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On the dynamics of eddy viscosity models
for turbulent boundary layers

D. P. SUGAS TELIONIS (BLACKSBURG)

IT HAS been recently attempted to extend the valitidy of existing phenomenological models of
turbulent boundary layers to the time dependent flows. The present paper is concerned with
generalizations and improvements on the mixing length model as recently developed by Cebeci
and Smith. In particular, the damping factor is augmented to include dynamic pressure effects,
a generalized displacement thickness is derived through a differential equation, etc. The system
of differential equations is then integrated numerically in a three-dimensional space. The calcu-
lations proceed marching in the direction of the two parabolic variables: downstream distance
and time. The theoretical predictions are carefully compared with the only available experi-
mental data, those of Karlsson. Oscillatory flows are examined and the phase advance or delay
of various properties and, in particular, the skin friction are estimated.

Ostatnio czynione byly proby rozszerzenia poprawnosci istniejacych fenomenologicznych mo-
deli przeplywéw turbulentnych w warstwach przysciennych na przeplywy zaleine od czasu.
Niniejsza praca dotyczy tych zagadnien, a przede wszystkim uogdlnienia i udoskonalenia mo-
delu drogi mieszania Prandtla, ktére ostatnio intensywnie badali Cebeci i Smith. W szczegolnosci
rozszerzono wartosci wspofczynnika tlumienia celem uwzglednienia efektéw cisnienia dyna-
micznego oraz wyprowadzono z réwnania rozniczkowego uogolniong wielkos¢ przemieszeze-
nia. Nastgpnie uklad réownan roézniczkowych scatkowano numerycznie w przestrzeni trojwy-
miarowej. Obliczenia przebiegaly krok po kroku w kierunku dwéoch zmiennych paraboli-
cznych — odleglosci wzdluz linii pradu i czasu. Wyniki teoretyczne poréwnano skrupulatnie
z jedynymi dostepnymi danymi dos$wiadczalnymi Karlssona. Zbadano przeplywy oscylujace
i oszacowano rozne wlasnosci wyprzedzenia badZ opdznienia fazowego, w szczegdlnosci tarcia
powierzchniowego.

B mocnesHee BpeMs OBUIM NPeJNPHHATEL NONLITKH PaclIMpeHHs CIPaBeqIHBOCTH CYLIECTBY-
1omux GEeHOMEHONOTHYEeCKHX Mopesleil TypOy/IeHTHBIX TedeHHMl B NOTPaHHYHBIX CJIOAX Ha
TeuyeHHA 3aBHCAIIME 0T Bpemenn. Hacrosman paboTta KacaeTcss 3TMX BONPOCOB, IPEHKAE BCETO
06oDIIEHHA 1 YCOBepILEHCTBOBAaHMA MOJeaH nyTH cmetnmBaHuA Ilpanarnsa, xoTopaa B mo-
CrejiHee Bpems WHTeHCHMBHO Obura Hccneposana Ilebeun u Cmurom. B yactHOCTH paciunpenst
3uaveHna KoadgHIMEeHTa 3aTyxaHus C Ueliblo yuera 3GGheKToB AMHAMHUYECKOTO JaBJIEHUS
a Taroke M3 AHGepeHIHANEHOTO YPaBHEHHA BbIBejeHa 00ODLEHHAA BelMUHHA Tepemellie-
Hug. 3arem cucrema MuddepeHUMANIBHBIX YpaBHEHHH YHCIIEHHO MPOMHTEIPHPOBAHA B TpeX-
MEDHOM npocTpaHcTBe. PacyeTsbl MPOBOAMINCE LUAT 32 IIaroM B HanpaBJICHHH JABYX napabosm-
YECKHX IepPeMeHHBIX — PacCTOAHHA BAOJb JIMHHH TOKA M BpeMeHH. TeopeTHuecKue pesyiib-
TaTkl CTAPATCIIBHO CPABHEHLI C €AHHCTBCHHBIMH JOCTYIHBIMH IKCIIEPHMCHTAJIBHBIMH JaHHBIMH
Kapiicona. Hcenenosans! ocl/iHpyIolye TeYEHHA W OLEHKUBI pasHble CBoiicTBa (hasoBoro
ONepeXKeHHsA WIH 3anasAbIBaHHA, B YACTHOCTH IIOBEPXHOCTHOIO TPEHHA.

