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Thermodiffusion in micropolar elastic materials
M. PLAVSIC and N. NAERLOVIC-VELJKOVIC (BELGRADE)

IN this paper we consider an elastic micropolar material subjected to the process of thermodiffu-
sion. Non-linear constitutive equations for mechanical and thermodynamical quantities are
derived from thermodynamic considerations for the studied model. Constitutive equations are
linearized for isotropic materials and corresponding field equations are obtained.

W pracy niniejszej rozwazany jest mikropolarny material sprezysty poddany procesowi termo-
dyfuzji. Nieliniowe réwnania konstytutywne opisujgce wielkosci mechaniczne i termodynamiczne
zostaly wyprowadzone z rozwazan termodynamicznych badanego modelu materialu. W przy-
padku materialéw izotropowych dokonano linearyzacji réwnafi konstytutywnych i otrzymano
odpowiednie réwnania pola.

B nacrosmmeii paGore ofcy)xaacTcA MEKPONOIAPHEL YIPYrEil MaTepHaN MONBEPTHYTHIN Mpo-
neccy Tepmomubdysmn. Henmmeiaeie onmpeensmolme YpaBHEHHS, ONMCHIBAIOINIAC MEXaHH-
YEeCKHE M TEPMOJMHAMHYECKHE Be/IMYMHBI, BhHIBEACHLI H3 TEPMOAMHAMHUCSCKHX PACCyH¢IeHui
HCCIIeTyeMoil MOJE/IH MaTepHana. B ciTydae H30TPOIHEIX MATEPHANIOB MIPOBEAEHA THHEAPH3AIHA
YPaBHEHHSA MOJA.

1. Introduction

THE problem of thermodiffusion in elastic solids of microstructure was studied in papers
[1 and 2]. Inthese papers it was assumed that there is non-homogeneous distribution
of temperature and of chemical potential inside the macroelement. According an influence
of microtemperature and of chemical micropotential appeared on the state of the body.

In the continuum theory of micropolar materials every material point is phenomenolog-
ically equivalent to a rigid body. Considering thermodiffusion in such materials we assume
the temperature and the chemical potential to be homogeneous inside the macroelement.
Thus from the point of view of this theory, the distribution of temperature, as well as of
chemical potential, is determined at every moment by only one function of position.

The mechanical model of micropolar materials was introduced by Sunusi and ERIN-
GEN [3]. The theory was developed further by ERINGEN in papers [4, 5 and 6], but did not
extend beyond the domain of linearity. A similar theory, based on independent rotations
of material points, was suggested by AErRo and KuvsHINsKII [7 and 8]. Later KAFADAR
and ERINGEN formulated the non-linear theory of micropolar elastic materials [9]. In the
paper [10] the micropolar elastic material is considered as an elastic Cosserat continuum.,

The process of thermodiffusion results from the non-uniformity of the temperature
distribution in the body. Assuming that no chemical reactions occur during the process
of thermodiffusion, the law of conservation of mass is taken to be valid, In the case of
a classical elastic material, the problem of thermodiffusion was treated by PODSTRIGAE [11]
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and PoDSTRIGACZ and PAVLINA [12 and 13], and further by NowAck1 [14 and 15]. The
linear theory for coupled mechanical and thermodiffusional effects for elastic materials
of grade two was derived by NAErLOVIC-VELIKOVIE [16].

2. Kinematics

The motion of a simple micropolar continuum is determined by the equations:

(2'1) X = x‘(X‘s I); fo - x?x(XL; f),
where y% stands for the orthogonal tensor expressing independent rotations of material
points of the body.

Interpreting the material as a simple Cosserat continuum, we obtain the following
equations of motion [10]:

(22) X = x5, 1), dig=duX",Diy,1),

where d%,, and DX ,, are triads of directors in the deformed and underformed configutations
respectively, and where

23) d%ey = XxD%).

