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On the pulsatile flow of micropolar fluid 

L. K. LASKOWSKI and S. WRONSKI (WARSZAWA) 

THE comparison of physical arguments supporting the models of Stokesian tluid and Eringen 
micro polar tluid permits us to suggest that the latter should better describe a flow of suspensions. 
The unsteady motion is discussed in the case of axi-symmetrical tlow with a pulsatile pressure 
gradient. The solutions to this problem are derived in the dimensionless variables. Thus the 
influence of material constants is naturally classified with the use of similarity numbers. The 
results give a promising interpretation of experimental data for the pulsatile blood tlow. 

Por6wnanie zalo2:en fizycznych, leic\cych u podstaw modeli plynu stokesowskiego i mikropolar­
nego plynu Eringena, pozwala sugerowac, 2:e ten ostatni powinien lepiej opisywac przeplywy 
zawiesin. Rozpatrzony jest ruch nieustalony na przyldadzie osiowo-symetrycznego przeplywu 
przy pulsuj~cym gradiencie cisnienia. Rozwi~a takiego zagadnienia ~ wyprowadzone 
w zmiennych bezwymiarowych. Uzyskuje si~ klasyfikacj~ wplywu stalych materialowych w natu­
ralnej zalemo8ci od liczb podobienstwa. Rezultaty umo:iliwiaj'l obiecuj~~ interpretacj~ danych 
doswiadczalnych doty~cych pulsacyjnego przeplywu krwi. 

CpaaueHHe cPuaHtiecJ<HX n~oJio>Kemm, uaxo.z:vru.uaCH y ocuoa MO,D;eJie:H ~oCTH CToi<ca 
H MHKpODOIDipHOH ~OCTH 3pHHreHa, D03BOIDieT Dpe,D;DOJiaraT:&, qoro 3Ta DOCJie~IDI MO,!J;eJII> 
AO,IDKHa JJyliiiie OIIHCLIBaTL TelleiUUl aaaece:H. PaCCMaTpHBaeTCH ueyCTaHOBHBmeecR ,D;BH>KeHHe 
Ha npHMepe oce-CHMMeTpHliHoro Telle.HWI npu DYJII>CHPYIO~eM rp~euTe p;aan:eHHH. PemeHHH 
Ta.KOH 3a,D;BliH Bbmep;eHbl B 6eapaaMepHbiX nepeMeHHbiX. llOJIYllaeTCR I<JiaCCHcPHK~ BJIH­
.RIDIR MBTepHaJII>HbiX DOCTOJIHHbiX B eCTecTBeHHOH 3aBHCHMOCTH OT tmceJI DO,D;OOHR. PeayJII>­
TBTbi ,!J;aJOT B03MO>KHOCTI> MHOrO~~eit HHTepDpeT&.QHH 3KCIIepHMCHTaJIIdii>IX ,!J;IlHHbiX, 

Kacaro~c~~ DYJII>CHPYIO~ero TelleHHR KpOBH. 

Notations 

g the vector of body force (per unit volume), 
G the vector of body momentum (per unit volume), 
L characteristic linear magnitude, 
P pressure, 

time, 
P. pulsatile pressure gradient 
Pe constant pressure gradient, 
U characteristic linear velocity, 
w microrotational velocity component, 
v velocity component in the axial direction, 
v linear velocity vector, 
w microrotational velocity vector, 
x" spatial coordinate; 

the similarity numbers 

Rem micropolar Reynolds number, 
Rint Reynolds number of interaction between vorticity and microrotation, 
R w Reynolds number of microrotation, 
Ni number of microinertia, 
Re Newtonian Reynolds number; 
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the material constants 

Greek letters 

e density, 
11 viscosity (plasma viscosity), 

~. P additional coefficients of viscosity, 
J rotational micro inertia; 

y the root of characteristic equation, 
e skew-symmetric tensor, 

w the frequency of pulsatile pressure. 

t. K. LAS.Kow8Kr AND ·s. WRomKi 

THE linear theory of polar fluid is a generalization of Stokesian fluid theory which takes 
into account some effects of fluid local structure. The model of Eringen micropolar fluid 
is introduced by making an assumption that fluid consists of material points, i.e., fluid 
particles, the motion of which is given by the velocity field v, and additionally, by the 
microrotation field w. The microrotation field represents local average rotational velocity 
of the fluid particles, and is independent of the vorticity. 