1. Introduction

Despiik the criticism that phenomenological models of turbulence have received, it appears
that today such models are the only available tools for engineering estimates of turbulent
boundary layers and are extensively used in engineering design. Efforts in developing such
heuristic and approximate models for turbulence were initiated quite early by Prandtl,
von Kdrmadn and other well known aerodynamicists. In the last few years a few more models
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have appeared, based on different assumptions and each was suggested as pertinent or
remedying a specific drawback of the original idea (see review articles of REynoLDS (1970),
MELLOR and HERRING (1973) and LAUNDER and SPALDING (1974)). It is the opinion of the
author that some of these models may eventually prove to be more accurate and perhaps
more widely applicable than the early rather simplistic models. However, it is felt though
that the ability of the future computers and/or the development of theoretical stochastic
approximations will soon render all phenomenological models obsolete. Until then and
mainly for practical applications, it is necessary to improve and extend the existing approx-
imate models.

The present paper is an extension of work on the most simple model which is based
on Prandtl’s original mixing length idea. Despite its simplicity, this model, as later improved
by VAN DRriest (1956), CeBeci (1970) and others, has been shown to predict with very
good accuracy a wide variety of flow situations. In fact, in a recent comparative study
(see, e.g., BURGGRAF (1974)) it was shown to compete very successfully with many other
more sophisticated models.

Most of the boundary layer calculations for laminar or turbulent flow have been con-
fined for decades to steady two-dimensional incompressible flows over geometrically-simple
body configurations. The value of such calculations was therefore rather qualitative.
The evolution of the modern computer though has permitted the numerical integration
of the differential equations for more general geometrical configurations and more complex
flow conditions. Today such solutions can be used for design purposes in realistic aerody-
namic applications. One of the most interesting areas of aerodynamics that appears to
require immediate attention is the area of unsteady viscous flow and viscous-inviscid inte-
raction. Laminar and turbulent unsteady boundary layer calculations have been attempted
only in the last few years, as described in a recent review article (see, e.g., TELIONIS (1975)).
Most of the existing models of turbulent boundary layers have been extended to unsteady
flow with varied success. CEBECI and KELLER (1972) and ABBOTT and CeBect (1971)
have extended the mixing length model. PATEL and NasH (1972), NasH, CARR and SIN-
GLETON (1973) and SINGLETON and NasH (1973) have developed a scheme of unsteady
turbulent flow calculations based on the turbulent energy equation. A similar method was
developed by SHAMROTH and KRESKOVSKY (1974). DwyYER (1973) and later MCCROSKEY.
and PHILIPPE (1974) worked out solutions with a quasi-steady model. These works were
performed almost independently and, as a result, very little comparison of the results
of different methods was attempted. Modest efforts to compare the relative success of
a certain proposed model with others were reported in MCCROSKEY and PHILIPPE (1974)
and SHAMROTH and KRESKOVSKY (1974). Unfortunately there is very little experimental
information on the problem. To the knowledge of the author the only works that report
on unsteady turbulent layers are those of KARLssON (1959) and MiLLer (1969). The
experiments of Karlsson were confined to oscillatory flow over a flat plate whereas those
of Miller to heat transfer measurements.

The present paper is a further extension of a model suggested in a previous publication
by the author and one of his colleagues (see, e.g., TELIONIS and TsAHALIS (1975)). In this.
paper the reader will also find a more detailed account of previous publications on the
topic. A two layer model for the eddy viscosity is adopted again here. In the inner layer
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a generalized mixing length that incorporates in the well-known damping factor the effect
of unsteadiness is assumed. It is pointed out that the original model as suggested by CEBECI
and KeLLER (1972) and later used by TeLionis and TsaHaLis (1975) is incomplete.
A correction that accounts for the dynamic effects on the wall shear is proposed. The ed-
dy viscosity in the outer layers is based on the Clauser model but a generalized bound-
ary layer thickness for unsteady flows according to MoOORE and OSTRACH (1956) is used.
The validity of the present model in the neighborhood of a point of zero wall shear and in
regions of partially reversed flow is discussed.

Numerical calculations were performed for flows oscillating over a flat plate. Similar
calculations were performed for the first time using the eddy viscosity models of VAN
Driest (1956), ALBER (1971), KAys (1971) and CeBeci and KELLER (1972). All the numerical
results were checked against the experimental data of KARLsSON (1959).

