character of fracture is particularly interesting. Statistical 
regularities are rather different at fracture. They can be listed as follows: brittle strength 
dispersion, still further dispersion of long-time strength, the variety and stochastic character 
of fracture surfaces at identical exterior conditions, etc. 

It should be noted that the statistical regularities found while studying these characteris­
tics are rather informative. So, far example, when an experienced metallophysicst looks 
at the relief of the fracture surface he can give in detail the biography of the ~pecimen 
and the causes of fracture. A problem which still remains unsolved is how to formalize 
the information included in the relief of the fracture surface. 

2. Some mathematical models of media having microstructure 

l.l 

The very notion of a medium with microstructure indicates that proper mathematical 
models must contain some scale parameters, i.e., they must be nonlocal in essence. This 
is shown in the change of differential operators by integro-differential ones (strong non­
locality) or in their appearance in equations of high-derivatives with small scale parameters 
(weak non-locality or long wave approximation). For example, the tensor of elastic constants 

c«Plp of the common theory of elasticity is changed for the integral operator CaPA/A with 
the kernel located in the region of the order of the scale parameter /. In the longitudinal 
approximation 

l.l 

In regular structures (lattices) I coincides with the lattice parameter. When describing 
these structures it is convenient to include the concept of quasi-continuum (KRUMHANSL, 

ROGULA, KUNIN]. 

It is possible to establish a one-to-one correspondence between the functions u(n) 
on lattice and analytical functions u(r) of a special type. It also permits one to translate 
all discrete operations into continuum language. 

This allows for translating all discrete operations to continuum language, so as to 
include correctly such operators as grad, div, rot, def, etc., together with the stress and 
deformation tensors and to write the motion equations in a form analogous to the classical 
theory of elasticity (simple structure medium) 

eu-diVO' = q, 0' = Ce, e = defu. 
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It should be noticed that the function space on a quasi-continuum is isomorphic to that 
on the lattice. That is why quasi-continuum is to be treated not as a new mathematical 
model but only as another description of a lattice. 

When the inner degrees of freedom are considered, we can effectively describe in terms 
of quasi-continuum some continuous periodical structures, that is, we have the model 
of the medium of complex structure. 

In cases when anisotropy of the lattice is not essential, it can be described approximately 
by means of an isotropic model or Debye's quasi-continuum. Fourier-images u(k) are 
here considered to be located not in the cell of the reciprocal lattice but in the sphere with 
the radius of the order of I- 1 where I is the lattice parameter. This model retains the main 
property of the lattice; the presence of the elementary length unit. 

Debye's model together with the dispersion law provides an effective method of 
describing isotropic . linear media. However, when trying to extend this model onto the 
non-linear media, one can . encounter some principal difficulties resulting from the fact 
that it is impossible to define correctly non-linear operations with the field variables (as 
distinct from the quasicontinuum model). Indeed, the function product in the x-space 
is followed by integral convolution in the k-space which expends the convolution support 
beyond Debye's sphere. Some modifications of De bye's model will be discussed further on. 

2.3 

. Iri the most practically interesting cases- such as crystal defects, polycrystals, compos­
ites, etc., the microstructure is of a stochastic character. The correlation distance usually 
appears in these structures as the scale parameter. 

It is rather difficult to give an exact description of the stochastic structures in terms of 
probability measures on the stochastic fields. Such a description usually carries excessive 
information. Therefore, it is only natural that approximate mathematical models should 
appear (one of them is a stochastic geometry, SCHWBITZER, MARKOV, BLOKHITSER ). It is 
based on the suggestion that the distance between · any points is the stochastic variable. 
This complies with the idea about the stochastic arithmetization of the space which 
requires a transition from the traditional analysis to the stochastic one. For example, 

if u(x, t) is the field variable in this space, then, instead of the common derivative ~~ , 
the stochastic one should be used: 

From this equation it can be seen in particular, that the scale parameter appears in 
the differential , operator. ·· One can point out a number of physical situations where 
stochastical . geometry , is used : 

ra). the device measuring the distance has an unavoidable error L1x "' I, 
b) the ·medi:um .where ,the signal for distance measurement propagates is microhetero­

geneous. which causes signal velocity fluctuations; 
c) "particles" that help to fix the space points have final sizes """ 1 .. 
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Let us consider some other possibilities of an approximate description of stochastic 
structures. 

When stochastic space is statistically homogeneous and isotropic, it is characterized 
geometrically by the scale parameter - the correlation distance. The simplest method to 
control this fact is the transition to Debye's model of quasi-continuum. But as we have 
already mentioned above, it is impossible to define correctly the non-linear operations 
with the field variables within this model. 

There are two ways of overcoming this difficulty. 
In quantum theory there have been many attempts to include the ·fundamental length 

beyond which all the common presentations on the space-time continuum lose their 
validity. To perform the space-time quantization, SNYDER proposed to substitute the space 
of constant curvature for the common momentum space. Here, the coordinate operators 
correspond to the space-time points, the commutators of the operators being of the order 
of fundamental length. The momentum space is closed relative to convolution and this 
allows to define accurately the product in space-time and, subsequently, the non-linear 
operations. 