Since the motion of directors represents a rigid motion, we can write:
2.4 8ud"qdlg = Ggr D%y D gy = Cop = const,
wherefrom, using (2.3),

2.5) GuXixe = Gxr, G*“%uxliL = 8-

However, there must be:

(2.6) [ =t ]/% G = |Ggul, & =8l

when rotation is described.
The velocity of a point of a macroelement can be expressed in the form:

@7 o = o,

where ¢* is the velocity of the mass center of the macroelement, d' is the position vector
of the point of the macroelement originating at the macroelement mass center and

() Ya = dyeyd®s = e 2
is the giration tensor. From (2.5),, after differentiation with respect to time, we get:
(2.9) Ya = IkXd = —HkXx = —Vix-

We see that v, is a skew-symmetric tensor, so that it has three mutually independent
coordinates. The tensors y.x and yx, are mutually reciprocal, as well as the triads d*
and d9,. ,
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3. The equation of energy balance and equations of motion

The global form of the energy balance equation is given by
G1) [ 0@ o+ I¥d ydgy)do+ [ gisdo = § (T'o+ H'®dy)ds

+ [ e(fotI®d)do+ § g'dsc+ [ ohdo,
L : L
or, after an identical transformation,

32 [ oGutMydo+ [oido = § (T'ds—*ds)o,
+ § (HYds—m"ds v+ (gds—q'ds)+ [ o(f'oi+1%)do

+ f (‘ l.“xﬂi g rh‘vi,x + mua.s"lj U E q’.‘x + gh}dv s
v
where

3.3) I = —I = I d%, = "t
stands for the inertial spin and where

(B4)  ol*do = DOKDY, [ oiDDHdef, I = KED@y DO, = Hd @, 4P,
do

are the director coefficients of inertia.

In (3.2) the tensor HY = — H” represents the surface couple, the tensor I = —
= ['"®q) . is the body couple, m" = —m™ is the couple stress tensor, u— the internal
energy density, T'— the stress vector, f*— the body force density, ¢ — the heat influx,
q" — the heat flux vector and h — the heat supply density.

Requiring the invariance of Eq. (3.2) with respect to superposed rigid body motions.
and taking into account the boundary conditions
(3.5 T!'=tin, HY=mPn,, q=gq"n,,
we get the equations of motion and the equation for internal energy balance in the following
form:

ov' = 1Y ;+of",
(3.6) I = (i mti* 4 ol
ot = 1, j— "l 4 m!™y o+ ¢+ oh.

4. The dissipation function and the thermodynamic forces

The volume concentration of diffused mass at a point of the body is determined by the
function ¢(x*, t). We assume that there are no body sources of mass production and,.
denoting by J* the flux vector of the diffused mass, we obtain the local balance equation.
of diffused mass in the form:

4.1) ¢=—J.



640 M. Praviié AND N. NARRLOVIC-VELIKOVIC

In the case of a mechanically reversible model of behaviour, the entropy balance
equation may be presented by

“.2) obn = ph+q%—oMc,
or, taking into account (4.1),
“4.3) ebn = ph+q'— MJ%,,

where 6 and M are absolute temperature and chemical potential at a point of the body.
Further, we express Eq. (4.3) as

R

The first three terms on the right-hand side represent the reversible part of entropy produc-

tion
. _oh q" M
(4'5) M= T ® (T)x - (T ‘P‘) .u.

The entropy production due to the existence of irreversible processes in the body is connec-
ted with heat transfer and diffusion:

- M
4.6) o = % + (T)JJ”‘.

