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Thermodiffusion in micropolar elastic materials 

M. PLAVSU~ and N. NAERLOVIC-VELJKOVIC (BELGRADE) 

IN this paper we consider an elastic micropolar material subjected to the process of thermodiffu­
sion. Non-linear constitutive ~tions for mechanical and thermodynamical quantities are 
derived from thermodynamic considerations for the studied model. Constitutive · equations are 
linearized for isotropic materials and corresponding field equations are obtained. 

W pracy niniejszej rozwai:any jest mikropolarny material sp~ty poddany procesowi termo­
dyfuzji. NieJiniowe r6wnania konstytutywne opisuj~ce wielko8ci mechaniczne i termodynamiczne 
zostaly wyprowadzone z rozwai.ali termodynamicznych badanego modelu materiaru. W przy­
padku material6w izotropowych dokonano linearyzacji r6wnafl konstytutywnych i otrzymano 
odpowiednie r6wnania pola. 

B aacromneu pa6oTe o~aeTCs: MHKpOIIOJmPHLIH ynpyrd MaTepHaJI IIO.ttBeprayn.rli npo­
~eccy TepMo.AH4xl>Y3HH. HemmeH:m.Ie onpe;:teJUDO~e ypasaemm, OIIHChiBaiO~e MexaHH­
qeCKHe H TepMO.z:tHHQMHqeCKHe BeJIHliHHhi, Bl:.me~eHbl H3 TCpMO.z:tHHQMHqecKHX paccyH<;:teaui 
HCCJie;:tyeMOH MO;:teJIH M8Tepua.na. B c.nyqae H30Tpo1IHLIX MaTepiWIOB IIpOBe;:teH8 JIHHeapH~ 
ypaBHeHHJI IIOJUI. 

1. Introduction 

THE problem of thermodiffusion in elastic solids of microstructure was studied in papers 
[1 and 2]. In these papers it was assumed that there is non-homogeneous distribution 
of temperature and of chemical potential inside the macroelement. According an influence 
of microtemperature and of chemical micropotential appeared on the state of the body. 

In the continuum theory of micropolar materials every material point is phenomenolog­
ically equivalent to a rigid body. Considering thermodiffusion in such materials we assume 
the temperature and the chemical potential to be homogeneous inside the macroelement. 
Thus from the point of view of this theory, the distribution of temperature, as well as ()f 
chemical potential, is determined at every moment by only one function of position. 

The mechanical model of micropolar materials was introduced by ·SUHUBI and ERIN· 
GEN [3]. The theory was developed further by ERINGEN in papers [4, 5 and 6], but did not 
extend beyond the domain of linearity. A similar theory, based on independent rotations 
of material points, was suggested by AERO and KuvsHINSKII [7 and 8]. Later KAFADAR 

and ERINGEN formulated the non-linear theory of micropoJar elastic materials [9]. In the 
paper [10] the micropolar elastic material is considered as an elastic Cosserat continuum. 

The process of thermodiffusion results from the non-uniformity of the temperature 
distribution in the body. Assuming that no chemical reactions occur during the process 
of. thermodiffusion, the law of conservation of mass is taken to be valid. In the case of 
a classical elastic material, the problem of thermodiffusion was treated by PoDSTRIGAC [ll] 
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and PODSTRIGACZ and PAVLINA [12 and 13], and further by NOWACKI [14 and 15]. The 
linear theory for coupled mechanical and thermodiffusional effects for elastic materials 
of grade two was derived by NAERLOVIC-VEUKOVIC [16]. 

2. Kinematics 

The motion of a simple micropolar continuum is determined by the equations: 

(2.1) 

where fi stands for the orthogonal tensor expressing independent rotations of material 
points of the body. 