Comparing physical arguments . supporting the mathematical models of Stokesian and 
Eringen fluids one can expect that media of complex structures, e.g., biological liquids 
or other suspensions, will be described more accurately by the latter. In the case of suspen­
sions it is evident that a conglomerate of dispersed phase can exhibit slip - a movement 
relevant to the neighbourhood in which it is embedded. The more so in unsteady state, the 
particle angular velocity may not coincide with the regional angular velocity which is 
equal to the half of the vorticity. The motion of blood is a particular case of fluid suspension 
flow, indicating considerable disparity with the Newtonian character of flow. One can 
expect the axi-symmetrical flow of micropolar fluid in tubes with a pulsatile pressure gra­
dient to be a better model of blood flow. 

The equations of motion of Eringen micropolar incompressible fluid are given here 
in the dimensionless forms. Two characteristic quantities are selected for the purpose. 
They are: L or R- characteristic linear magnitude and U -linear velocity. Following 
introduction of dimensionless variables (dimensional variables are marked with asterisks): 

xT x,=y, 
(1) 

the equations of motion take the form: 

(2) 

(3) 

gf 
g, = U2 /L' 

wt 
w,= U/L' 

P* 
P=-­eU2 , 
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In similarity numbers occurring in the above-given formulae the material constants are 
combined with the quantities characteristic of the flow: 

(4) 

eLU . eLU 
Rem= --

12 
, Rint = --, 

p,+H X 

eL3U 
Rw=--, 

fJ 
. L2 

Nt=T· 

It is advisable to begin investigation of the unsteady motion with a simple case . of 
a start-up problem of Couette plane flow. The conclusions derived from the solution of 
this problem which we have presented in [8] are as follows: 

changes dependent on time (that is approaching the steady flow) are of roughly expo­
nential character and depend on the ratio of constants Ni and Rint 

Ni L x 
Rint = eU J; (5) 

the reciprocal of effective Reynolds number, defined as a quotient of shear stress 
and shear rate, representing the effective dimensionless viscosity, declines from: 

(6) ( 
l ) ( l ) p, + H /2 

Re err,start = Rem = eLU 
to: 

(7) ( 
1 ) 1 1 p, 1 - --+-·(-05)=-<-

Re err. steady - Rem Rint . eLU Rem . 

The model of many real flows is the axi·symmetrical flow in cylindrical tubes. In cylin .. 
drical coordinates system the differential equations of motion in case, when the inertia, 
components ·of small radial velocity, the body forces, and the body-couple are neglected! 
have the following form: 

dv ()p . 1 1 a ( Qv ) 1 1 8(rw) 
(8) dt = - Tz + Rem r Tr r Tr + Rint r -a,:-; 

(9) _1 dw =·-1_ ... !_[__!_ 8(rw)J __ 1_(!!!_+2w) 
Ni dt Rw 8r r ar Rint ar . 

Examining the flow, when the pressure gradient pulsates with a frequency rot the following 
substitutions were made: 

(10) 

The solution to this problem for a steady flow· of micropolar fluid has been given by ERIN­
GEN [1], CONDIFF and DAHLER (2], AluMAN and CARMAK (3], PENNINGTON and COWIN (4]. 
In the dimensionless variables introduced here this solution has the form: 

(ll) *[( 2) Rem Io(y)-/0(yr) J 
'Vcp=Pc I~r -Rint y/l(y) ' 

(12) w,, = P~ [r- j;[;j]. 
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618 L. K. LASKOWSKI AND S. WRONSKI 

where: 

(13) 2 = Rw (2- Rw)=2RwRem.(_1 ___ 1_.) 
y Riot Riot Riot Rem 2 Riot ' 

P* = Pc 

c 4(R:m -2~J 
This solution is subject to boundary conditions of "hyperstick" type: 

(14) Vlr=l = 0, Wlr=l = 0, Vjr .. o, Wlr=O- finite. 