2. The turbulent boundary-layer equations and a closure assumption

Let 4, v and x, y be the averaged velocity components and the coordinates parallel
and perpendicular to the wall, respectively. Let U.(x, t) be the outer flow velocity, ¢ the
time, ¢ the density, p the pressure, and ', v’ the instantaneous values of the velocity
fluctuations. The turbulent boundary-layer equations then read

ou ov
B ax T ay 0,
du ou du 1 op %u a ,,
@5 A E TG =TT N Ty
| p oU. U,
3) e~ a TV

where the symbol { > represents the ensemble average of the fluctuating quantities at the
time 7. We assume here that the Reynolds stress may be modeled again, for unsteady flow,
via an eddy viscosity model whereby the quantity (u'v") depends linearly on the gradient
of the mean velocity

2.4 {u'v"y = eduldy.
The eddy viscosity ¢ is then defined for an inner and outer region as proposed by CEBECI
and SmiTH (1968) and later generalized for unsteady flow by CeBEcI and KELLER (1972)
and TeLIONIS and TsAHALIS (1975).

In the inner region it is assumed that

@.5) & = ol?|0u]dy),
where [ is Prandtl’s mixing length and is here given by
(2.6) I = kiy[l —exp(—y/A4)].

In the above equation k; is a constant which was empirically estimated to be equal to 0.41
and 4 is van Driest’s damping factor (see, e.g., VAN DRIEST (1956)). In the outer region it
is assumed that

2.7 & = ok, U, 6%y,
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where k, = 0.0168, 6* is the displacement thickness and ¥ is the intermittency factor
given by

(2.8) 25 = 1—erf [S(y/8—0.78)].

It should be emphasized here that the inner region form is assumed to hold in a layer
much thicker than the viscous sublayer. The interface between the inner and outer layer,
¥ = Yo, is defined by the equation &;(y;) = &(yo). This arbitrary separation in two
regions is not altogether unrealistic since the inner and outer regions so defined, roughly
correspond to the regions visually observed by NycHAs, HERSHEY and BRODKEY (1973).

The formulation up to now follows closely the work of CeBect and KEeLLER (1972)
and TELIONIS and TsaHALIS (1975). However, in the present paper we would like to re-exa-
mine the interpretation of the factors that appear in the above formulas.

Consider first the damping factor 4 which is traditionally assumed to depend on the
wall shear according to the empirical formula

(2.9) A= A*v[u,

where A* = 26, u, is the friction velocity, u, = (7,/¢)"/* and 7, is the skin friction,
7, = pdufdy at y = 0. Following the suggestion of CEBEcI (1970), we assume that A
depends on the shear evaluated at the edge of the viscous sublayer rather than the wall.
This we find justified on physical grounds since the random oscillations that are damped
according to the mechanism of a Stokes layer do not extend all the way to the wall but
disappear at the edge of the viscous sublayer.

In the immediate neighborhood of the wall we may approximate the momentum equa-
tion by

ou ap ot
07 = — o=+ 5.

ot dx  Jy
In the above equation the convective terms have been omitted, an approximation justified
for very small distances from the wall. The unsteady term éu/dz, in general is not small
and its omission in previous publications is not justified. Integration of Eq. (2.10) and
evaluation at y = y;, the edge of the viscous sublayer yields

(2.10)

¥s
ou, au, ou
2.11 T, = — e el f % dy+1,,
2.11) 9( -+ Ue ﬁx)}’+0961 y

where y; = vy* [u, and y* = 11.8. In the present analysis therefore the eddy viscosity
in the inner layer is assumed in the form

2
2.12 = ok?v2 | 1— _ YU
(2.12) & = ok?y [l exp( = )]

du
dy
where u; = (7,/p)'/%. Notice that the dynamic effects are influencing the eddy viscosity
through the factor u, which depends on the outer flow via Eq. (2.11).

In the outer region the dynamic effects are introduced through the time dependence

of the outer flow velocity U, and the displacement thickness 6*. It has failed the attention
of previous investigators that the common definition of the displacement thickness cannot
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be carried over to unsteady flow. Insteady, we have adopted here the more general definition
of Moore and OsTRACH 1(956). Reducing their general equation to its two-dimensional
incompressible but unsteady form we arrived at:

Y

0 (sxpy_ 9 S LA
.13) 2 (@*U.) c'bcf(U' Wdy +- 5= 0.

Notice that for steady flow the above equation reduces further to the familiar formula
for the displacement thickness

(2.14) o = [ (1—u/U,)dy.

