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Recovery creep model for a stationary state of plastic yielding

M. ZORAWSKI (WARSZAWA)

This paper is aimed at deriving the theoretical foundations of the process of plastic yielding.
This phenomenon is fairly well known in the case of a one-dimensional model and is based on
the experimentally confirmed formulae and hypotheses. The paper is based on the general field
equations of mobile dislocations; the relations derived are known from experiments concerning

plastic yielding. Three-dlmelmonal cases may also be treated in a similar manner.

Praca niniejsza ma za zadanie podanie podstaw teoretycznych dla zjawiska PI?DJQCH! pla.stycz
nego. Zjawusko to jest do$¢ dobrze opracowane dla modelu Jednow:muarowego i opiera si¢ na
wzorach i hipotezach potwierdzonych doswiadczalnie. W pracy, opierajgc si¢ na réwnaniach
og6inych pola ruchomych dyslokacji, otrzymano zwiazki przyjmowane do$wiadczalnie a odno-
szace sie do stanu plyniecia plastycznego. Mozna wigec podobnie otrzymaé zwiazki dla ciala

tréjwymiarowego.

Hacromuana pabora HMeeT 1e5I0 IPHBEAECHHE TEOPETHIECKHX OCHOB [JIA ABJICHAA IUIACTHYEC-
KOro TeyeHHnd. JTO ABJICHHE JOBOJILHO XOPOIIO paspaboTaHo ANA OJHOMEPHOH MOIENH | ONH-
paeTca Ha (JOPMYJIBI M THIOTE3R! NOATBEPXICHHEIE 3KCIEPHAMERTANEHO. B pabore, Oasmpys
Ha O0LMX YPaBHEHHAX NOJIA MOABIKHBIX JHCIOKAAL, OMyYeHb] COOTHOINEHHA HaKanbIBae-
Mbl€ SKCTIIEPHMEHTANBHO M OTHOCAIIHECH K COCTOAHHMIO IUIacTHUECKOro Tewenns. Mrak moxaio

AHATIOTHYHO TIOJIYYATh COOTHOIUEHUA [JIA TPEXMEPHOTO TeJia.

THE idea of the model of recovery creep is the assumption that the strength of metals increa-
ses along with increasing deformation and decreases with time. If both processes occur
simultaneously, the deformation produced is time-dependent and may serve as on ade-

quate description for the processes in the first and second stages of yielding.

The model was originally proposed by BAILE and OROWAN [1, 2] and then developed
by various authors [3, 4, 8]; it provides a real, experimentally verified process of yielding.
The model is one-dimensional and takes into account the variations of dislocation density

occurring during the process.

In the model proposed by Mc LEAN [3], the activation energy of the process is expressed

by the formulae

0 do
E = v(he—rt), h=—£-, P =gy

do/de denoting the hardening parameter and d¢/dt — the creep velocity.
The strain rate may be written as

i3 E
(§)) £ = soexp(— ﬁ")
&o being the strain rate at ¢ = 0.
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In the state of stationary yielding & = const and the activation energy is constant,
thus both processes of creep and hardening compensate each other. In terms of dislocations
we may say that during stationary yielding the dislocation density increases (the mean
distance between the dislocation becomes smaller due to the increasing deformations and
internal stresses); on the other hand the dislocation density decreases (the mean distance
between the dislocation increases). This is connected with stretching of the material itself,
The latter process is called the diffusion of dislocations. It should be stressed that the
model is characterized by two unknown coefficients connected with the initial strain rate
and with the mobility of diffusing dislocations.

This paper aims at demonstrating the theoretical foundations of that model on the
basis of the dynamical theory of continuous distribution of dislocations in a continuous
medium.

Let us start from the general field equations written in the form

@ E‘LMEnRaLanMR + % (E‘LME’RSBL-QRSM+ E"‘”E“sa;,ggsu) =0,
3) ViVu(o™ +0"¥) = oUE,
p
@ V(o + o) = oii,
7 d L

V(0" 40" = gii"
: P P

®)
with the following notations:

o'l selfstresses (connected with the dislocation density),

I
oKL apparent stresses introduced to the body so as to ensure the compatibility of
4 eclements in the relaxed state (in the equilibrium equations they play the role
of body forces),
oKL stresses due to external loading,
»
:n local (incompatible) strains produced by the dislocation density,

Qx;_u dislocation dC.IlSitY,
eKLM  Ricci tensor,
u' displacements of the medium produced by selfstresses (dislocations),

displacements produced by external loading,

£
o
P
U{ variation of the plastic distortion (of the non-holonomic system) due to exter-
nal loading.

The equations were formulated in [5]. The essential problem is to figure out the descrip-
tion of a continuous medium defined by a reference frame and, simultaneously, by a non-
holonomic base with each deformation of the reference frame deforming the non-holonomic
bases and, conversely, each deformation of the bases deforming the frame of reference.
To derive the above equations, the way of reasoning as proposed by KRONER [6] was used;
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and so was the assumption that for non-holonomic bases the equations of motion (second
law of Newtonian mechanics) is satisfied by the force and acceleration increments,

dF = d(ma).

Here, dF is the increment of the force acting on the element, and a — the acceleration
increment of the element; both magnitudes are written in the non-holonomic system.

