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Magnetohydrodynamic flow in a rectangular duct under a uniform
transverse magnetic field at high Hartmann number

D.J. TEMPERLEY (EDINBURGH)

In THIs paper we consider fully developed, laminar, unidirectional flow of uniformly conducting,
incompressible fluid through a rectangular duct of uniform cross-section. An externally applied
magnetic field acts parallel to one pair of opposite walls and induced velocity and magnetic
fields are generated in a direction parallel to the axis of the duct. The governing equations and
boundary conditions for the latter fields are introduced and study is then concentrated on the
special case of a duct having all walls non-conducting. For values of the Hartmann number
M > 1, classical asymptotic analysis reveals the leading terms in the expansions of the induced
fields in all key regions, with the exception of certain boundary layers near the corners of the
duct. The order of magnitude of the affect of the latter layers on the flow-rate is discussed and
closed-form solutions are obtained for the induced fields near the corners of the duct. Attempts
were made to formulate a concise Principle of Minimum Singularity to enable the correct choice
of eigen functions for the various field components in the boundary layers on the walls parailel
to the applied field. It was found, however, that these components are best found by taking the
outer expansion of the closed-form solution in those boundary-layers near the corners of the
duct where classical asymptotic analysis is not applicable.

W niniejszej pracy rozwazany jest w pelni rozwinigty jednokierunkowy przeplyw laminarny nie-
scisliwej i nieprzewodzacej cieczy przez kanat prostokatny o rbwnomiernym przekroju poprzecz-
nym. Przylozone z zewnatrz pole magnetyczne dziala rownolegle do jednej z par przeciwlegtych
$cian, a wzbudzona predko$c i pole magnetyczne sa wygenerowane w kierunku rownoleglym
do osi kanalu. Po wyprowadzeniu rownan konstytutywnych i warunkéw brzzgowych dla wyge-
nerowanych pol magnetycznych i predkosci uwage skoncentrowano na szczegdlnym przypadku
kanalu majacego wszystkie $cianki nieprzewodzace. Dla wartosci liczb Hartmanna M > 1
klasyczna analiza asymptotyczna daje pierwsze wyrazy rozwiniecia pdl indukowanych we wszyst-
kich kluczowych obszarach z wyjatkiem pewnych warstw przysciennych w poblizu narozy ka-
natu. Przedyskutowano rzad wielkosci oddzialywania warstw przysciennych na predkosé prze-
plywu oraz otrzymano rozwiazania w postaci zamknigtej dla pél indukowanych w poblizu
narozy kanalu. Poczyniono probe sformulowania zwigzlej Zasady Minimum Osobliwosci po-
zwalajacej na prawidtowy wybér funkcji wlasnych dla poszczeg6lnych sktadowych pola w war-
stwie przysciennej na $ciankach rownoleglych do przylozonego pola. Wykazano, ze skladowe
te mozna najlepiej wyznaczy¢ biorac zewngtrzne rozwinigcie rozwiazania Scistego w tych war-
stwach przyéciennych w poblizu narozy, gdzie analiza asymptotyczna nie moze by¢ stosowana.