Hence we find the following expression for the dissipation function:

@7 ol ‘f: +9(%{)j"
and, according to the second law of thermodynamics, the following inequalities take place:
4.8) 020, &>0.
The dissipation function (4.7) can be presented in the form:
{4.9) 0P = Qwd®,

where Q,, are irreversible thermodynamic forces and §® — corresponding generalized
velocities. In our case the thermodynamic forces are

@10) 0w ={% . o(%) |,

and hence the corresponding generalized velocities become
@.11) @ = {¢", "}

Using Onsager’s constitutive equations [17, 18], we obtain linear relations between
generalized velocities and irreversible thermodynamic forces:

@12 4@ = LQg,

where L©@» = L® are Onsager’s phenomenological coefficients.
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From (4.12), using (4.10) and (4.11), we find:

0 M
ST S P
g« =L 9 +L 3( 9 )’l,

0 M
- J21L ™ 2
J. =L - +L 10(—-6 )'*,

4.13)

with L'? = L?! and

L“ le
L21 Lzz
The non-linear relations between irreversible thermodynamic forces and generalized

velocities can be: obtained by using principle of the least irreversible force which was

suggested by ZiBGLER [19]. In that way we get the following expression for irreversible
thermodynamic forces:

@.14) L= > 0.

=1
oD
4.15) Q(al ( aq(g) q h) oP —aF ’

where the dissipation function depends on the following arguments:

0,.
(@.16) ¢=¢[8 ,8( )]

which now we consider as generalized velocities. From (4.15), taking into account (4.16),
we determine the non-linear constitutive equations for thermodynamic forces:

N )
g

5. Free energy and constitutive equations

Introducing the free energy density at a point of the body

(.1 v = u—0n,
we get
62 ov = ei—ebij—enp.
Making use of (3.6); and (4.2), we present (5.2) in the form
(5.3) op = oy j— 1%, + Py, — onf+ oM.

Next, we rewrite this equation in the following form:
GA  op = XS — (D~ M A X5 ) dy + MDY ik — om0+ ME
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and we conclude that the free energy depends on the arguments below:
(5'5) 'P = ?(f.fx: d?(a)s d?(l):ly 8, C}

After differentiation (5.5) with respect to the time and comparing with (5.4), we obtain
the non-linear constitutive equations for anisotropic micropolar elastic materials in the
coupled process of mechanical and thermodiffusional effects:

X oy
i _ il
= eg ax! x‘!x:

(5.6) 1t = _E'a__g”d" @0 adl 8’ d(-)l’
dy dy
=g M: Xdﬂtnafb nN=-——ps M=
However, equations (5.6), and (5.6), must be in accordance, i.e.,
oy oy oy )
5.7 - | St j il 1 ___*r i = 0.
e (3 el e - e R

The last expression represents the condition of objectivity of the free energy density (5.5)
and the constitutive equations (5.6).

If the condition (5.7) is satisfied, we find Eq. (5.6), to be superfluous. Namely, in that
case (5.6), is included in (5.6), as its skew-symmetric part.

Putting d%q, = x*xD%q, and d%.,x = x*r.x D%, We present the free energy density in
the following form:

(5-8) ¥ = (X, 2> Luixs 0, ©).
The set of equations (5.6) is now replaced by

tY = pgi ai,:i xx,
59) i = g 5o Nl
The condition of objectivity (5.7) then becomes:
(5.10) (-2 s )w - 0.

The free energy density (5.8) is a function of 23 independent variables X'k, 1"z, X’z:x
and c. Since (5.10) represents a system of three linear partial differential equations, it
admits 28—3 = 20 independent integrals. We choose following integrals [10]:

(.11 Zer = feeXie,  Kon = txeXins 0, €,
which can be rewritten in the form:

(5.12) Zrr = ¥t  Kun = fxivm = —paXx: 0, ¢
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having in mind that y*g is an orthogonal tensor. Thus, the general solution for free energy
density is given by

(5']3) = '}’(EKL’ KKL.R." 6: C)'

Substituting now (5.13) into (5.9) and using (5.12), we obtain non-linear constitutive
equations for anisotropic materials:

‘U =@ aw f‘x{L!