Interpreting the material as a simple Cosserat continuum, we obtain the following 
equations of motion [10]: 

(2.2) 

where ~<•> and D~<«> are triads of directors in the deformed and underformed configutations 
respectively,, and where 

(2.3) 

Since the motion of directors represents a rigid motion, we can write: 

(2.4) 

wherefrom, using (2.3), 

(2.5) 

However, there must be: 

(2.6) li.'xl =+V~, G = IGI£1, g = lc.rl. 

when rotation is described. 
The velocity of a point of a macroelement can be expressed in the form: 

(2.7) 

where '11' is the velocity of the mass center of the macroelement, d' is the position vector 
of the point of the macroelement originating at the macroelement mass center and 

(2.8) ... - d. d<•> - x· xK "xl - x(«) .1 - xK .I 

is the giration tensor. From (2.5)2 , after differentiation with respect to time, we get: 

(2.9) 

We see that ,,, is a skew-symmetric tensor, so that it has three mutually independent 
coordinates. The tensors i"" and XKx are mutually reciprocal, as well as the triads d~ <•> 
and d<"~,.. 
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3. The equation of energy balance and equations of motion 

The global form of the energy balance equation is given by 

(3.1) j e(fl'vx+]«P;j~<a.>Jx<fJ>)dv+ f f!Ud'V = f (T1v,+Hi<«>J,<«>)ds 
., ., 

639· 

+ J e(Jiv,+l'<«>J,(«))dv+ f lfdsx+ f ehdv, . 
11 I Cl 

or, after an identical transformation, 

(3.2) f e(il'vx+r'1P,1)dv+ j eUdv = f (T1ds- t1"dsx)v, 

+ f (H'ids- m'ixdsJP11 + (qds- f/'dsx) + f e(f1v1 + 11i'P1J)dv · 
s 11 

+ f (t~Hf}i + t1"vt,H + mi}H,N'Pij + tlx + eh)dfJ' . 
11 

where 

(3.3) F'i = -rJi = Ja.P.{jr' dilP = 1xLx··r' xJ1 .(«) ,( ) .K . • L 

stands for the inertial spin and where 

(3.4) eJ«fldv = D<~>KD<fl~L f e~D"DLdv'' Ja.P = JKLD<«~"D<fl~L = i"1d(CI~xd<fl~,, 
do 

are the director coefficients of inertia. 
In (3.2) the tensor H1i = -Hi' represents the surface couple, the tensor I'i = - Ii' ' 

= l'<«>d!c 1> is the body couple, m'i" = - ml'" is the couple stress tensor, u - the internal" 
energy density, T 1

- the stress vector, / 1
- the body force density, q- the heat influx, 

q" - the · heat flux vector and h - the heat supply density. 
Requiring the invariance of Eq. (3.2) with respect to superposed rigid body motions . 

and taking into account the boundary conditions 

(3.5) T1 = t 11nb H 11 = m11"n"' q = f/'n"' 
we get the equations of motion and the equation for internal energy balance in the following . 
form: 

ev' = t'1.1 + ef', 
(3.6) F'l = tWl +m'~""+ ei'J 

eu = t'lv1,1 - tr'1'1, 11 +m11"P,J,x+tf.x+eh. 

4. The dissipation function and the thermodynamic forces 

The volume concentration of diffused mass at a point of the body is determined by the · 
function c(~, t). We assume that there are no body sources of mass production and,_ 
denoting by JH the flux vector of the diffused mass, we obtain the local balance equation .. 
of diffused mass in the form: 

(4.1) • 1 J" c=- x• e . 
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In the case of a mechanically reversible model of behaviour, the entropy balance 
equation may be presented by 

{4.2) 

or, taking into account {4.1), 

(4.3) efJ~ = (!h+f/:H-MJ~H' 
where 8 and M are absolute temperature and chemical potential at a point of the body. 

Further, we express Eq. (4.3) as 

(4.4) . f!h ( tf) (M FN) f/'O,H (M) JH e1J=o+ o.H- o" ,H+(jl+ o,H · 

The first three terms on the right-hand side represent the reversible part of entropy produc­
tion 

(4.5) ~,., = ~h + ( n.-( ~ r) .: 
The entropy production due to the existence of irreversible processes in the body is connec­
ted with heat transfer and diffusion: 

(4.6) f/'O,H (M) TH 
f!d .= (J2" + T ./ . 

Hence we find the following expression for the dissipation function: 

(4.7) ell' = tfO.H +8( M) J" 
8 8 ·" 

and, according to the second law of thermodynamics, the following inequalities take place: 

(4.8) (/ ~ 0, (/) ~ 0. 

