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On the pulsatile flow of micropolar fluid

L. K. LASKOWSKI and S. WRONSKI (WARSZAWA)

THE comparison of physical arguments supporting the models of Stokesian fluid and Eringen
micropolar fluid permits us to suggest that the latter should better describe a flow of suspensions.
The unsteady motion is discussed in the case of axi-symmetrical flow with a pulsatile pressure
gradient. The solutions to this problem are derived in the dimensionless variables. Thus the
influence of material constants is naturally classified with the use of similarity numbers. The
results give a promising interpretation of experimental data for the pulsatile blood flow.

Pordwnanie zalozeni fizycznych, lezacych u podstaw modeli plynu stokesowskiego i mikropolar-
nego plynu Eringena, pozwala sugerowac, ze ten ostatni powinien lepiej opisywaé przeplywy
zawiesin. Rozpatrzony jest ruch nieustalony na przykiadzie osiowo-symetrycznego przeplywu
przy pulsujacym gradiencie ciénienia. Rozwigzania takiego zagadnienia sa wyprowadzone
w zmiennych bezwymiarowych. Uzyskuje sig klasyfikacje wplywu stalych materialowych w natu-
ralnej zaleznosci od liczb podobienistwa. Rezultaty umozliwiaja obiecujacy interpretacje danych
doswiadczalnych dotyczacych pulsacyjnego przeplywu krwi.

CpaBHenne GHIAUECKHX MPeINOJIOyKEeHuMN, HAXOAAMXCA ¥ OCHOB Mofenei »uakoct CTokca
M MHKDOTIOJIAPHOM HIKOCTH DPHHIeHa, IO3BOJIAET IPEIINO/IATaTh, UTO 9T HOCIEIHAA MOAEh
JOJDHHA JIyvIlle ONMCHLIBATE TCUeHNA B3Beceil. PaccMaTpHBaeTcA HEYCTAHOBHBIIICECHA JBIDKCHHE
HA NIPHMEpE OCe-CHMMETPHUHOT'O TeUeHHA NPH MYILCHPYIOlleM rpaAcHTe faBienns. Pemennsn
Tako# 3anaum BhIBefeHBbI B GeapasmepHbix nepemennbix. [lomyuaerca knaccaduxanms Bim-
AHMA MATEPHANEHBLIX MOCTOSHHBLIX B €CTECTBEHHON 3aBHCHMOCTH OT WMCel nonobusa, Peayms-
TATBI [AlOT BO3MOYKHOCTH MHOrooGellaromielf MHTEpPOpETAlMM IKCICPHMEHTANEHBIX NAHHBIX,
KacAIIMXCA NMyIbCHPYIOMIEro TEYCHHS KPOBH.

Notations

the vector of body force (per unit volume),
the vector of body momentum (per unit volume),
characteristic linear magnitude,

pressure,

time,

pulsatile pressure gradient

constant pressure gradient,

characteristic linear velocity,
microrotational velocity component,
velocity component in the axfal direction,
linear velocity vector,

microrotational velocity vector,

x; spatial coordinate;

T4 T QT WNA®

the similarity numbers

Rem micropolar Reynolds number,

Rint Reynolds number of interaction between vorticity and microrotation,
Rw Reynolds number of microrotation,
Ni number of microinertia,
Re Newtonian Reynolds number;
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the material constants

density,

viscosity (plasma viscosity),
additional coefficients of viscosity,
rotational microinertia;

X
“=ERE o

Greek letters

the root of characteristic equation,
skew-symmetric tensor,
@ the frequency of pulsatile pressure.

.

THE linear theory of polar fluid is a generalization of Stokesian fluid theory which takes
into account some effects of fluid local structure. The model of Eringen micropolar fluid
is introduced by making an assumption that fluid consists of material points, i.e., fluid
particles, the motion of which is given by the velocity fleld v, and additionally, by the
microrotation field w. The microrotation field represents local average rotational velocity
of the fluid particles, and is independent of the vorticity.