0Zx,
. dy
5.14 m*= 4 Xoas
( ) e aKKLH Z.KZ{L M
__ % _ 9y
wsg M=y

which are form-invariant with respect to the superposed rigid body motion.
Introducing the following measure of deformation

(5.15) gL = EkL—GxL = fuxXiL— Gxki,

the constitutive equation (5.14), reduces to

(5.16) t=p aa“'

L |
X.kX:L-
€KL

If we introduce the director displacement vectors ¢, :
e = Diwt¥@ Diw=d"—9"w
after multiplying by D™y and d®,, respectively, we obtain
Ve =8+9x (@ = @D,
x‘.x - gsf _an (¢xn = g’!.:(u)d“!x L]

where ¢”x and ¢*, are micro-displacement gradients. Making use of (5.17), we get
from (2.5),

(5.17)

(5.18) Pt P+ ouxP™L =0 (pxr = 8kPur)-
We see that in the linear approximation (5.18) leads to
(5.19) PrL+ @ik = 0.
Since yux = yg. (17 = x71), using (5.17) we also obtain
Pk = —PEx>
(5.20) PrL = —PL8k.= —PuBLEX>
Pua = —PixBn = —PLREIGx -
If we introduce displacement gradients by
Xk = gxt+uix, XK =gi-uls
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and after substituting (5.17) and (5.18) into (5.12), and (5.15), we may express the deform-
ation tensors gx; and Ky, as follows

.21) ekt = g, L+ Prx+ Quxt™y = g, — Pxr+ (Une, . — Prar) PV

Kein = PxLu+Psx@orw = —Preu—Ps @k u-
In the linear theory these tensors become

(5.22) €k = UL+ Prx = Ux,t—Pxrs, Kein = Pxr,m = —QPren-

In the case of isotropic materials, we can introduce the following spatial tensors:

(5.23) Ea = gsd'_mxfb Hodm = G‘an;x;- XL = —Xim,
so that, instead (5.13), we find
(5:24) ¥ = p(&a; %im; 0, ©).

Substituting (5.24) into (5.9) and making use of (5.23), we get the non-linear constitutive
equations for isotropic materials in the form:

p oy 2y
Mo ¥ o ¥ b Tl
e aeu e 38"‘ & —e a"uu Xl
(5.25) 3 2 2
TP T il O 4 =Y
- 9 6xu,. " K a0’ M dec’
The condition of objectivity (5.10) now reads:
dy ay ady dy
5.26 - 42 2 im— ] =0.
( ) 38[,‘ 9 36‘,,1 & ax;;. A a%.u X tify
From (2.5),, using (5.17) and (5.20);, we obtain
(5.27) Pt Pre— Pt = 0.
Neglecting the non-linear part of (5.27), we see that in the linear theory
(528) Pt +¢la = 0.

Making use of (5.23), (5.17), (5.20), and (5.27), we can express the deformation tensors
&,y and %, in the form

£ = Uy 1+ Pre— Qi1 = Ut — Pra— (U, — Pot) x5

Hlm = ‘Px&,m"‘?’m?{l.m = —QPumt ?’ﬂ‘pfx,u-
In the linear theory these tensors become:

(5.29)

(5.30) 8 = Uit Pre = U1 — Pty Xudm = Pudom = — Plau,m-

Disregarding the non-linear terms in (5.25), we obtain the following constitutive equa-
tions for the linear theory:

Ve W L, 9 -9 _ oy
(5.31) t ‘-’aau’ m an,,’ i , M P
where
(5.32) - %e,,,xff,, m = o e,
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and
1
(5.33) & = U~ @y = U j—Eipp, Ay = “2*8“9’"'.1 =@,j-

The free energy density is a function of the form y = y(ey, %y, 0, ¢). However, if
we put 0 = 0,+ T and ¢ = co+C, where T and C represent increases of temperature and
concentration with respect to some reference values 6, and ¢,, then we have y =
— ‘O(EUs %ij, T 0.