Alternative boundary conditions for the microrotation field have been proposed by CoNDIFF 

and DAHLER [2] as well as by REviNDRAN and DEVI [6], who used them for Couette flows. 
The boundary conditions of "no antisymmetric stress" type result for the Poiseuille flow 
through a pipe in the following formula: 

(15) +a~';) I .. , = o. 
CoWIN and PENNINGTON [5] suggest that this boundary condition is more consistent with 
the image of physical phenomena. The solutions to the equations of motion (8) and (9), 
subject to this boundary conditions, were worked out. The components of velocity and 
microrotation, which result from the constant pressure gradient Pc, constitute a solution 
to the steady motion and have the form: 

_ *[( 2) 2Rem 10 (y)-10 (yr)]· 
(16) Vcp - Pc 1-r - Riot y2fo(Y) ' 

(17) _ •[ 2 lt(Yr)] 
Wcp - Pc r- y lo(Y) . . 

The unsteady flow solution, subject to no initial condition, have the following form: 

~ 2J0 (b) J[ (~-IX)km (~+IX)k, ] . 
(18) v = vc,+v,, = Vc11 +P, LJ U

1
(A) l 2~(k,!+w2) + 2~(k~+ro2) sm(rot) 

A 

- [ 2~~~~=2) + 2!~k~~=2Jos(wt)}; 
\""" 2lt(A7) ANi {[ km k, ] . ( ) 

(19) w = w,,+w,, = Wc,+Pa L,; Ut (A.) 2~Rint k! +w2- k~+w2 SID rot 
A 

- [k2 w 2 - k2 w 2 ]cos( rot)}; 
m+w ,+w 

A: lo(A) = 0, k,, km: k, = ko+~ >km= ko-~ > 0, 

k _ 12 ( 1 Ni ) 2 Ni .u 2 A 2Ni 
0 - A Rem+ Rw + Rint' u = IX + (Rint)2 ' 

(%2 = A2 (-1 __ Ni) _ 2~i. 
Rem Rw Riot 

The formula of the velocity of Eringen micropolar fluid-subject to the pulsatile pressure 
gradient- will be compared with a corresponsing formula of Newtonian fluid flow, 
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obtained with the help of the same solving method. The solution given by WOMERSLEY [9] 
based on Bessel functions of the complex variable (which are her-function and bei-function) 
is convenient to the comparison as well as to digital computer calculations. In the following 
solution of the equation of Newtonian fluid motion, there are distinguished the components 
of velocity, being subject to constant Pc, and a pulsatile P, pressure gradient: 

(20
) _ _ Pc(I-r2

) p ~"12lo(.A.r) [ (..1.2 /Re) sin(wt)-wcos(wt) ] 
u - Uc,+u,, - 4/Re + o ~ Ut(.A.) (J.l/Re)l+wl • 

The velocity profiles of micropolar fluid, compared with the corresponding profiles 
of Newtonian fluid, might serve better than others to · describe the flow of blood. An appli­
cation of the polar fluid theory to the descriptio~ of blood flow has been proposed by 
ERINGEN [1]. The numerical values of the material constants are derived here from experi­
mental data of BuGLIARELLO and SEVILLA [1 0] and from the rheological experiments 
and the theoretical investigations as described ~y TURK, SYLVESTER and ARIMAN [7]. 
The experiments of Bugliarello and Sevilla concern the flow of blood red cells (erythrocytes) 
suspension in plasma through the glass fibres. Such a suspension, as opposed to blood, 
does not coagulate. According to investigations oi ALLEN and KL.INE [12], the basic value 
of viscosity coefficient I' is assumed to be equal to plasma viscosiW~ 

In choosing values 

(21) 
I' = 1.2cP, p = 4.8 ·l0- 8 gcm/s, L = 20 pm, 

"= 0.8cP, U = 6 mm/s, 

which are averaged limits given in works of .AluMAN et al. [11], [7], the basic values of 
similarity numbers are obtained: 

1 1 1 1 1 
(22) Re = 10' Rint = 12' Rem= Re + 2Rint = 16 ' Rw = 0·1· 

The basic value of microinertia coefficient J is taken to satisfy the condition: 

(23) Ni = Rw = Rw(-
1
-- -

1
.-) = 1. 