Comparing physical arguments supporting the mathematical models of Stokesian and
Eringen fluids one can expect that media of complex structures, e.g., biological liquids
or other suspensions, will be described more accurately by the latter. In the case of suspen-
sions it is evident that a conglomerate of dispersed phase can exhibit slip — a movement
relevant to the neighbourhood in which it is embedded. The more so in unsteady state, the
particle angular velocity may not coincide with the regional angular velocity which is
equal to the half of the vorticity. The motion of blood is a particular case of fluid suspension
flow, indicating considerable disparity with the Newtonian character of flow. One can
expect the axi-symmetrical flow of micropolar fluid in tubes with a pulsatile pressure gra-
dient to be a better model of blood flow.

The equations of motion of Eringen micropolar incompressible fluid are given here
in the dimensionless forms. Two characteristic quantities are selected for the purpose.
They are: L or R — characteristic linear magnitude and U — linear velocity. Following
introduction of dimensionless variables (dimensional variables are marked with asterisks):

xi ! gl 5
x-l__L" U= U’ gl‘_Uz'l'-Ls P_QU{;
)
PIE. W, .
Lju’ "L’
the equations of motion take the form:
du; oP 1 %y 1 awy

@ @t =8 7x, T Rem ox0x, T Rint “¥* Ox, ’

1 d”'g - 1 32w, 1 ( 3";
N @ =0t R anom T Rnt M T,

3 - 2w;) ’
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In similarity numbers occurring in the above-given formulae the material constants are
combined with the quantities characteristic of the flow:

Rcm=—f‘)L-—U—, Rjntzﬂ,
@ ptxf2 %
_eL*U e
Rw = 7 Ni = 7

It is advisable to begin investigation of the unsteady motion with a simple case of
a start-up problem of Couette plane flow. The conclusions derived from the solution of
this problem which we have presented in [8] are as follows:

changes dependent on time (that is approaching the steady flow) are of roughly expo-
nential character and depend on the ratio of constants Ni and Rint

Ni L =x

©®) Rint = U 7°

the reciprocal of effective Reynolds number, defined as a quotient of shear stress
and shear rate, representing the effective dimensionless viscosity, declines from:

(e =) =22
Re eff, start B Rem - QLU
to:
1 1 1 _p 1
Y (_R?) eff.steady  REm * Rint (—0.5) = oLU < Rem °

The model of many real flows is the axi-symmetrical flow in cylindrical tubes. In cylin-
drical coordinates system the differential equations of motion in case, when the inertia,
components of small radial velocity, the body forces, and the body-couple are neglectedl
have the following form:

dv P 1 13(30) 1 1 3(w)

@ = " Ram v\ Rty o
1Law 1 3[1 30w 1 (o0
©) ﬁ?:"k"?}é?[?_"ar ]—“‘““mm(ar +2“’)-

Examining the flow, when the pressure gradient pulsates with a frequency w, the following
substitutions were made:

oP . dv v dw  ow
(10) - .+ Pgsin(wt), Sy ity

The solution to this problem for a steady flow of micropolar fluid has been given by ERIN-
GEN [1], ConDIFF and DAHLER [2], ARIMAN and CARMAK [3], PENNINGTON and CowIN [4].
In the dimensionless variables introduced here this solution has the form:

" o = 3[40 Rem bl

1 Il (yr)
(12) W, = P* [r— 167 ].’

3
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where:
Rw Rw 2RwRem [ 1 1 P
2 = o = — * = £ s
(3 7" =z |2 Rint) Rint ( Rem 2Rint)‘ k N 1 )
Rem 2Rint

This solution is subject to boundary conditions of “hyperstick” type:
(14) ﬂir:l - 0! w{r:l = 0; ﬂir-o’ w]r-ﬂ — finite.

Alternative boundary conditions for the microrotation fleld have been proposed by CONDIFF
and DAHLER [2] as well as by REVINDRAN and DEvi [6], who used them for Couette flows.
The boundary conditions of “no antisymmetric stress” type result for the Poiseuille flow
through a pipe in the following formula:

1 a(rw)

F

(15) =0,

CowIN and PENNINGTON [5] suggest that this boundary condition is more consistent with
the image of physical phenomena, The solutions to the equations of motion (8) and (9),
subject to this boundary conditions, were worked out. The components of velocity and
microrotation, which result from the constant pressure gradient P,, constitute a solution
to the steady motion and have the form:

e TR »n  2Rem L(y)—IL(yr) |.

