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Iterative methods in the analysis of dynamic processes
of plastic forming of metals

J. BIAELKIEWICZ (KRAKOW)

Tuis work presents iterative, procedures enabling to solve a relatively wide class, of axially-
sythmetric ‘problems’ of plastic forming under conditions of plane stress. In all solutions the
Huber-Mises yield criterion and the associated flow law have been assumed. A procedure leading
us to solutions for the strain-hardening and strain-rate sensitive materials is also proposed.
As the first approximation in the iterative procedure we assume a quasi-static solution or a dy-
namic solution for the Tresca yield criterion and the associated flow law. A number of solutions
to specific problems illustrated the methods proposed.

W pracy przedstawiono algorytmy iteracyjne dla dynamicznych zagadnpieni osiowo-syme-
trycznych w plaskim stanie napre¢zenia. Sformulowanie obejmuje réwnanie ruchu, warunek
plastycznosci Hubera-Misesa, §towarzyszone z nim prawo plyniccia oraz warunek niescisliwosci.
Przeanalizowano réwniez wp?yw predkofci na wzrost 'oporu plastycznego, a takie zjawisko
wzmocnienia materiatu. Za punkt wyjécia procesu iteracyjnego przyjmuje si¢ badZ rozwiazanie
quasi-statyczne, badZ uproszczone rozwigzanie dynamiczne, otrzymane dla warunku plastyczpo$ti
Treski i stowarzyszonego z nim prawa plyniecia. Efektywnoé¢ proponowanych metod rozwigzafi
zilustrowano na przykladach liczbowych.

B paGore npeAcTaBieHE! HTEPALMOHHLIE AITOPHTMEI OIS AHHAMHYECKHX OCE-CHMMETPHUHbLIX
3aj1ay B IUIOCKOM HANPSDHEHHOM COCTOSHMA. (POPMYJIHDOBKA OXBATHIBAET: YpaBHEHHE JIBH-
JKeHMHA, yCoBHe IiacTHIRoOCTH I'yGepa-Musecs;-acCOMMPPOBAHHEIN ¢ HMM 3aKOH TCUEHH,
a TaloKe YCIOBHE HeokumaemocTH. IIpoaHaM3HpOBAHLI TOXKE BIMAHME CKOPOCTH HA POCT
IUTACTHYECKOTO CONpPOTHBJICHHA, & TAIOKE ABJiCHHE YIOPOUHEHHA MaTephana. 3a HCXONHYIO
*TORKY MTEPAIHOHHOr0.MPoecca MPAHAMAIOTCA JIH KBASHCTATHIECKOE PEIEHNE, HIIH YIIPOINeH-
HQe JMEAMHYECKOE DEIICHHE NOJIyYeHHOe A YC/0BHA IacTeyYHOcTH Tpecka B 4cCOLHMpO-
BaHHOTO ¢ HM 34KOHA TeUeHis. DddeKTHBHOCTS MpeAaraeMbiX METO/IOB HILTIOCTPHPOBaRA
‘Ha YHCIOBBIX IpHMEpax.

1. Introduction

IN many cases of plastic forming processes a quasi-static approach to the theoretical ana-
lysis which neglects inertia terms in the equations of motion and assumes a rigid: (perfectly-
plastic model of the material) gives satisfactory results [1, 2]. In numerous cases the strain-
hardening effect can be taken into account [3, 4). There exist, however, many problems
of plastic forming in which the dynamic effects play a significant role and cannot be omitted
in the theoretical analysis. In general, two groups of such processes can be distinguished.
In the first group we find processes where, in spite of relatively slow speeds of the tool, the
strain rates reach great vglués; the compression of a thin plastic layer between two
rigid plates may be mentioned as a typical example. In the second group we
have high energy processes of plastic forming characterized by very fast deformation
speeds. Here, explosive forming may be mentioned as an example. In both cases the in-
crease of the resistance of the metal to plastic deformation due to the high rate of strains,
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and the inertia terms in the equations of motion should be taken into consideration. Solving
such dynamic problems is, however, a difficult to ask. We know of only a few solutions
which account for both effects (see, for example [7, 8]). The dynamic solutions for
perfectly plastic material may be found in [, 9, 10, 14].