3. The method of solution

The differential equations were solved numerically for oscillating outer flows. A steady
state solution was generated and used as an initial condition. The calculations were then
carried out until a periodic oscillatory motion was achieved. More details on this technique
can be found by the reader in previous publications [see, e.g., TSAHALIS and TELIONIS
(1974), TeLionis and TsaHALIS (1975)]. At the origin of the calculations a well-rounded
leading edge was assumed and Hiemenz type laminar profiles were generated. Turbulence
was assumed to be turned on immediately downstream of the origin. The experimental
analogy is a boundary layer that is artificially tripped very near the leading edge. On the
wall and at the edge of the boundary layer the boundary conditions are

(3.1) u=v=0 at y=0,

3.2) u— Ufx,t) at y— o0,

In the present paper oscillatory flows over a flat plate were’considered
(3.3) Uux, t) = Ugy(l+ae™).

To incorporate the proposed refinements in the eddy viscosity formulas some assumpt-
ions with regard to the term du/dr within the viscous sublayer are necessary. It is assumed
that the velocity in the viscous sublayer responds to the imposed outer flow according
to the formula

3.4 u = uy+ oy cos(wt+7/[4).

The phase advance is a familiar property of Stokes flow as well as laminar oscillatory flow
(see, e.g., LIGHTHILL (1954)). The functions u#, and u, can be approximated by linear
functions of y. Further, laminar calculations (see, e.g., TSAHALIS and TELIONIS (1974))
indicate that u, ~ u, is a fairly good approximation, if « is the amplitude ratio of the outer
flow. Our hypothesis then is that

u(x, v, 1)
(335) uo(x,3) =y (x,3) = 220y
y 1¥=0

The shear at y = y, from Eq. (2.11) can be written as follows:

_dp oul y*
(3.6) Ty = E}’s—@aw"‘g w_-z_ sin(wf+n/4)+7,,.
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The numerical integration is performed in a Gortler space according to subroutines
developed previously for laminar flow (see, E.G. TeLIONIS, TSAHALIS, and WERLE (1973)).
New dependent and independent variables are defined

3.7 §=Usx, n=U,27"y, =1
(3.8) F=ulU,, V= (252”2 v+n(B—1)F,

where § = (2£/U,) U, /é& and hence f = 0 for a flat plate. The continuity and momentum
equations in terms of the new variables take the form

(3.9) 2o+ P2l o,

(3-10) Z;;+alg—i+ﬂzf'+a3+a4g—?+as%=0,
where

(3.11) a, =%(—V+_g%),

(3.12) o _%%%’

(3.13) = ='é" _ﬁzi_e % ,

(3.14) i “%S"T;%F’

(3.13) as =~z

where £ is the dimensionless total viscosity given by
(3.16) E=14+——.

In previous publications of the author and his colleagues the reader will find detailed
descriptions of the numerical integration of parabolic equations like Egs. (3.9) and (3.10)
in a three-dimensional space.

4. Numerical results

The present author and his colleagues have earlier compared the mixing length method
with other unsteady turbulent boundary layer approximate methods of calculation (see,
e.g., TSAHALIS and TELIONIS (1975)). It was shown then that there is reasonable agreement
in predicting wall quantities like the skin friction and its phase advance. In the same paper
the method was tested against the experimental data of KARLsson (1959). In the present
paper we introduced refinements in calculating the shear at the edge of the viscous sublayer
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and the displacement thickness as described in the previous section. We then performed
calculations using the present model of the eddy viscosity for some characteristic cases
of the experiments of KARLSsON (1959). The same calculations were repeated using the
eddy viscosity model in its most simple form (see, e.g., VAN DRIEST (1956)), as well as the
models of Kays (1971), ALBER (1971) and CeBecl and KELLER (1972). The last model,
practically unaltered, is the one used in our previous publication. All of the theoretical
results presented in this paper therefore were derived by our numerical scheme using the
above mentioned models as well as the one presently proposed. For brevity and clarity we
have marked the figures with the name of the first author of the publication in which the
respective model was originally proposed. Namely: VAN DRIEST for the most simple quasi-
steady model of VAN DRriesT (1956), KAys and ALBER for the models of Kays (1971)
and ALBER (1971) and CeBecI for the model of CeBeci and KELLER (1972). The reader
should be cautioned to the fact that the result presented in the figures have not been repor-
ted previously in the above-mentioned papers. The eddy viscosity formula in terms of our
transformed variables and according to the above models becomes