P "“’"P‘[“" Rt () ]
i fl(y.)]

¢ Mo =L [’ y o) ]

The unsteady flow solution, subject to no initial condition, have the following form:

_ _ W[ G-km  (G+a)k, |.
(18) v=19,49, = vc,+P.Z 7. [26(k3,+w3) + 25(k§+w2)]mn(m!)

(- (0+0)w )
- [26(k§.+w=) 2 za(k§+wz)]°05(wr)} ;

_ 2J,(Ar) ANi K k, :
(19) w=w,+w,, =w,+P, : 7.0 26Rjnt{|:ki,+wz Bto sin(wt)
w w
_[k,z,+w’ - P ]cos(mt)};
AT =0, ky,kn: k, =ko+d> ky =ko—6>0,
1 Ni 2Ni A2Ni
. T

ko (Rem *Rw) " Rint’ FrmeE (Rint)?’

a2=1,( 1 Ni)_ 2Ni

Rem Rw/ Rint’

The formula of the velocity of Eringen micropolar fluid—subject to the pulsatile pressure
gradient — will be compared with a corresponsing formula of Newtonian fluid flow,
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obtained with the help of the same solving method. The solution given by WoMERSLEY [9]
based on Bessel functions of the complex variable (which are ber-function and bei-function)
is convenient to the comparison as well as to digital computer calculations. In the following
solution of the equation of Newtonian fluid motion, there are distinguished the components
of velocity, being subject to constant P, and a pulsatile P, pressure gradient:

Pi=rY) ‘-ZJ.,(Rr)[ (A2/Re) sin(wt) — o cos(wt)
TaRe L WM (R +0? :

(20) u = u,+u,, =

The velocity profiles of micropolar fluid, compared with the corresponding profiles
of Newtonian fluid, might serve better than others to describe the flow of blood. An appli-
cation of the polar fluid theory to the description of blood flow has been proposed by
ERINGEN [1]. The numerical values of the material constants are derived here from experi-
mental data of BUGLIARELLO and SEviLLA [10] and from the rheological experiments
and the theoretical investigations as described by TURK, SYLVESTER and ARIMAN [7)].
The experiments of Bugliarello and Sevilla concern the flow of blood red cells (erythrocytes)
suspension in plasma through the glass fibres. Such a suspension, as opposed to blood,
does not coagulate. According to investigations of ALLEN and KLINE [12], the basic value
of viscosity coefficient x is assumed to be equal to plasma viscosity.

In choosing values

p=12P, p=48-10"%gem/s, L =20 um,
x =08cP, p=1 g/em? U = 6 mm/s,
which are averaged limits given in works of ARIMAN et al. [11], [7], the basic values of
similarity numbers are obtained:
1 | 1 1 1
=% ™% Rm— TR

The basic value of microinertia coefficient J is taken to satisfy the condition:

(@1

(22) 16, Rw=0.1.

. Rw 1 1
3 R (Rem - 2Rint) o=
This restriction is equivalent to the reduction of Egs. (9) to (8) by substituting w = — —;—

v 5 : . . 2
o that means the coincidence of microrotation and the regional angular velocity, typ-

ical of the steady Couette flow.

Numerical computation of the velocity profiles together with microrotation profiles
and average velocities have been made. The analysis of these results leads to the following
conclusions:

1. In comparison with the parabolic profile of Newtonian fluid, the basic velocity pro-
file of micropolar fluid subject to the constant pressure gradient P, is slightly sharper.
The velocity is greater on the axis but smaller near the wall. This comparison as well as
most of the following ones is made for the same flow rate. This is equivalent to assigning
the mean velocity as the corresponding characteristic velocity U. The mean velocity of
Newtonian fluid, subject to constant pressure gradient and the same basic coefficient of
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viscosity u, is about 409, greater than the mean velocity of micropolar fluid; the basic
values of material constants are as above.

2. The dependence of velocity profiles on pulsation frequency is illustrated in Fig. 2.
It can be seen that the decrease of frequency below the value w = 1 slightly affects the

l\r
18

12

Voo (7, wt =T1/2)

different M

and censfard pressure profiles
Vep - micrgoolar

28f , - parabolic (Newlonan)

I

¢I2 4:1 dla ar [7] r
F1a. 1. The velocity profiles for the pulsatile pressure gradient (different Ni) and for the constant pressure
gradient.

j

diffécent w
Vap (720, wi)

=), wé=f2
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w0, wt=13Ty

7 = = 7/ | "
Fic. 2. The velocity profiles for different frequencies.