B mnacroseii paGoTe paccMOTpeHO BIIOJIHE pa3BepHYTOE OHOHAIIpaBIIEHHOE JaMHHADHOE
TedeHHE HECKHMMAaeMOil H HenmpoBOAsALIEH XUAKOCTH Hepes IPAMOYro/bHBLINA KaHal C paBHO-
MEPHBIM TOMepeyHbIM ceueHHeMm. IIpHiIoyKeHHOE BHEIIHEE MarHUTHOE MoJIe [eiiCTBYeT ma-
PANIENIBHO OJIHOH M3 Nap NMPOTHBOJEXKAIIMX CTEHOK, a8 BO30YK/IeHHbIe CKOPOCTh H MarHHUTHOE
MoJie reHepUpoBaHbl B NapaiselbHOM HanpaBJieHHMM K ocu ikanana. Ilocie BBegeHHs onpe-
JeNAIOUMX YPaBHEHHIA H TPAHHYHLIX VCIIOBHI JUIA FeHepHpOBaHHLIX MATHHUTHBIX IOJIEH 1 CKO-
pocTeil BHHMaHHE COCPEJOTOYEHO HAa YaCTHOM CJIyuyae KaHajla HMEHILEro BCE HENpOBOJIALIME
crenkd. [lna sHavenwit uncen Iaprmanma M > | KnacCHYECKHMI aCMMNTOTHYECKMI aHAMM3
JIaeT NepBbIe YJIeHbl PAa3NIOYKEeHHA Mojied MHIYLUHPOBaHHBIX BO BCeX TNaBHbIX obsnacTax 3a
MCKITIOUEHHEM HEKOTOPBIX MPHCTEHOYHBIX CJI0eB BOIM3H yriiop KaHama. OBCy:KIaeH MOpaiIoK
BETMUHHBI B3aUMO/ICHCTBUA 1IPUCTEHOUYHBIX CJI0€B HA CKOPOCTh TEUEHHA U TIOMYUeHbI DEIUeHUA
B 3aMKHYTOM BHJE JUIS MHAYLHMPOBAHHBIX Mojefl BOaM3M yrioB KaHana. [Ipeanpuusara mo-
neITKa copmyaupoBrn Kpatkoro [Tpuuimna Munumyma OcoGeHHocTeil, TO3BONAIONIETO NTpa-
BUILHO NogoGpaTh cofcTBeHHbIe QYHKIMH AJIS OTAENBHBLIX COCTABJIAIOLIMX MOJSA B IpHCTe-
HOYHOM CJIO€ Ha CTeHKax MapajulesIbHbIX MPHIIoHKEeHHOMY nomo. ITokasaHo, UTo 3TH cocTaBA-
I0IIHE MOWHO HaWIyulliuM o6pasoMm ONMpefesIuTh, NMPHUHUMAs BHELUHEE PasIoyKeHHe TOUYHOTO
PElIEHHA B 3THX IPHCTEHOYHLIX CJIOAX BOJIH3H YIJIOB, Ile aCHMITOTHYECKHIT aHAaJIM3 He MOXKeT
MPUMEHATHCA.
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1. Introduction

THE FULLY developed, laminar, unidirectional flow of uniformly conducting, incompres-
sible fluid through rectangular ducts of uniform cross-section, subject to the application
of a uniform transverse magnetic field, has attracted much attention from theoreticians
and experimentalists over the past twenty years. Much of this work has been summarised
by REGIRER ef al. [1], HUNT and STEWARTSON [2], and HUNT and SHERCLIFF [3]. The channel
walls are usually assumed thin with respect to the internal dimensions of the duct, as is
normally the case in experimental work.

Similar problems to that considered herein arise in heat convection (see BOUSSINESQ [4]),
in contained rotating fluids (see GREENSPAN [5]), and in the static response of a membrane
strip (see OLUNLOYO et al. [6]), This is however, only a partial list of other areas of appli-
cation.

2. The general MHD problem

The governing equations (see, for example, TEMPERLEY and TopD [7]) are

v b
2.1 ~‘k—z+—3}7+Ma—y— -1,

a*b 3% dv

—F—-a+M—=0

dx? * ay? + dy ’

where v and b are the normalised induced velocity and magnetic fields in the direction

of flow (z direction) and M > 1 is a parameter, the Hartmann number, defined by M =
1 1

= Boa'(os)?/(ov)2. Here B, and a represent the magnitude of the applied magnetic field
and the semi-width of the fluid cross-section (both prior to normalisation), and oy, 0, ¥
represent the electrical conductivity, density and shear diffusivity of the fluid (» = 707,
7 being the viscosity of the fluid).