This work presents iterative procedures enabling to solve a relatively wide class of
axially-symmetric problems of plastic forming under conditions of plane stress. In all
solutions the Huber-Mises yield criterion and the associated flow law have been assumed.
A procedure leading us to solutions for the strain-hardening and. strain-rate sensitive ma-
terials is also proposed. As the first approximation in the iterative procedure we assume
a quasi-static solution or a dynamic solution for the Tresca yield criterion and the associated
flow law. A number of solutions to specific problems illustrated the methods is proposed.

2. Formulation of the problem

The basic system of equation for a dynamic axially-symmetric plane stress has the form

@1 Orrt bt (=00 = 00 +00),
2.2 02 —0,00+0} = 3K,

(2.3) v,(20p—0,) = t:f:i_-(2 o, —0p),

24 -}1'—(»,.+oh_,)+o_,+}o=o.

The state of stress is determined by the radial ¢, and the circumferential o, components,
while two magnitudes — the radial velocity v and the thickness of the wall 4 describe the
kinematics of deformation. ¢ and k are material constants, connected with the density and
the yield locus in shear. In the introductory analysis a perfectly-plastic material (k = const)
will be assumed. The constitutive equation (2.3) associated with the yield condition (2.2)
and the condition of incompressibility together with the equation of motion (2.1) constitute
the system of four equations in four unknowns.

The yield condition (2.2) can be automatically satisfied when the stresses o, and o,
are expressed by the function

O, 14

(2.5) . }:= 2kcos(wq: z )

[]
Thus the system of equations reduces to three non-homogeneous partial quasi-linear
differential equations in three unknown functions, @, # and v in two independent
variables, r and ¢:

. ] w1 1. 0
(2.6) sin (m—— ?) w,,—COSs (w - —6-») 5 e Ssine = o (. +vv,),
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2cos (w-— %) -cos(w + %)

@n B ;
2cos(w+£) —Cos8 w—E-
6 6
1 v 1
(2.8) —h—h_, + ‘h—k.r‘l'ﬂ_, = - Tt’.

According to Courant’s classification [15] this system is not entirely hyperbolic. Along the
characteristics of three families, a double one t = const and the other dr—uvdt = 0,
only two differential relations can be established

for 1 = const

sl o)

i | e
dh h | 2c0s\0— ] —cos\e+ &
P +1

_d;-= r F 1 T
2cos w+F —cos w-—-ﬁ—

The lack of the third relation along the characteristics does not allow to apply the standard
technique used in problems which are described by hyperbolic sets of equations. Thus,
we propose iteration procedures for solving the dynamic problems of the plane axially-
symmetric state of stress.

.9) = }o

(2.10)

3. Iterative method of characteristics

Two basic iteration procedures will be distinguished, depending on the choice of the
first approximation:

a) a method, when we begin with the functions obtained from the dynamic solution,
in which the Tresca yield condition and the flow law associated with it were assumed,

b) a method, when we begin with the values of all functions obtained from the quasi-
static solution, (v,+vv, = 0).

In the first case the basic system of equations contains: the equation of motion (2.1),
the Tresca yield condition

(3.1)

the associated flow rule

o,—dyg=2k for g,00<0,
op=2k for 0,020,
v
32) v+ T for 0,0,<0,
v,=0 for 0,000
and the incompressibility condition (2.8).
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Solutions of this system for particular boundary and initial value problems in the two
cases of the linear yield condition (3.1) have been presénted in the book [12].

The second method consists in neglecting in the first approximation the substantial
%f—-l—ﬂ%) which appears in Eq. (2.6). Such a simplified system (2.6)-(2.8)
describes the quasi-static flow, in which the inertia forces are disregarded. The quasi-static
problems have been analysed in Ref. [3], and the equations of characteristics for the first
approximation have the form

derivative (

for t = const
do ] 1 dh 7 | B
(3.3) ?sm (w -3—) W (wﬁg) ——sinw = 0,
2 ( ~Z ) —cos|w+>-
i ﬂ_wcosﬂu‘5 cos|o +—¢
' ar r

2 (+ﬂ)—cos —i)
Cos|w *6-— w 6

and for dr—odt = 0

Zcos( ) —cos w+

dh h
(3) o
Zma(w+—) —Cos ——)