Van DRIEST:
U, (2£R,)'* ( U, OF| )‘” ]}’ oF
i 1/2_—e 2 o o R T 12,2
(4.1) & =1+R! U, k,{l exp[ 7 . ol nlp 26y an’
where A% = 26.
CEBECI:
Same as Eq. (4.1) but with
. 28y oF |\ au, au, )]
4.2) A _26[1—11.8 RI7E U"U”Taa?w U]l
KAys:
Same as Eq. (4.1) but with
(4.3) At =26+f,(p"),
where
(26)12 ( aF | \7**( au, aU.,)
N i AN i St T
@) p= R, UeUa an |, a T Ue ox |’
_ £i(p) = 1133p* if p* <0012,
: filp?) = 2133p* =12 if p* = 0.012.
ALBER:

(4.6) & = 1+40.018 [2£R.(U.n/U,)*"?

3/2 1/2)2

-{1 —exp [_ Ri"“(ZE)”“(w%) %(— %— i, 3%_) } .
One of the most characteristic features of the flow is the response of the velocity profiles
to the fluctuations of the outer stream. For an outer flow that fluctuates harmonically
according to Eq. (3.3), we have calculated the fluctuating parts of the velocity within the
boundary layer. Values of the dimensionless velocity component, F, were stored for a whole
period, the average, F, and subsequently the fluctuating part, F—F, were calculated.

19 Arch. Mech. Stos. 5-6/76
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The fluctuating part is a periodic function of time but due to the non-linear character of the
equations, it is not necessarily a harmonic function. To demonstrate clearly its character
and compare with KARLSSON’S (1959) measurements, it was resolved into two components,
one in phase with the outer flow, 4,5, and one at a phase of 90° with the outer flow

212[F(x, y,—t)—F(x, y, t)]cos wt
(cos?wt)'/?

1/2 T
4.8) Uoudl¥, ) = 2P [F(x, p,8) i(:r_,_y;r)]cos(wt+n,1’2) .
(cos?wi)'/?

In Figs. 1 to 3 we have plotted the functions u,, and #,,, for § = 1.00 and for various
frequencies and amplitudes. Figure 1 represents the lowest frequency f = w/[2x = 2 Herz

4.7) tia(X, y) =

1.2 =) | T T T
L ]
P . d .
ey e L v =
]
(o]:] d -
i VAN DRIEST
06 — — — CEBECI .
‘‘‘‘‘ PRESENT METHOD
04 |-  —»=-= ALBER =
0.2 —
] i
o bt
u Y
. [ i L FiG. 1. In-phase and out-of-phase velocity
020 5 | ; I I profiles for « = 0.147 and f = 2 Herz. In all
4 " figures circles represent the experimental data
y(in) of KarLssoN (1959).
12 T T T T T
. U
1.0 —(’/.' ] Py v *
08 (o <
[ ]
06 '.- VAN DRIEST -]
— — — CEBECI
04 - —-=:= PRESENT METHOD -
|
02 e, -
\
i 4
0 & \f —r—+—
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—-02 1 1 1 | 1y |
0 S | 3
FiG. 2. In-phase and out-of-phase velocity y (in)

profiles for o« = 0.136 and f = 4 Herz.
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12 T T T T
A o Uy
1.0 %‘—‘—0—4———4—4
VAN DRIEST
06 : —-—— CEBECI —
————— PRESENT METHOD
04 - et = ALBER -

Fi1G. 3. In-phase and out-of-phase velocity pro- .
files for « = 0.127 and f = 7.65 Herz. y(in)

for an amplitude ratio o = 0.147. In this figure it appears that Alber’s model is most
successful in predicting the function u, but seems to be failing in predicting u,,, properly.
All methods fail to predict the velocity overshoot and a very mild improvement is shown
with the present method as compared to our previous calculations. In Fig. 2 results are
shown for the frequency f = w/2n = 4 Herz. All models appear to predict, at least quali-
tatively, a smaller thickness of the unsteady part of the velocity profile but still fail to predict
a peculiar growth of the function u,,, at distances 1’ < y < 3", This phenomenon is absent
from similar experimental or theoretical results of laminar flows (see, e.g., TELIONIS
(1975)). Figure 3 shows the same functions for a frequency of f = 7.65 Herz. A careful
study of the experimental data indicates that the function u,,, seems to turn sharply down-
ward and tends to zero as the wall is approached. There is no theoretical justification for
this phenomenon but the trend seems to be definite if one observes carefully the data for
a whole spectrum of frequencies which KARLSsON (1959) has covered experimentally.
The present method appears to be the only method that shows, qualitatively at least, the
same trend.