Figure 1 shows the typical duct cross-section, internal dimensions 2/ units by 2 units
(! taken as O(1) for simplicity), the origin for coordinates being taken at the centre of the
cross-section. The boundary conditions on v, b are

2.2)

2.3) v=0 at x= 4/ andat y= %1,
b _ _ ob .
2.4) ™ FDN at x= 41, 6_y =FDgh at y=+1,

where

Dy = [ :f ] (dimensionless wall-thickness) ™.
wall

If wany = 0, then D,,;; = oo and the relevant boundary condition on b at such a fluid-wall

interface becomes b = 0. For ducts where o, = 0, exact solutions to the problem exist

for all M (see SHERCLIFF [8] for o4, = 0 = og, and SLOAN and SmiTH [9] for o, =0
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FI1G. 1. Cross-section taken through the rectangular duct with externally applied magnetic field B, in the
y-direction.

op > 0 and any wall-thickness at the top and bottom boundaries of the cross-section(*)).
HuNT [10] has shown the uniqueness of the solution to this class of problems.

3. The sub-class of problems for which D, = o0, Dg = 0, i.e., b = 0 at x = +/ and at
y= &l

We wish to obtain the asymptotic solution, as a power series in M ™!, of the coupled
partial differential Eqgs. (2.1) and (2.2) subject to the boundary conditions ¥ =0 =5
at x = +/and at y = +1, utilising the features that @ is even in x and y and b is even in x
and odd in y (see [2], p. 567). Introducing

(3.1 u=v+b+M-'(1+y), w=v=b—M"'(1+y),
(so that 20 = u+w, 2b = u—w—2M~'(1+y))it follows that

3.2) V2u+M—a—u— =0, and Vzw—Mg‘i- =0.
dy oy

We will obtain an expansion for u(x, y) in —/ < x < 0; other results for  and w then
follow using symmetry considerations. Figure 2 shows the boundary conditions satisfied
by u and in Fig. 3 the boundary layers for u when M > 1 are illustrated.

(*) Note, however, that the problem of obtaining an exact solution to the configuration where o, = 0,

o5 > 0 and the regions where the walls overlap have conductivity oy, rather than o,, seems intractable
(see TempERLEY [11]).
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FiG. 3. Boundary layers for u when M> 1 (not to scale).
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The lettering (1), (H), (s), (ic)r, (¢), and (ic), denotes respectively the interior (or core)
region, the Hartmann (or primary), side (or secondary), front (or forward) inner-corner,
rear corner and rear inner-corner boundary layers for . The front inner-corners are sit-
uated at the leading edges of the parabolic boundary-layers on the side walls and the rear
corner and rear inner-corner layers lie at the trailing edges.

Boundary-layer coordinates relevant to an analysis for the region —/< x <0, —1

< y< +1are

33 X= M%(1+x), = MI+x), Y°=M(1+y), Y=M(1-y).

This configuration (often referred to as the Shercliff duct) is the only one for which
both the governing equations and the boundary conditions decouple. One could, of course,
analyse the original pair of coupled Egs. (2.1) and (2.2) directly; however, the analysis
presented herein will most clearly reveal the nature of the difficulties which arise when an
asymptotic expansion of the solution in powers of M ~1 is sought. Similar difficulties occur
for other rectangular duct problems.

4. Classical asymptotic analysis for M > 1

In the (I) region, the solution for # may be taken as u ~ u; = 2M~!; in the (H) layer
a correction term uy(x, ¥°) must be added to u, in order to satisfy u(x, —1) = 0. Similarly,
a correction u,(X, y) must be added to u; in the (s) layer in order to satisfy u(—1/,y) =
= M~*(1+y), and further corrections (%), and (u;), must be added in the (c), and (ic),
layers, for similar reasons. In the (ic), region one adds to u; a correction term {u;.(x, ¥)},.
However, (u.)y is not a correction to (u;+u,); instead (), +u;) matches with (u,+u;)
as we move from the (ic) layer into the (s) layer (see Sec. 6).

We shall give closed-form solutions for #; and uy, the errors in which are transcen-
dentally small in M, and shall find the leading terms in the expansions of u,, (), and
(i), in powers of M. Though (u.); will not be obtained in detail, sufficient information
about (u;); will be obtained in order to estimate the flow-rate to O(M ~*). This is what
constitutes the classical approach. Based on these results we can estimate the leading
terms in the volumetric flow-rate in powers of M ~! (this will be done in a later paper).