Re Rem 2Rmt 
1 

This restriction is equivalent to the reduction of Eqs. (9) to (8) by substituting w = - T 

~,that means the coincidence of microrotation and the regional angular velocity, typ­

ical of the steady Couette flow. 
Numerical computation of the veloCity profiles together with microrotation profiles 

and average velocities have been made. The analysis of these results leads to the following 
conclusions: 

1. In comparison with the parabolic profile of Newtonian fluid, the basic velocity pro­
file of micropolar fluid subject to the constant pressure gradient Pc, is slightly sharper. 
The velocity is greater on the axis but smaller near the wall. This comparison as well as 
most of the following ones is made for the same flow rate. This .is equivalent to assigning 
the mean velocity as the corresponding characteristic velocity U. The mean velocity of 
Newtonian fluid, subject to constant pressure gradient and the same basic coefficient of 
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viscosity f', is about 40% greater than the mean velocity . of micropolar. ·fluid; the basic 
values of material constants are as above. 

2. The dependence of velocity profiles on pulsation frequency is illustrated in Fig. 2. 
It can be seen that the decrease of frequency below the value w = l . slightly affects the 

V 

v..., { r, wl ·7T/l} 
dliferMl· Nl 
and ""--llll'll preSSJJr~ prol'/lls 
Vcp - mitWI,otJiar 

Ur~ -- ptmriNIIit:-(ll~an) 

42 a 111 111 1.0 r 

FIG. 1. The velocity profiles for the pulsatile pressure gradient (different Ni) and for the constant pressure 
81'adient. 

ttlffwml c.J 

~ (r•O, wl) 

0 

FIG. 2. The velocity profiles fot different freqUencieS• 

http://rcin.org.pl
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velocity profiles. (Because of the relation: w . ~ w* · L/ U, the dimensionless frequency 
equal to 1 corresponds to dimensional frequency of about 45Hz). The increase of frequency 
results in flattering velocity profiles. The amplitude of velocity component subject to pul­
satile ·pressure gradient becomes smaller .. Together with it the frequeno/inereas~ effects 
in the phase lag between moments in which the maximum profile (what ~~signates the 
profile of biggest volume flow rate) and the greatest pressure gradient occur. For the 
frequency of range 103 this phase lag reaches n/2. 

J6 

J2 

/.6 

0. 

0.4 

rlifferMI M. 

v_. (r•O, fill) 

Fio. 3. The axial velocity for different Ni. 

3. The influence of parameter Ni upon velocity distributions is shown in Figs. 1 and 3. 
For the constant value of the parameter Ni it represents the dependence on the ratio of 
constants Ni and Rint. The increase of the parameter Ni from zero value (i.e., the decrease 
of microinertia coefficient J) results in an increase of fluid ··"mobility". A significant 
variation of velocity profiles represented by the axial velocity is observable for successive 
moments of a pulsation period. The velocity profiles tlatter .·than- the Newtonian profiles 
for Ni = 0 become sharper and the value of velocity on the axis reaches even 3.5 for 
Ni = 0.05. 

The velocity profiles for different moments of pulsation are plotted in Fig. 4; the pressure 
gradient has the form: Pc+Pcsin(t). Three cases of velOcity distribution are compared: 
Newtonian (u), micropolar for Ni = l(vs}and for Ni = O.S(vm). There. occurs a higher 
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622 L. K. LASKOWSKI AND S. WRONsK I 

"mobility" of the micropolar fluid velocity profiles. The micropolar profiles approaching 
(vs) or being flatter (vm) than the Newtonian profiles become sharper with an increase 
of pressure gradient; this is already seen for t = n/4 and very remarkable for t = n/2. 
The micropolar profiles diminish quicker with. the decrease of pressure gradient; it is 
observed for t = 5n/4. 