This assumption yields Eq. (2) which describes the variation of the non-holonomic
system during the motion. The entire deformation process takes place in Euclidean space,
and thus the curvature tensor vanishes both in the coordinate system and in the non-
holonomic system. The aholonomy object 2x;) describes the dislocation density and
hence the disordering of the non-holonomic bases is caused by the existence of dislocations.
This description is synonymous with expressing the dislocation density in terms of the
torsion tensor. In the case of Qg = 0, with the non-holonomic bases forming a coordi-
nate system, the equations reduce to the classical equations of continuous media.

The dependence of g"" on e holds true for the medium in a relaxed state (without

any stresses or dislocations), and so it may be assumed — at least in the first phase of
deformation — in the linear form

(6) GxL = EKLMNEMN.
i d

The one-dimensional state may be obtained by assuming a single component of the
strain tensor &,,y to be non-zero and under the condition that the non-holonomic bases
d

are symmetrically deformed, i.e.,

E=¢gy #F 0 and 3[ = 3”.
d

The dislocation density will be equal to @ = Q;,;; = —2; ;11 # 0, the remaing compo-
nents being zero. The latter assumption means that the number of dislocations with Burgers
vectors parallel to the axes I and II is the same in each element.

From Eq. (2), we obtain the relation

o1 = —40
or an equivalent condition
Ope = —490.,
If 615y = 0 = &/p, then by using in Eq. (4) the condition 8,0 = —d,0 - 8,0 = —
—3,::= —Bfo' we obtain ‘ ' ‘
' dr0 = 4u
or
©) dor-= dulidX,

X being a non-holonomic system, dX can not be integrated in the medium. However, by
ssuming the non-holonomic base vectors to have the lengths a, a being a multiple of the
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crystal lattice constant and of the order of magnitude of the dislocations spacing, Eq. (7)
may be integrated locally in its base to yield

®) & = 4uQ0.

Here it has been assumed that the dislocations existing in a square of sides a are uniformly
distributed over the entire surface. Hence the dislocation density is constant on the surface
axa what does not mean, however, that it is constant in the whole body. The role of
variability of the dislocation density is taken over by the parameter a.

On the other hand, in a square a x a the relation between Burgers vector and the dislo-
cation density has the form

|6| = |b"| = b = QdF = Qa?*
whence
a = hlzp-12

and so Eq. (8) yields the result

©) o = 4u(bQ)'2.

It is the experimentally confirmed relation between the self-stresses and the dislocation
density. It has been stated before that in a lattice cell of side a, the dislocation density is
constant, while the mean distance between the dislocations @ may vary with the space
variables and time.

The assumption of stationary yielding requires that

#=0 and & =0.
P

Then, from Egs. (3)-(5) it follows that
—23"0"',; - g(},‘_
E
By differentiating the above equation, considering its skew-symmetric part and taking
into account the relations
a{ua’]¢ = "".pr’&.¢
and

3{?&;‘;] = -Qru‘,
we obtain

—2Qp" 04(0%* 1) = Q-brux-
Passing to the one-dimensional model, we have
—majﬂ = Qﬁ .
]

By means of Eq. (7) this relation may be written in the form

—8u06,Q = of
or

(10) - 0,(Q%) = 3% 9.
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The assumption of plastic yielding for the non-holonomic system yields the conclusion
dX® = a®dt

what means that the rate of deformation of the non-holonomic lattice is constant in time,
i.e. the shear deformation increments are also constant in time.

Equation (10) may then be written in the form

o2 - & 02 K)

(ll) Fw‘“4e—ug, X = o,
This equation has been experimentally confirmed, the coefficient 4u/pa being defined as
the coefficient of mobility of dislocations. This relation describes the process of recovery
creep.

The increments of selfstresses with time ¢ resulting from the recovery creep as described
by Eq. (11) may be calculated from Eq. (9) by differentiation and by applying Eq. (11),

do _ ya 1 dQ  8uPH'20Q32

(12) at A 2Y0 dt T ou t

Using the relation a = b"/20Q-'/2 as will as Eq. (11) we obtain a change of dislocation

spacing (the cell a x @) in time produced by the diffusion of dislocations. It may be written
in the form

da 2bp 1
1 R S
(a3 dt ea a
This relation was also experimentally determined [7] as
da T
@ =M

where 7 denoted the linear tension of a dislocation line and M — a certain coefficient
depending on the dislocation mobility.

The increment of self-stresses produced by the increasing dislocation density is obtained
directly from Eq. (9),

do _ 120-1/2
(14) %0 = 2ub'iQ

and do/de is found to have the form

0 _ 0 50 U
de ~ 99 aU de °
Here
1
3=T(U12+U21)=U, Up=Uy =1,

(15)
-an =0Q= aIUIII_alIU; = 31Ua Uf = UH = 0.

Equations (1), (12), (14), (15) constitute a complete set of equations describing the process
of plastic yielding.
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The corresponding three-dimensional model would be much more complicated, never-
theless the general procedure should be the same as in the case considered here (general
field equations constituting the basis of considerations), and the general field equations
seem to describe properly the phenomenon of yielding.

This paper was aimed, however, at demonstrating the theoretical foundations of the
plastic yielding model, and thus, our considerations have been confined to such relations
which could be experimentally verified, i.e., to one-dimensional processes.
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