The experimental data of KARrLssoN (1959) were previously used (see, e.g., TELIONIS
and TsAHALIS (1975)) in order to estimate the phase angle

(4.9) ¢ = arctan (Uou:/tin).

The experimental points in the figures that follow are not reported by KARLSsON (1959)
as.such but were calculated from his data on u;, and #,,,. In Fig. 4 the experimental points
for f = 2 are very dispersed and no definite conclusions can be drawn. Figures 5 and 6
present the theoretical and experimental results for the frequency f = 4 Herz and two
different amplitude ratios, @ = 0.136 and « = 0.062, respectively. The dispersion of the
experimental results is again unacceptable. In the outer part of the boundary layer the
experimental data seem to be more reliable, yet they contradict each other by showing
a phase advance and a phase delay for the two amplitudes considered, respectively. In Fig.
7 it appears that the experimental data are more uniformly ordered and, unfortunately,

19*
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FiG. 7. The phase angle profile for = = 0.127 and f = 7.65 Herz
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FiG. 8. The phase angle profile for « = 0.127 and f = 20 Herz.

very poorly predicted by all the available methods. It seems that perhaps ALBER’s (1971)
model is the most successful. In Fig. 8 we have expanded the abscissa in order to show
in more detail the behavior of the various models for f = 20. This was the largest frequency
for which we were able to carry out calculations and unfortunately there is no available
experimental data in the neighborhood of this frequency. ALBER’S (1971) method seems
now to retain its character, and in fact exagerates it to the point that it seems rather unlikely
that the flow would follow such a behavior.

In Figs. 9 and 10 we have plotted the response of the derivative dF/dn which is propor-
tional to the wall shear. In both figures a harmonic function in phase with the oscillations
of the outer flow is shown. The three tested methods do not seem to predict any large
variations for f = 2 Herz (see Fig. 9). A small phase advance and the asymmetry of the
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VAN DRIEST
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T

FiG. 9. The derivative ¢F/éy as a function of time for o = 0.147 and f = 2 Herz.
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FIG. 10. The derivative 8F/dn as a function of time for « = 0.127 and f = 7.65 Herz.

periodic functions are clearly detectable. In Fig. 10 and for f = 7.65, the differences are
more pronounced. The Cebeci-Keller model appears to predict much larger phase advances.
The experimental evidence in this case is rather inconclusive. This may be due to the ina-

bility of hot wire anemometry to measure velocities in the immediate vicinity of the
wall.

5. Conclusions and recommendations

In the present paper we have collected the most well-known methods that are based
on refinements of the mixing length concept and performed calculations for oscillatory
flows over a flat plate. A few improvements on the Cebeci-Smith model were also included
and the results were reported as “present method”. The improvements consist of a correc-
tion in calculating the shear at the edge of viscous sublayer and a new definition of the
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displacement thickness. The two quantities appear in the inner and the outer model of the
eddy viscosity, respectively. For the inner model a few assumptions had to be made with
regard to the fluctuations of velocity within the laminar sublayer. Normally a larger
number of calculations would have been performed, to indicate what values of the constants
involved would provide better matching with the experimental results. This has not yet been
attempted. Of the two refinements the first appeared to play a much more important role.

Calculations were performed only for a flat plate. The flow therefore never approached
the neighborhood of zero shear. The present model though can be used without any altera-
tions in order to integrate through a point of zero skin friction and into a region of partial-
ly-reversed flow. This has been done before with the Cebeci-Keller model (see, e.g.,
TeLioNts and TSAHALIS (1975)).

The reader may have noticed that there is an abundance of theories and predictions
but very little experimental information available. This fact is disheartening especially
since all the phenomenological models rely on experiment in order to estimate some of their
arbitrary constants. All the efforts up to now, icluding the present, were confined in pro-
viding extensions of the existing models, based on theoretical arguments. As a result all the
arbitrary constants or functions involved were carried over from comparisons with steady
flows. At this point it is felt that more experimental data and perhaps more accurate ones,
are badly needed. Certainly, more data for flat plate flow can be useful since none of the
methods of calculation have been proved to be successful even in this oversimplified case.
Then, of course, it will be necessary to have some experimental information on flows with
mild or strong pressure gradients, flows with separation and flows that would involve
regions of partially reversed flow.
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