In most practical problems the dynamic flow is defined by the kinematic boundary
conditions, when the velocity of the tool or velocity of the material at certain sections is
given. In such cases it is reasonable to expect that the flow velocities v(r, ¢), and thickness
distribution A(r, t) obtained from the solution of the system (2.1), (3.1), (3.2), or of the
system for the quasi-static formulation, will only slightly differ from those resulting from
the solution of the basic system (2.6)-(2.8). The iteration procedure will be based on this
observation. By substituting the values of the functions v(r, t) and A(r, t), which are ob-
tained from the first approximations computed according to the first or the second method,
into the equation of motion (2.6), we get the lacking second differential relation for the
function w(r, t) which has to be satisfied along the characteristics ¢ = const

dw . 4 LAVA ; 0
3.6) - sin (w —?) = cos (w — —6) <_h_h"> + —sino—- {O+vv,).

The expressions <%h_,) and (v, +ov,) are assumed to be known from the foregoing

approximation. If in the first approximation Egs. (3.1) and (3.2) are used, we obtain
simple analytic expression for ©(r, ) and A(r,t). In the successive approximations we
solve subsequently (3.6), (2.9), (2.10), introducing at each subsequent iteration into (3.6)
the values of the functions v and 4 as obtained from the previous iteration. This procedure
is repeated until two consecutive approximations give sufficiently close results.

A similar iterative procedure can be used in problems where the static boundary con-
ditions are given. In such cases the tractions exerted by the tool on the plastically-deformed
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material are usually known. We may expect that an appropriate stress field chosen in
advance will have a decisive influence on the efficiency of the iteration procedure. The
equations written according to the sequence of computations have now the form

for ¢ = const

st(w—i)—cos(w-fi)
L3l S g 5

oot ) o)
COSGJ*G—. DSCO—?

(3.7 % - %(

and for dr—vdt = 0

A k2
2(:05(&)—?) cos(w+ 3 ) \
+1

2cos(w+_’£;)_m(w_%) /

and for ¢ = const
dow 4 7 ) 1 0
3.9 Fsm(w—?) +Tsmw—cos(m—? <?k_,> =% (v, +vv,).

The expressions in angular brackets should be computed on the basis of the foregoing
approximation. We begin the iteration procedure by solving the system of equations (2.1),
(3.1) and (3.2) for the dynamic problem with the Tresca yield criterion, or the system for
the quasi-static problem, depending on which method of computation [a) or b)] has been
chosen. Now, we introduce the obtained function w(r, #) into Egs. (3.7), (3.8), and compute
the next approximation of the velocity ©(r, ) and the wall thickness A(r, t). Substituting
them into (3.9), we find the second approximation of the function w, and so on. We stop
the computations when the difference between the consecutive approximations is sufficiently
small,

If the velocity of deformation is very high the differences between the consecutive
approximations may be too large. In such cases we may gradually increase the value of
the velocity at the boundary for each approximation until the prescribed value is reached.

4. Expanding of a flat ring

Consider now the operation of expanding of a flat ring loaded by pressure applied at
the inner rim (Fig. 1). An analogous quasi-static problem has been examined in [3]. Now,

—
L a |
: b
Yo
I
I U]
Rg
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the dynamic problem for the Huber-Mises yield criterion will be solved by the iteration
procedure. As the first. approximation we will assume the dynamic solution for the Tresca
yield criterion (3.1).

The radial stress is compressive and the circumferential stress is tensile. Thus we have
the case 0,04 < 0 and the Tresca yield criterion is described by the first expression in (3.1).
The velocity ©(r, t) and the thickness h(r, t) are determined by the first equation in (3.2)
and by (2.4). The following initial value condition

4.1) h(r,0) = hy = const
and the boundary condition
4.2) o(ro, 1) = vo(¢)
have to be satisfied.
The value of the radius of the inner rim at any arbitrary instant is
1
4.3) ro(1) = a+ [v(x)dr,
o
where a = ry(0). Thus, we finally obtain
1
@4) o(r, 1) = vo(!)%(a+ 5[ vo(1)de),
4.5) h(r, t) = ho.
Introducing (4.4) and (4.5) into (3.6) we obtain
dw 1 2
I A |7 P |
(4.6) rsin (ta ——6~)

Equation (4.6) together with (2.9) and (2.10) constitute a set of three equations in three
unknowns w, v, A, from which the first iteration can be computed. Since the outer rim R,
is assumed to be stress-free (o, = 0), we obtain from (2.5) the boundary condition for

@.7) sl ) %n’.