The dissipation function (4.7) can be presented in the form: 

(4.9) 

where Q<a> are irreversible thermodynamic forces and q<a> - corresponding generalized 
velocities. In our case the thermodynamic forces are 

(4.10) Q,., = { oti •• o( ~)J. 
and hence the corresponding generalized velocities become 

(4.11) ilG) .= { tf J J"} • 

Using Onsaget's constitutive equations [17, 18], we obtain linear relations between 
generalized velocities and irreversible thermodynamic forces: 

(4.12) q(G) .= L<Gb>Q(bj, 

where L<ab> = £<6a> are Onsager's phenomenological coefficients. 
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From (4.12), using (4.10) and (4.11), we find: 

(4.13) 

q. = Lu 86. +Lu6 ( ~) . .' 

1. = L 11 66• +L2"8( ~)... 
with L 12 = L 21 and 

(4.14) L = ~~:: ~::1 > 0. 

The non-linear relations between irreversible thermodynamic forces and generalized 
velocities can be.- obtained by using principle of the least irreversible force which was 
suggested by ZIEGLER [19]. In that way we get the following expression for irreversible 
thermodynamic forces: 

(4.15) Q - (_!!!!___ ·(b))-1 f/> _!!!!___ 
(G) - Bq(b) q (! aq(Q) ' 

where the dissipation function depends on the following arguments: 

(4.16) 

which now we consider as generalized velocities. From (4.15), taking into account (4.16), 
we determine the · non-linear constitutive equations for thermodynamic forces: 

(4.17) 

where 

(4.18) 

5. Free energy and constitutive equations 

Introducing the free energy density at a point of the body 

(5.1) 

we get 

(5.2) 

1p = u-01J, 

Making use of (l.6)3 and (4.2), we present (5.2) in the form 

(5.3) 

Next, we rewrite this equation in the following form: 

( 5.4) eip = t 11 X!,xi;K- (tOil(i<"?,- m'JHd<~}.r:X~H)d,(at> + m'1Hd("?,¥~,),(at):K- e1J6 +eM c. 
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and we conclude that the free energy depends on the arguments below: 

(5.5) 

After differentiation (5.5) with respect to the time and comparing with (5.4), we ob~ain 
the non-linear constitutive equations for anisotropic micropolar elastic materials in the 
coupled process of mechanical and thermodiffusiorial effects: 

.. u 01p . 
t'J = eg OX~K X{K, 

(5.6) tliil = -e adai gll'di~<~~>-e a'P g'l'd:~~~>•K, 
·<a.> od!<a.>•K 

mi}H = e ___!L g'I' di~(ll)X:K' 'YJ = - oatp8 ' M = Otp • 
ad~<a.>:K ac 

However, equations (5.6)1 and (5.6).z must be in accordance, i.e., 

( 
" otp J . u OVJ di . u oVf di ) - 0 g --aT X;K + g --ad' .(cc)+ g od' •(CC)iK - • 

;K .(cc) .(«)iK [fj] 
(5.7) 

The last expression represents the condition of objectivity of the free energy density (5.5) 
and the constitutive equations (5.6). 

If the condition (5.7) is satisfied, we find Eq . .(5.6)2 to be superfluous. Namely, in· that 
case (5.6)2 is included in (5.6)1 as its skew-symmetric part. 

Putting d~<ccl = t:KD~<«> and d~«>:K = r,L;KD~<«>, we present the free energy density in 
the following form: 

(5.8) tp = tp(x'tK, t:L, i:LiKJ 8, C) • 

The set of equations (5.6) is now replaced by 

(5.9) 

tU - ngil ~ ,rl 
- · I::"· OX~K ;K' 

otp 
'YJ= -ao-, M - otp 

- ac. 

The condition of objectivity (5.7) then becomes: 

( 
u OVJ x-! u otp J otp J ) - 0 g 7fT ;K+g "FfX.L+-0-,-X.L;K . - · 

;K X.L X.L;K [IJ] 

(5.10) 

The free energy density ( 5.8) is a function of 23 independent variables X: K, X~ L, i:L:K, 8 
and c. Since (5.10) represents a system of three linear partial differential equations, it 
admits 28-3 = 20 independent integrals. We choose following integrals [10]: 

(5.11) l:KL = XKHx'tL, KKLM = X~L;M; 8, c, 

which can be rewritten in the form: 

(5.12) l:.IL = XHKX:L, KKLM = X"Ki:L:M = -x,Li:li::M;8,c. 
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having in mind that r:" is an orthogonal tensor. Thus, the general solution for free energy 
density is given by 

(5.13) 