ON THE PULSATILE FLOW OF MICROPOLAR FLUID 621

velocity profiles. (Because of the relation: w = w*- L/U, the dimensionless frequency
equal to 1 corresponds to dimensional frequency of about 45 Hz). The increase of frequency
results in flattering velocity profiles. The amplitude of velocity component subject to pul-
satile pressure gradient becomes smaller. Together with it the frequency inerease effects
in the phase lag between moments in which the maximum profile (what designates the
profile of biggest volume flow rate) and the greatest pressure gradient occur. For the
frequency of range 10? this phase lag reaches n/2.

a6r

differond N
azy Vg (r=0, wt)
28
2t
20
15t
12r
a8
o4t

¢

g Th Wi W5 Wz m W g A
Fic. 3. The axial velocity for different Ni.

3. The influence of parameter Ni upon velocity distributions is shown in Figs. 1 and 3.
For the constant value of the parameter Ni it represents the dependence on the ratio of
constants Ni and Rint. The increase of the parameter Ni from zero value (i.e., the decrease
of microinertia coefficient J) results in an increase of- fluid - “mobility”. A significant
variation of velocity profiles represented by the axial velocity is observable for successive
moments of a pulsation period. The velocity profiles flatter than the Newtonian profiles
for Ni = 0 become sharper and the value of velocity on the axis reaches even 3.5 for
Ni = 0.05.

The velocity profiles for different moments of pulsation are plotted in Fig. 4, the pressure
gradient has the form: P, + P_sin(t). Three cases of velocity distribution are compared:
Newtonian (), micropolar for Ni = 1(vs) and for Ni = 0.5(vm). There aoccurs a higher
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“mobility” of the micropolar fluid velocity profiles. The micropolar profiles approaching
(vs) or being flatter (vm) than the Newtonian profiles become sharper with an increase
of pressure gradient; this is already seen for 1 = n/4 and very remarkable for 7 = x/2.
The micropolar profiles diminish quicker with the decrease of pressure gradient; it is
observed for t = 5n/4.

azp =],

447

different constant wt

« - Newlanian
mergoolar:

v M=)

Vo Mi=Q05

24f

r

-—! "%

= -.
ar* \
~21<Y, <0

2z 75 7] F7/—

Fi1G. 4. The velocity profiles for different Ni and different moments.

The great variance of velocity distribution, considerably exceeding that of Newtonian
fluid, is observable especially in the case of micropolar fluid with Ni = 0.05.

Together with an increase of fluid “mobility” occurring for the values of parameter
Ni within the limits from 0 to 0.05 appears the phase lag between the moments of a maxi-
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mum profile and a maximum pressure gradient. The greatest value of this delay is noticed
for Ni ~ 0.01 and reaches the value of 7/8. The further increase of parameter Ni above
0.05 results in gradual assimilation of profiles to velocity distribution determined for
Ni = 1. The velocities are about 109 greater than the corresponding velocities of appro-
priate Newtonian fluid. The phase lag between velocity and pressure gradient is small.

4, The parameter Rw slightly influences the shape of velocity profiles as in Fig. 5, its
increase brings a small increment of the velocity on the axis.

24r
diffecernt R

Ve (720, wt)
20t

16

12r

o4

wt
o g wh o W S g g
Fi1G. 5. The axial velocity for different Rw.

The comparison of the presented relations for the micropolar fluid velocity profiles
with the experimental data for the suspension of red cells in plasma, as reported by BuGLIA-
RELLO and SEvILLA [10], permits to conclude that the micropolar fluid, due to its sharper
velocity profiles and greater “mobility”, describes better the motion of blood. Bugliarello
and Sevilla have measured the velocities in the neighbourhood of a tube axis and compared
them with the velocity profiles of Newtonian fluid. They have found that the latter, prac-
tically in every moment of pulsation period, exhibits too slow variance and that the values
of velocity calculated for Newtonian model are smaller than the values derived from experi-
ments.
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