Solving numerically (4.6) and then (2.9) and (2.10) with the conditions (4.1), (4.2) and
(4.7), we obtain the first approximation for w and the second approximation for v and A.

Now, introduce the obtained approximation of the functions v(r, #) and A(r, t) into
(3.6), from which the second approximation for w can be computed. Then, from (2.9)
and (2.10), the third approximation for v and 4 can be found, and so on.

The numerical example shows that the iteration procedure is quickly converging. The
difference between the second and the third approximations is less than 1 per cent. The
velocity of the inner rim was assumed to be constant and equal to v, = 10 m/sec. Figure 2
shows the net of characteristics for the third approximation as calculated for the following
data: k = 13.3 kp/cm? (mild steel), @ = 20 mm, b = 40 mm. In Fig. 3 we see the distrib-
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ution of the radial stress o,, and in Fig. 4 the variation of the wall thickness. Continuous
lines represent distribution along the radius for given instants 7 = const. Broken lines
indicate how the radial stress and thickness change at a given particle of the ring. The
'solution can be extended for arbitrarily large deformations. It has, however, physical sense
until the decohesion or loss of stability occurs.

The influence of the velocity v, on the radial stress at the inner rim is presented in Fig. 5.
‘Computations have been carried out by means of the iteration procedure b) — (see Sect. 3).
As the first approximation we took the quasi-static solution for the Huber-Mises yield
condition [see Eqs. (3.3)-(3.5)]. In the consecutive approximations the velocity v, was
assumed to have consecutively the values v, = 10, 30, 50 and 100 m/sec. Results for the
velocity v, = 10 m/sec are very close to those shown in Fig. 3. Thus the two iteration
methods lead to the same results. In further considerations the iteration procedure a) will
be used.

(1) [mm]
a 2q 28 32 36 40
amz T T T T T T T | S S T

040
0.50

asal /)

Y,=100[m/s]

avng

080

0r/2k
FiG. 5.

It is seen that inertial effects are significant for velocities greater than v, = 50 m/sec.
One can expect that for smaller velocities the effect of the increase of the resistance of ma-
terial to deformation will be more visible with an increasing rate of deformation.

5. Solutions for the dynamic yield condition

A yield condition in which both the strain-hardening effect and strain-rate sensitivity
of the material are accounted for will be called a dynamic yield condition. The dynamic
yield criterion based upon the classic Huber-Mises condition takes the form (see [11])

G.0) VI = x(%)[l+¢-'(@)].
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where J, and /% stand for the invariants of the stress deviator and strain rate tensor respec-
tively. For the axially-symmetric plane state of stress they are expressed as follows:
1

1
> 8 Sy = '5*(0'3—0'- 0s+03),

Jz =
(5.2)

1 1
B = 5eneu = 7(sf+s§+=i)-

In expression (5.1) x is the strain-hardening parameter, and y is the viscosity parameter.
The yield function @ (F) for a linear isotropic hardening has the form
(5.3) D(F) = '/—:_2— -1.

Now, instead of (5.1) we cam:write
4 /25 .2,.2\2
(5.4) 02— 0,00 +0% = 3x2(1 4 '71: l/‘ﬂzﬂ) .
14
For the sake of brevity let us introduce the parameter a(r, ) of the strain rate sensitivity
of the material

Y o T e 3
.5 alr ) = 1 — l/’"”;“" ,
Vy
where the components of the strain rate tensor are defined as follows
1 1
(5.6) & =V, &= -;v-,- &y = —h~(h,,+vh_,).

The yield condition (5.4) will be satisfied identically if the stresses are expressed in the

following way
or T
5.7 } = Zuxcos(wq:—ﬁ—).