Substituting now (5.13) into · (5~9) and using (5.12), we obtain non-linear constitutive 
equations for anisotropic materials: 

(5.14) 

tii = n~,i x! 
1::' i)};KL ,.K. .L.t 

l}H . O'fjJ i J "" 
m = e-aK X.KX.L~;M, 

KLM 

which are form-invariant with respect to the superposed rigid · body motion. 
Introducing the following measure of deformation 

(5.15) 

the constitutive equation (5.14)1 reduces to 

(5.16) t 'i - n otp ,, xi 
- 1::' OEKL ,.K. ;L· 

If we introduce the <ijrector displacement . vectors fP~<«> : 

after multiplying by n<«~" and d<«~, respectively, we obtain 

~K = fi+fP~K (fP~K = fP~<rx>D<«~K), 
(5.17) 

x~H = ~ - fP~H ( fP~H = lp~ (a.)d(«~)() t 

where fP~" and fP~, are micro-displacement gradients. Making use of (5.17}, we get 
from (2.5)1 

(5.18) 

We see that in the linear approximation (5.18) leads to 

(5.19) f/JKL +f/JLK = 0. 

Since z,~ = XKH (xT = x- 1),using (5.17) we also obtain 

f/JHK. = -lpK.to 

(5.20) f/JicL = -lp£Hg'K . = -lplx8'ifi, 

f/JHI = -lplK~ = - (/Y£Kgf~ • 

If we introduce displacement gradients by 
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and after .substituting (5.17) and (5.18) into (5.12h and (5.15), we may express the deform• 
ation tensors eKL and KKLM as follows 

£KL = UK,L+tpLx.+tpMx.U"!£ = Ux.,L-fPKL+(uM,L-f/JML)(/>M_K, 
(5.21) 

KKut = 9'KL,M+9'sKfP~L.M = -cpLK,M-tpSLfP~K.M· 
In the linear theory these tensors become 

(5.22) EgL = Ux.,L +v>LK = Ux.,L -q>x.L, KKLM = (/>KL,M = -q>LK,M· 

In the case of isotropic materials, we can introduce the following spatial tensors: 

(5.23) 

so that, instead (5.13), we find 

(5.24) tp = tp(e,, ""'"'' fJ, c). 

Substituting (5.24) into (5.9) and making use of (5.23), we get the non-linear constitutive 
equations for isotropic materials in the form: 

t'i = e_!L-e~e~'-e~";;,', ae,J O£wj O'HHIJ 

m11, __ ~ _tpo otp otp 
() o"'J" , 11 = - ao , M = ac · 

(5.25) 

The condition of objectivity (5.10) now reads: 

(5.26) (~e·i-~e·1+2~~1 -~H;;,'). = 0. 
ot,, " oelt} " OHum . "' O'Hxl) [I}] . . 

From (2.5)2 , using (5.17) and (5.20)3 , we obtain 

(5.27) (/>HZ+q>~x-tp,.,q>~ = 0. 

Neglecting the non-linear part of (5.27), we see that in the linear theory 

(5.28) 9'H1+9'~x = 0. 

Making use of (5.23), (5.17), (5.20)2 and (5.27), we can express the deformation tensors 
e,1 and"~"' in the form 

e"' = ""·'+tp~x-q>.,u-:1 = u,,,-cp"'-(u.,,-q>.,)cp":,, 
(5.29) 

""'"' = (/>HI,m- tp,., (/>~l,m = - (/>be,• + (/>rl ¥.,,, • 
In the linear theory these tensors become: 

(5.30) 8HZ = U,,J+(/>lx = U,,l-tpHI, 'HHZ, = fPHI ,m = -cp,,.,.. 

Disregarding the non-linear terms in (5.25), we obtain the following constitutive equa­
tions for the linear theory: 

(5.31) t'i = (} otp m'l = (} otp , 1J = - ~! , M = 0'1' , 
oe,j ' O'Hfj VII oc 

where 

(5.32) 
1 

"•J = 2 e,,~J' i . l ·--· . mJ = -e' ... m·~J 2 .. ..,. ' 
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and 

(5.33) 

The free energy density is a function of the form tp = tp(e1b "'b 0, c). However, if 
we put () = 00 + T and c = c0 + C, where T and C represent increases of temperature and 
concentration with respect to some reference values 00 and c0 , then we have tp = 
= 1p(e11 , "'b T, C). 