4.1. The (I) and (H) Regions

Away from the boundary-layers on the walls,
“4.1) u~u =ulx,1)=2M",

while in the (H) layer the condition u(x, — 1) = 0 is satisfied by adding to u; a correction
term

(42) Ug = __ZM—le—M(1+y) B _2M_1e_yo-

That is, the solution outside the boundary-layers on the side walls, neglecting asymptotic-
ally exponentially small terms, may be taken as

(4.3) U~ u—+ug = ZM_I(I‘—E—Yo).
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4.2. The side layer

In the (s) layer on x = —/, a correction term u,(X, y) is added to u; to satisfy u(—1,y) =
= M~(1+y). Assuming that u, may be expanded asymptotically for M > 1 as

4.49) U~ D uPX, )M,

n=1

substituting into the first of Eqs. (3.2) and the boundary conditions of Fig. 2 yields

likd d 0 _
(axz +?3?)'4 =%
(4.5)
2 2.(n=1)
(?i,—; +T%~)u§" = ——q——g;z—, for n>2,
with

u}“(O, y) == ] »
u™0,y) =0, fi %0
(4.6) ©.7) " B
WX, 1)=0, for n=1, X>0,
um -0 as X-—-o0, for n>1.

This set of equations may be solved using Laplace transforms with respect to (1—y),
a method seemingly adopted for a similar problem by Cook, LUDFORD and WALKER[12].
Due to the passivity of the (c), and (ic), layers on y = —1 with respect to the (s) layer,

we can treat the (s) layer problem as extending to y = — oo; appropriate (c), and (ic),
correction terms may then be added in order to satisfy the boundary condition at y = —1.
Introducing
1—y=0c0
@7 WX, )= [ uf-ed(1-y),
1—y=0

multiplication of Eq. (4.5), by e~**~” and integration from (1—y) = 0 to (1-y) = ©
yields, using condition (4.6);,

(4.8) (%2,- —s)ﬁl =0.

From condition (4.6), and on applying the “automatic” boundary condition
4.9 4,(0,5) = L{uP0,y)} = L{y—1} = =572,
the solution of Eq. (4.8) is

(4.10) iy = —s~2 %",

Hence (see ERDELYI et al. ([13], p. 245))

@11) DX, ) = X(1—yPn 2 exp{—X[4(1—y)}— ( 1-y+ %A') exfe {X/2(1 — y)*}.
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The latter result may also be written in the forms
1—y 1—y

@11)  wd = - [ erfe{x/2(1 —y—ﬁ')%}dﬁ - erfc (X/262)db
0 0

1—y

= —(-p+ [ exf (X/20%)db.

Expression (4.11°) is that first obtained by CHANG and LUNDGREN [14] and both (4.11)
and (4.11") are alternative forms to that given by SHERCLIFF ([8], p. 140).

Our results for u{" is bounded and continuous at all points inside and on the boundary
of the rectangle. If the “automatic” condition (4.9) were to be relaxed, the addition of
a term

i 1 2
A()e™™ = % D4,

i=0
the Ajs being constants, to expression (4.10) would introduce eigen functions into the
solution for #{"; these correspond to multiples of the various (1—y) derivatives of

1
erfc {X/2(1—y)?} (see [13], p. 245) and are rejected, as they are singular at the corner
X=0=1-y.
Setting n = 2in Eq. (4.5), and proceeding as for 4, , u{*?, we have (using condition (4.6);)

2 X
i (—fy —S)ﬁz = — (U0} = —2L (D) = X7
From condition (4.6); and use of the “automatic” condition
(4.13) #2(0,5) = & {u{®(0,5)} = 0,

we conclude that
1

e 1
4.14) fi; = — Xe X" |2s2,
and hence (see [13], p. 246)