Og

Now, the problem reduces to the solution of the system of equations (2.1), (2.3) and (2.4)
complemented by the dynamic yield condition (5.4). Finally, we arrive at the system of
equations

. n 1 1 1 n
(5.8) sin (m - E_) W — (?rz__, + = + -h—k_,.) cos (w - va—)

LR
20

st(w—f— —Ccos m+£)
6 6

2c0s(w+ & 4(:05((0 - —E) ’
6 6

| 1
5.10 R . ¥
(5.10) et oh )+, v

1 .
+ v, +vv,) = -r—smw,

(5.9) o,
r
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In the limit case, when y = oo, or equivalently a(r, f) = 1, one obtains plastic flow with
isotropic strain-hardening only. In the other case, when the strain-hardening parameter
is constant and equal to the yield locus in pure shear, only the strain rate sensitivity of
the material is accounted for. For a(r, ) = 1 and x(r, t) = k we obtain a case of perfectly
plastic material.

The problem can be solved by means of the method of successive approximations. As
the first approximation of the velocity o(r, ) and wall thickness A(r, t) functions one can
take those obtained from the solution of the system (2.1), (3.1), (3.2) and (2.4) for a dy-
namic flow, or — of the system (3.3)-(3.5) for a quasi-static flow. Further approximation
can be computed by means of the equations of characteristics of the system (5.8)-(5.10)

along the characteristics ¢ = const

dw 1 1 1 1 n
(5.11) -~ “—(—n) [(? o+ ?R,r'i' Ih,.-> 008(0)— -E—)
sin w'—?

sinw
r

sl )3

oo 5} -coe- 5}

and along the characteristics dr—vdr = 0

1 F 4
2cos(w— -) ——cos(w + -—)
dh h 6 6
(5.13) S +1

A R

By computing a consecutive approximation we substitute the foregoing approximation
for the expressions in angular brackets.

As a working example let us consider the expansion of a ring caused by traction
applied at its outer rim (Fig. 6). A quasi-static solution to this problem with isotropic
strain-hardening has been given by W. SzZczEPINSKI [3]. As a first approximation, we assume
the solution of the system of Egs. (2.1), (3.1), (3.2) and (2.4). Since both stresses are evi-
dently of the same sign (0,09 > 0) the second relation in (3.2) holds. Thus, solving (3.2)
and (2.4) with the conditions

e
- W {v,+ w.r)] ’

do 1
(.12) ="

(5.14) h(r,0) = ho = const, (R, 1) = vo(t),
we obtain

(5.15) o(r, ) = vo(t),

(5.16) h(r,t) = hy (l —% fﬂo('r)dt)

Assume a linear relation for a strain-hardening parameter
(5.17) x(r, t) = k(l+s),



ITERATIVE METHODS IN THE ANALYSIS OF DYNAMIC PROCESSES OF PLASTIC FORMING OF METALS 595

which approximately corresponds to mild steel. The intensity of strain & can be computed
from the relation

(5.18) &lr,t) = f]/ (&2 +¢e2+¢ep) dt.

The integral must be computed along the characteristics dr—-vdt = 0, representing the
trajectories of material particles in the r, r-plane.

tfms]| o

g P s o //////////
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Assume that the velocity of the outer rim (r = R,) is constant vy(f) = 10 m/sec.
Thus instead of (5.17) and (5.5) we can write

(5.19) x(r, t) = k(1+"—:r),
7;:
(5.20) ) =1+ =,

where ¢ is the time measured from the beginning of the process. Now, introducing (5.15),
(5.16) and (5.19), (5.20) into (5.11) we can compute the second approximation for w, v
and A, by solving numerically the system (5.11)-(5.13) with the conditions (5.14) and

(5.21) w(ry, 1) = %n.
Having found the second approximations of all magnitudes in that manner we can
compute the next approximation and so on.

The iteration procedure proved quickly converging. The difference between the second
and third approximations is found to be smaller than 1 per cent. Figure 7 illustrates
how the radial stress at the outer rim changes with time for four variants of the solution.
The parameter y and the constant k were assumed to be equal y = 200 sec™*, k = 13.3
kp/cm?, respectively.
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It is.clearly seen that the influence of the viscous properties of the material is significant.
Figure 8 shows the variation of the wall thickness of the ring. Continuous lines represent
the solution for a perfectly-plastic material, while broken lines correspond to the solution
in which strain-hardening and strain-rate sensitivity have been taken into account.