Supposing 9 =0, 1Y =0, mY =0, n=0and M =0 for g;=0, %;=0, 6 =6,
and ¢ = c,, then in the case of infinitesimal deformations and for small temperature and
concentration changes, i.e., for

Tler, [Sl«l,

0, Co
the free energy density is a quadratic polynomial of the form
(5.34) = ?;— AMeye 4 —;— Byt s+ CYeyy T+ DY, C+ % mT?+ % nC?4pTC,
where

AP = 3, gg 4 v,g%g M+ v, g g,
(5.35) B = y,g'lg" v gl +vsg'gh,
CY = 8", DY =yvygY,
are isotropic tensors and m, n, p, v, ..., ¥g are material constants.
Using now (5.34) and (5.35), and putting ¢ =~ go(1—u",), we obtain from (5.31) the
linear constitutive equations in the form:
1" = (v,6,+9, T+ C)g" +v, 8" +9,eh,
mY = v %,8" +v5 ! 4y xt,
Qo = —mT—pC—v, ¢,
oM = pT+nC+vgey,
where & = u¥, = diveand x, = ¢”, = div ¢ are first invariants of the tensors ¢; and x;;
respectively.
Finally, if we put
(5.37) &y = Uy, j— @y = ey+ry—g; = ey+ep(r* -9,
where

(5.36)

1 1
(538) ey= 5 Citu), ry= 5 =), Ty = el @y = eyt

we get the following equivalent form of the constitutive equations:
" = (Aey+ 1, T+ 1, C)g" +2ue +ve™(r,—9.),
m = v, ¢hg +v, 0" 397,
Qo7 = —mT—pC—1,¢,
ooM = pT+nC+1, e,

where A and u are classical Lamé’s constants. The total number of material constants,
including g,, is 12.

(5.39)
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6. The field equations

Substituting into (4.13) the values 6 = 6,+ T and ¢ = ¢, +C, we find following linear
constitutive equations for the heat flux vector and for the flux vector of the diffused mass:
Ll LZI
(6.1) Gy = By T, +L*M,, J, = - T.+L*M,.
0
Taking into account the constitutive equation (5.39)s, and using (5.38), we obtain the
generalized forms of Fourier’s law and, for Fick’s law for isotropic materials in linear
theory,

Lll 12 12 12
w=\3- +L p)T +L—nC +L v, du,,
62 () Qo Qo Qo
21 22 22 22
= Ié— $ "; p) T+ ‘[é nC,+ Ié i,
'] 0 0 0
Introducing new constants
LM le le le
6.3) o=—+—0>p, = = T2,
%t P e

we may present equations (6.2) in the form
g = aT,,.+ﬂC.,,+yAu,,

6.4) L2 L L L'
J, [(G— BoLzz) T,u"‘ﬂc,u"'?dux]v L= ILZI L22 .

Making use of the constitutive equations (5.39),,,, after substituting into (3.6);,,,
we obtain the following equations of motion:

"‘Liz

(6.5) (A-H‘ 2) ”‘+(F+T)Au'+“‘h¢! + 1, T+ 7, Ci+efi = eolhi,
v,6' %A Pt (¥ +,,.2)8ux99_h o ra”"q:,, e O Q,:u = 0o kua%

Starting from the entropy balance equation (4.3), and using Eq. (5.39); and (6.4),
we find the differential equation of the temperature field in the form

(6.6) aAT+BAC+ A+ mBy T+pho C+ 7,001+ 0h = 0.

Similarly, starting from the equation of balance of diffused mass (4.1), and using (6.4),
we obtain the differential equation for the field of concentration in the form

12

L .
L” QQC =0.

6.7 (a 7 L“) AT+ BAC+yduwr,—
The six equations of motion (6.5) together with the two field equations (6.6) and (6.7)
represent the complete system of differential equations for the linear theory of termodiffu-
sion in isotropic micropolar elastic materials.
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