As applied to our problem, it would be the same as to transform Debye's sphere in 
three-dimensional space of wave-vectors into the space of constant curvature, i.e., three­
dimensional sphere in a four-dimensional space. 

It is likely that the change of Debye's sphere by the proper compact group - e.g., 
S0(3) or S0(2) - would have been more consistent. The harmonic analysis of the group 
allows to introduce the conjugate coordinate space with the elementary length unit. Such 
an approach widens algebraic and analytical possibilities as compared to Snyder's 
scheme. 

FIG. 3. 

All the schemes described can be considered as different definitions of isotropic quasi.:. 
continuum with the elementary unit of length. Here, the field variables (in part, the coor.; 
dinates) become operators which do not admit localizations in the region with sizes less 
than an elementary unit of length. For instance, instead of the common singular ~-function 
localized in a point, there appears ~"(r) where ~ ,..., [- 1 is Debye's sphere radius or the 
curvature of the appropriate homogeneous space (Fig. 3). · 

http://rcin.org.pl



THE·INFLUENCE OF MICROSTR.UCitJRE ON MATERIAL PROPERTIES 667 

It should be noted that isotropic quasi-continuum, in contrast to the lattice one, .has 
no distinguished points. 

The transition to the continuum is performed for distances much larger than I or, 
which is the same, at I __. 0 (" __. oo ). 

2.4 

Because quasi-continuum, it is allowable to give sense to the generalized stochastic 
processes. Indeed, if the trial functions are given on the quasi-continuum, the generalized 
stochastic processes (or fields) can be considered as the roughness of the actual processes 
(or fields) at the distances of the order of the typical scale parameter. When there is no 
detailed · ·information on the stochastic field and only the correlation scale is known, 
then, it is natural to approximate it by the white noise with the correlation function ~H(r) 
where " ""' 1-1

• 

In general cases a special construction of the trial function space is possible and it 
must be jn agreement with the desirable degree of detal. 

It is known that to generalize the processes of the white-noise-type, the stochastic 
differential equations substitute the classic ones. The stochastic equations not only 
describe these processes adequately but are also perspective in the construction of new 
effective solutions. It is essential that the introduction of quasi-continuum allows to use 
the formalism of stochastic differential equations in the mechanics of media with micro­
structure. 

3. Some illustrations 

Let us give number of exemples showing the specificity of media with microstructures. 

3.1. Green's function for Debye' quasi-continuum with dispersion(KuNJN 1967) 

Green's tensor Gap(r, t) in the unbounded homogeneous isotropic medium can be 
expanded into longitudinal and transverse components by the proper projection operators. 
In (k, w) representation 

Gap(k, w) = G~p(k, w)+G~p(k, w) = na11(k)G1(k, w)+oap(k)G(k, w), 

and the scalar functions G1(k, w) and Gr(k, w) are defined by the dispersion laws w(k) 

J - 1 
G (k, w)- e[w](k)-w2]' j = I, t. 

This gives the presentation 
00 

1 ~ J . 
Gl(r, w) = 4nr .L.J A,.(w)eik,.(w)r, 

m•O 
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where k~( ro) are the roots of the dispersion equation 

wj(k) = ro2
• 

In the case of statics in the first zeroes approximation (fairly long waves) 

G~(r) = S"(Aoi+2Po) a. a, {r+ Re[c(x)l-,e'"' ]}. 

~ = ~' + i~"' 1~1 ,..., J-1 . 
and similarly for G~(r). 

It follows from here that together with classical amplitude ,...,,-t there are the terms 
,..., ,- 3 and those damping exponentially. 

At r -+ 0 Green's function, as it must be, has no singularities for quasi-continuum: 

G_,(O) ~ : ( ~l + ~f)' 
where C1, C, are velocities of longitudinal and transverse waves. 

It should be noted that for the theory of defects in quasi-continuum the following 
quantity is also of interest. 

3~2. Point defects, clislocaticm and cracks in a medium with microstructure 

It is convenient to present Green's function for a medium with defects as follows:. 

G = G0 -GRG0 , 

FIG. 4. 

where G0 is Green's function of the homogeneous medium, R is the subsidiary operator. 
The latter one is convenient to include because it is connected with· ·the defect features 
more directly than G and is located, in part, in the same region with defects. It is essential 
that for many important cases (point system), rectilinear dislocations, etc.) the kernel 
R(x, x', t- t') of the operator R can be constructed in the explicit form. 

There is a close connection between the operator Rand the scattering matrix S. One can 
show that S(k) is expresse~ in terms of the kernel R(k, k', ro(k)) on the "diagonal" 

S(k) - I- R(k: k', ro(k) ), 
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where I is the unit operator. This, in particular, allows for analyzing the direct and reverse 
problem of scattering on the defect system (KUNIN, KosiLOVA, 1973). 

Green's function helps to solve effectively a number of statistic and dynamic problems 
of theory of defects in media with microstructure. 

Therefore, Fig. 4 shows the character of dependence of the interaction force between 
dislocations on the distance between them. This result is obtained for Debye's quasi­
-continuum with dislocation {KUNIN, 1967). 