J.2 

3.2 

2.8 

di'ff~rBJI (tinS/an/ lilf 

u- Newttnian 
mi~ropolar: 

v, : HI•! 

v..,:Ni-t/05 

,. 

FiG. 4. The velocity profiles for different Ni and different moments. 

The great variance of velocity distribution, considerably exceeding that of Newtonian 
fluid, is observable especially in the case of micropolar fluid with Ni = 0.05. 

Together with an increase of fluid "mobility" occurring for the values of parameter 
Ni within the limits frortt 0 to 0.05 appears the phase lag between the moments of a maxi-
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ON 1HE PU13ATILE FLOW OF MICROPOLAR. FLUID 623-

mum profile and a maximum pressure gradient. The greatest value of this delay is noticed 
for Ni ~ 0.01 and reaches the value of n/8. The further increase of parameter Ni above 
0.05 results in gradual assimilation of profiles to velocity distribution determined for 
Ni = 1. The velocities are about 10% greater than the corresponding velocities of appro­
priate Newtonian fluid. The phase lag between velocity and pressure gradient is small. 

4. The parameter Rw slightly influences the shape of velocity profiles as in Fig. 5, its 
increase brings a small increment of the velocity on the axis. 

2.4 

l 

1.2 

Q8 

0:1 

0 Jff/8 7112 J71f8 J71/;f 

tltlflrMI Nw 

~ (r.O, tJt) 

Fro. S. The axial velocity for different Rw. 

The comparison of the presented relations for the micropolar fluid velocity profiles 
with the experimental data for the suspension of red cells in plasma, as reported by BuGLIA· 
llELLO and SEVILLA [1 0], permits to conclude that the micropolar fluid, due to its sharper 
velocity profiles and greater "mobility", describes better the motion of blood. Bugliarello 
and Sevilla have measured the velocities in the neighbourhood of a tube axis and compared 
them with the velocity profiles of Newtonian fluid. They have found that the latter, prac­
tically in every moment of pulsation period, exhibits too slow variance and that the values 
of velocity calculated for Newtonian model are smaller than the values derived from experi­
ments. 

References 

l. A. C. ERINGEN, 1. Math. Mech., 16, 1-18, 1966. 
2. D. W. CoNDIFF, 1. S. DAHLER, Phys. Fluids, 7, 842-8S4, 1964. 
3. T. ARIMAN, A. S. CARMAK, Rheol. Acta, 7, 236-242, 1968. 
4. C.1. PENNINGTON, S. C. CowrN, Trans. Soc. Rheol., 13, 387-403, 1969. 
S. S. C. COWIN, C. 1. PENNINGTON, Rheol. Acta, 9, 307-310, 1970. 

http://rcin.org.pl



~24 L. K. LAsKOWSD AND s. WRoNsKI 

6. R. RAVINDREN, R. G. DEVI, Rheol. Acta, 11, 99-105, 1972. 
7. M. A. Ttnuc, N. D. SYLVI!STER, T. ARIMAN, J. Biomech., 5, 185, 1973, 
8. S. WRONSICJ, L. K. LASICOWSKI, Prace ll Ch. P., Wroclaw 25, 83-94, 1974. 
9. J. R. WQMERSLEY, J. Physiology, 127, 553-563, 1955. 

10. G. BUGLIARELLO, J. SEVILLA, Biorheology, 7, SS-107, 1970. 
11. T. ARIMAN; J. Biomech. 4, 185 (1971). 
12. s. J; ALLI!N, K. ·A~KLINE,Ti'ans. Soc. Rheol.,t~ 4457, 1968. 

TECHNICAL UNIVERSITY OF WARSAW. 

Receilled Nollember 15, 1975. 

http://rcin.org.pl