(415)  u® = —Xexp{—X?/4(1—-3)}/222(1 - )% = (1) 55—‘3:; (erf (X/2(1 -y });

u® is bounded everywhere inside and on the boundary of the rectangle, despite the
fact that the right-hand side of the governing equation for u{* equals
— P2V 1 3
—gr— =X ep{=X A1yl (-5,
which may be shown to behave like a multiple of §(X) as (1—y) — 0. Use of the “auto-
matic” condition (4.13) may thus be suspect and liable to cause difficulties, but all turns
out well in the final result. Relaxation of condition (4.13), and proceeding as suggested
in the analysis for #,, u{", leads to eigen-functions for #{*> which must be rejected for
being singular at the corner. Note that u{*’, though bounded, is not uniquely defined at
the corner; approaching X = 0 = 1—y along any parabola X2 = 4u?(1~y), 4 > 0 and

1

(4.16)

constant, gives a limiting value —ue™*’n 2 at the corner.
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An interesting, and more direct, alternative method of solving the u{*’ problem was
devised by Professor L. Topbp (Laurentian University, Sudbury, Ontario, Canada) during
collaborative research between himself and the author in 1974. Since the governing equa-
tion for u{* takes the form (see (4.11"))

*? 0 @ a au;“) _

@  (grra)e = -5

there thus exists a particular integral

d L
a(1—y) (erf{XfZ(l —)’)2}):

(4.18) ), = (=) 6(1 (erf{mu—y)z})

The complementary function, (#{*),, is read:ly seen to be more singular at X = 0 =
= | —y than is expression (4.18) and so is excluded using a Minimum Singularity argu-
ment. Hence, u{® = (u*),, which matches with result (4.15).

The governing equation for u{® (see result (4.18)) is
a2 | )u‘” _ _azum o?

{ 0 3
(4.19) ( P +— o =i mz—{(l —Y)m(erf{sz(l—Y)z})}

a* 93 !
{6(1 ) (—y)a(l ---}(erf{m(l_y) D,

which, using the “improved” Todd method, has a solution

2

@20 u?*=(us=>),,={2(1_—y)an({3_§2-+i( D iy K- 7),

in which the individual terms are singular at the corner X = 0 = 1—y.
The Laplace transform method, on the other hand, leads to the equation

1

d? ;.
Pk S 2 —xs?
(4.21) (dXz .S')u3 2}\’3 ,

having a general solution (see condition (4.6),)

1 1 >

(4.22) ity = {A(s)—Xs52 (1+Xs2)[8}e~**".

If the “automatic” condition #;(0, s) = 0 is applied, then 4(s) = 0 and hence (see
[13], pp. 245/6)

(4.23) u® =UD = X=4+

4x? X } exp{— szuﬁ y)}
(1-"}*) (1 —y)z 643'52(1 _y)z

On multiplying the latter expression by any “good” trial function F(x) an integrating
the product over — o0 < X < oo, it may be shown (see LIGHTHILL [15], p. 15) that U
behaves like 26'(X) as (1—y) — 0; a similar procedure, using any “good” trial function
G(1—y) and integrating over 0 < 1—y < o0, shows that U displays no ®(1—y),
p =2 0, behaviour as X — 0.

The &'(X) behaviour may be curbed by adding to expression (4.23) an appropriate
eigen function. Relaxing the “automatic” condition for #s(0, s) and expanding A(s) in
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(4.22) as Z A;s', the A4} being constants, those terms corresponding to i = 1 are found

to give rise to eigen-functions for w{* that are more singular than U as (1—y) =0
and so are rejected. The eigen function corresponding to A(s) = Ay, however, is

(4.24) ue) = Ao Xexp{—X?/4(1 —J’)}J’Z?ti - J’);.

which behaves like —24,60'(X) as (1—y) — 0. Hence all §'(X) behaviour can be annihil-
ated by choosing 4, = 1. However, the addition of #{% introduces into the solution for
u® a lower-order singularity 4,6(1 —y) = d(1 —y) as X — 0. One is thus faced with the
highly complex problem of formulating a suitable, “appropriate” Principle of Minimum
Singularity, applicable to choosing the correct ™ for all n > 3. We have seen how the
choice of 4, = 1 in (¥ deletes the &'(X)-type singularity whilst introducing one of type
é(1 —y). Attempts were made to justify the choice 4, = 1 by two further methods; these,
however, proved only partially successful. A brief description of the methods adopted is
given in the Appendix.
Our final solution for u{® is