It is seen that at the distance of the order of several interatomic distances the force 
can change its sign and this gives the possible interpreting of the existence of steady dis­
location dipoles. 

An obvious distinctive feature of the theory of defects in the media with the elementary 
scale parameter is the lack of singularity on small distances which is typical for continious 
media. Particularly, the stress at the top of the crack turns to be finite. This is of import­
ance for the study of fracture mechanisms and the construction of kinetic equations of the 
moving crack. It should be noted that the study of conditions in the crack top within the 
scope of common elastic media is not sufficient. 

3.3. Fracture of composites 

Now, we shall consider the composite given in Fig. 5. It is suggested that inclusions 
are more robust than the matrix and the fracture takes place on the trajectories which 
realize the minimum of a functional J ~ this : is the difference between surface and elastic 
energy. 

FIG. 5. 

As a result of the fluctuation of surface energy and the stress field, the fracture trajec­
tories are of a stochastic character and J is a stochastic quantity. Accordingly, instead of 
a common limiting ~trength curve there occurs a set of cul'Ves of similar fracture probability 
(Fig. 6). (CHUDNOVSKII, SHREIBER, 1975). Figure 7 shows an example of dependence of 
fracture probability p(A) at a = const on the inclusion concentration c. Now, the validity 
of the problem on optinlization of microstructure of composites becomes evident. 
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3.4. The equation of stocbastic crack 
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As it can be seen from the above example, a study of the microstructure leads naturally 
to the stochastic formulation of fracture condition. It is essential to note that the fracture 
orientation in each point and hence a trajectory of the crack motion have a the stochastic 
character. 

According to the considerations given above this may be simulated by the introduction 
of crack trajectory perturbation in the form of white noise. In particular, for the crack 
extending towards the x-axis perpendicular to the stretching stress . d, the equation of 
stochastic crack relief y(x) takes a very simple form (CHUDNOVSKII, 1972). 

y~ +k(ct, x)y~ = a(d, x)m~, 

where xis the crack velocity (related to the sound velocity), m(x) is the Wienner process 
with a · zero expectation value and unit dispersion. 

http://rcin.org.pl



THE INFLUENCE OF MICROSTilUC'I'U'RE 0~ MA'mRIAL PROPERTIES 671 

The solution of this stochastic equation is the Gauss process. Its expectation value 
(y(x)) and correlation function r(x, x') can be defined by means of a simple algorithm~ 
In the · case· considered at the additional conditions 

(y(x))ix=O = 0, (y(x))'lx ... o = 0, a = const 

we have (y(x)) = 0 and 

r(x, x') = a,(x, a,k)[ min(x, x')+t(x, x~x·)]. 
where 

( 
x-x') 

a1 "' a, I"' lx exp - ----rx- . 
The first term is the correlation function of the Wienner process, the second one takes 

into account the additional correlation conditioned by the "inertia" of the .crack. 
The expression given for r(x, x') relates the statistical characteristics of relief to those 

of micro-heterogeneity a and I which allows to find the latter ones experimentally. 

3.5. Scale eft'ect in fracture 

The dependence of strength of a sample on its geometrical dimensions and shape is 
a problem closely connected with what has been discussed above. The greater the measure 
of set of possible fracture surfaces the greater the probability of the fracture samples, all 
other things being equal. This measure depends on the statistical properties of crack relief. 
In the class of Gauss stochastic surfaces the measure is defined uniquely by the solution 
of the stochastic relief equation as given above. 

A comparison of the measure of the set of possible fracture surfaces in geometrically 
similar samples of different dimensions allows to distinguish the criterion of the similarity 
of fracture processes. 

So, at the axial stretching of cylindrical samples of length H and radius R the 

parameter Hfy/R appears naturally and coincides with the measure of the set of 
the Wienner fracture surface. This parameter is the geometrical similarity criterion. The 
form of the similarity criterion points to the fracture sensibility to the microstructure 
and is in good agreement with the experimental data. 

4. Conclusion 

Now, we shall indicate some principal problems connected with the development of the 
microstructure medium theory. 

1. Further development of the geometry considering the existence of the elementary 
length unit. 

2. A broadening of the class of continuous medium problems solved effectively by the 
methods of stochastic differential and integral equations. 

3. Definition of the notion "material" relative to the properties in which the scale 
effects reveal thermselves. 

http://rcin.org.pl



·672 I. A. KUNIN AND A. J. Cm1DNOVSKII 

.References 

1. H. A. KYBHH, Teopu~~ ynpymx cpeo c MUKPoctnpyKmYf>OU [The theory of tlastit bodies with 
microstruction. in Russian), HaYJ<a, M., 1975. 

2. A. H. tJy,q~~oBCKIIH, 0 pa3pyUleHUU MaKjXJmeA [On fracture macrobodies, in Russian], C6. Hccn~o­
B&HHJI no ynpyrocm H nnaCTHtmocm, N'!! 9, crp. 3-43, H3~-so Jiemmrp~CKoro yH-Ta, 1973. 

TECHNICAL UNIVERSITY OF NOVOSYBIRSK 

.Received December 6, 1975. 

http://rcin.org.pl