Supposing tp = 0, t'i = 0, m'i = 0, fJ = 0 and M = 0 for eu = 0, "'J = 0, () = ()0 

and c = c0 , then in the case of infinitesimal deformations and for small temperature and 
concentration changes, i.e., for 

1:.1~ 1 ' /;.1~ 1 ' 
the free energy density is a quadratic polynomial of the form 

1 IJNI 1 i}Hl C'i T Jji c 1 2 1 C2 (5.34) f!'P =TA e11e,1+TB "iJ""'+ e11 + e11 +TmT +Tn +pTC, 

where 

(5.35) 
A'1"' = "1 g'ig"' + "2g"'gi' +J,3g''g1", 

B11"' = "4K'1g"'+"sK'"gi'+,6g"gi"' 
C'i = ,,g'i, D'i = ,8 g'l, 

are isotropic tensors and m, n, p, 'JI1 , ... , "s are material constants. 
Using now (5.34) and (5.35), and putting (! ~ e0 (1-rt:,), we obtain from (5.31) the 

linear constitutive equations in the form: 

(5.36) 

t'l = ('J11 e, +.,, T +'Jis C)g'i +.,2 e'i +.,,e''' 
m'1 = "4"1K11 +"s ,tJ +,6xJ', 

(!ot'J = -mT-pC-'J11 e1, 

(!oM = pT+nC+'Jis£1, 

where e, = rJ:, = div u and "1 = f/1:, = div cp are first invariants of the tensors e11 and "'J 
respectively. 

Finally, if we put 

(5.37) e11 = u1,1-cp11 = e11 +r11 -cp11 = e11 +e11,(r"-~, 
where 

(5.38) 
1 

e1J =- (u1 ·+u· 1) 2 ,J 'J, ' 

we get the following equivalent form of the constitutive equations·: 

t11 = (A.e1 + T1 T+ T2 C)g'i +2p,e1i +'Jie1i"(r,-cp,), 

(5.39) 
m'i = "1 f!l:,g'1 +"2 CTJ

1
'1 +,3 cpi·', 

(!ofJ = -mT-pC- T1 e1, 

(!oM = pT+nC+T2e" 
where A. and p, are classical Lame's constants. The total number of material constantsp 
including (!0 , is 12. 
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6. lbe field equations 

Substituting into (4.13) the values 0 = 00 + T and c = c0+ C, we find following linear 
constitutive equations for the heat flux vector and for the flux vector of the diffused mass: 

(6.1) 
£11 

q, = 0o T,,+L12M,,, 
£21 

J, = T. T,,+L22M,H. 

Taking into account the constitutive equation (5.39)4 , and using (5.38), we obtain the 
generalized forms of Fourier's law and, for Pick's law for isotropic materials in linear 
theory, 

(6.2) 
(

£11 £12 ) £12 £12 
q, = -0 +-. -p T,,+~-nC,,+---r2 Llu"' 

0 eo . eo eo 

( 

£21 £2,2 ) . £22 v2 
lx= -

0
-+--p T,x+--nC,,+--T 2 Llu". 

0 eo eo eo 
Introducing new constants 

(6.3) 
£11 £12 

CX=--+--p, Oo eo 
£12 

{J =-n, eo 
we may present equations (6.2) in the form 

q" = cxT,x+fJC,x+YLl"", 

(6.4) 
J. = ~:: [(«- 8.~ •• ) J;.+PC .• +r<1u.J. 

Making use of the constitutive equations (5.39)1 , 2 , after substituting into (3.6)1,2, 

we obtain the following equations of motion: 

(6.5) 
( .l+ I'- ~) 11': •• + ( p+ .T)Ju,+?tj}N~··+ r,J:,+ T2 c .• +e.li = e.u •• 

Starting from the entropy balance equation (4.3), and using Eq. (5.39)3 and (6.4), 
we find the differential equation of the temperature field in the form 

(6.6) 

Similarly, starting from the equation of balance of diffused mass (4.1), and using (6.4h, 
we obtain the differential equation for the field of concentration in the form 

(6.7) («- 8.~ •• )JT+pL1C+rAu:-.- ~:: eoi: = o. 

The six equations of motion (6.5) together with the two field equations (6.6) and (6.7) 
.represent the complete system of differential equations for the linear theory of termodiffu­
sion in isotropic micropolar elastic materials. 
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