Or/2k Jb

o w=k(14E;), =TV /g

10 -
2=k, =1+ Vi Jy

o6

X=k(1+€;), oc=T

o Ja:flaialqlzl éit[ﬁ%s]r
Fig. 7.
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6. Rotationally symmetric shells

Consider now a certain class of processes of the plastic forming of thin-walled rotation-
ally symmetric shells, in which only one side of the material is in contact with the tool.
Since the contact pressure between the tool and the deformed material is small (provided
the radii of the curvature of the shell are sufficiently large as compared with its thickness)
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the plane state of stress may be assumed with a.sufficient degree of accuracy. The equation
of motion of the deformed material takes the form (Fig. 9)

1 1 .4 ot
(6.1) Ur.r'i'or'};'h.r"'*‘ "r"(ar_ai)_ hcosd -9 =0,
p o0 O S
6.2 ——— — ——psinayv =0,
( ) h (1] Ca ¢

where u is the coefficient of friction, and gq, g, are the radii of curvature. The dot in the
term v denotes the substantial derivative.

+

|
uillllledzs

F1a. 9. Fic. 10.

As an example let us consider the expansion of a tube on a conical mandrel (Fig. 10)..
Now; the equation of motion (6.1) may be written in the form

63) Gt O hyt 10— o1+ pctgh)—e(l+uctef) @, +ov,) = 0.

Assume in (5.1) the function @(F) in the form @(F) = F*, where 4 is a constant. Condition:
(5.1) takes the form

P .
6.4) 02— 0,00+ 0% = w[l 4 (%]/ S ed+ed) )’]
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In this case also expression (5.7) satisfies identically the condition (6.4). The parameter
a(r, t) is now expressed as follows:

{6.5) a(r,t) = 1+ya+1 [_ (2 +¢2 +=§)] +n

Thus the system of governing equations is similar to the system (5.8)-(5.10). Instead
of (5.8), we have now the equation

©6.6) w,,sin(w -%) -(%u_,+ —:;-x,,. % %wh,,)cos(w— 3;,)_ }[sinw

— cos (w- %) pctsﬁ]+ z—fm—(l +uctgh) (v, +ovv,) =0

obtained from (6.3).
Thus the dynamic problem of the expansion of a tube is determined by the equations
dw 1 n
6n 2= ) [( Bt ) m(w _3_)
sinfjw——

+— (smw cos(m—- 3 )pctgﬁ) 2( - (14 puctgf) (v ,+w,,.)],

n n
2cos m—?) —cos(w+?)

L

which hold along the characteristics # = const, and
T T
dk A kos(w—%w) -—cos(w+—6—)

_EJ'“E - T o4 4
2cos(w + ?) -—cos(w— ?)

valid along the characteristics dr—vdt = 0. Note that v represents the radial velocity com-
ponent. These equations will be solved by the procedure of successive approximations.
Computing the n-th approximation we substitute in the expressions in angular brackets
the magnitudes found in the (n— 1)th approximation. As the first approximation we can
take a dynamic solution for the perfectly-plastic material and the Tresca yield condition
with the associated flow law.

Numerical example have been solved for the velocity v, = S5m/sec and for the partic-
ular values of the constants 8 = 3 and y = 240sec™'. The net of characteristics is shown
in Fig. 11. Along the characteristic AB corresponding to the free edge of the tube, we have

dv 1
©8) T =—v

(6.9) +1

o, = 0 and, consequently, w = ﬂg-n. Along the vertical line AC(r = r,), corresponding

to the initial radius we have v(ry, t) = votang and k(r, 1) = hy = const. Computations
have been performed for x# = 0.1 and k¥ = 13.3kp/mm?.
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Figure 12 shows variation of the wall thickness. Continuous lines indicate how the
thickness is distributed along the radius at the fixed instants of the process. Dashed lines
show the deformation history of different elements of the tube.

7. Final remarks

All examples presented above indicate that the iterative methods are converging very
quickly. This is rather obvious, since the differences between the velocity fields obtained
from quasi-static and dynamic solutions are small, if the same kinematic boundary condi-
tions are assumed. Thus, the methods have been proved effective and may be used in the
analysis of more advanced practical problems, when the velocities at the edges change

according to any law vy (2).

2 Arch. Mech. Stos. nr 4/76
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