425) D = UP+ud) = X(36+4X2[(1—p)—X*/(1 2} ZRL=XAA D)}
64:12(1 -y)2
This result checks with (4.20), obtained by the “improved” Todd method, which automatic-
ally produces the least singular solution at the corner. Our solution for u{® is, of course,
singular at the corner, as can be seen by approaching the latter via any straight line path
X/(1—y) = constant or any parabola X?/(1—y) = constant, for example.
The governing equation for u{* is (see result (4.20))

2 9 — 8%

6X2 o (4) OO A S

(4.26) ( 5 5

& * 1 , o
SsasE MUVt a4 -V SE At xR -92),

and the Todd method leads immediately to a solution
@27 u® = @®),
a2 o* 1 0 :
= {5(1 —'}’)W +2(1—y)* W+ r (1 _y)3W} (erf {(X/2(1-y)?}).

while the Laplace transform method gives

1

dZ " azugal s 32 - % ._x,i
(4..28) (d_XZ _S)u.q, — “g{W} = —9 u; — ?(X S+XS . 8)3 Fl

and hence (see condition (4.6),

3 1 x
(4.29) uo = 27! {% (48B(s) + X52 (21 —3Xs? — X=s))e-“*} .

16 Arch. Mech. Stos. 5-6/76



956 D. J. TEMPERLEY

Applying the “automatic” condition #,(0, s) = 0 yields B(s) = 0 and hence (see [13],
Pp. 245/6)
4.30) u® = U®
1248Xx% 24x* ¢ 8
- gy =1°°8‘ e e e
3m2 . 21%(1—y)2
U® behaves like {26"'(X)+0- 0’(V)} as (1—y) — 0, but contains no singularity of
the type 8®(1—y), p = 0, as X — 0. To annihilate the 6"(X) singularity, the “automatic”
condition is relaxed. The choice B(s) = By+ B, s, By, and B, constants, adds to u{* an
eigen function

}exp{—X’M(l—y)}-

y)312 8(1—y)°2 }“_E“P {"‘ermﬂ -}

which behaves like {—12B,6'(X)—B,6"'(X)} as (1—p) — 0. Thus all §"’(X), ¢'(X) be-
haviour can be annihilated by choosing B, = 0 and B, = 2.

Any terms in B(s) of O(s§), k > 2, introduce 6‘***(X)-type singularities as (1—y) - 0,
and so are excluded.

The addition of expression (4.31) to U* introduces into u{*) behaviour of the type

@31) _ ‘(1330 B, X(—6+X*/(1-y))

1
6B,0(1—y)+ ?Bl d'(1—y) as X — 0, and hence our final (least singular) solution,

(4.32) u® = ——;——{-—‘-—";{—3600—

302 - 219(1 — y)?

480X* | 24X* 24x°  X* }
I=3 "(l=3" (=0 (-5
xexp {—X?/4(1-y)},
L1 . .
behaves like —ié'(l —y) as X — 0. It may readily be shown that expressions (4.32) and (4.27)

are equivalent.

For the general term u{™, n > 2, the “improved” Todd method always provides the
least singular solution at the corner X = 0 = 1—y, without any reference to the solution
in the (ic); layer, contrary to the beliefs expressed in [12], where it was held that such
a procedure could not be carried out. The general Todd result for n > 2 is

(433)  u” = ("),

—{C(l-)——a"—_l-— Cpir(1—y)? La + ... +C 1—yy-? g }
= q A 6(l—y)"—1+ q'+1( _y)w q+n-2( J’) a(l__y)zn—ﬂ

xerf {X/2/(1 —y)%},

where ¢ = (n*—3n+4)/2, the C; being appropriately chosen constants, which may be
expressed as functions of n by setting up a system of recurrence relations.

The Laplace transform method, on the other hand, leads to an initial expression Uj
if an “automatic” condition for #,(0, s) is applied, containing a 62"~ (X)-type smg'ulanty,
n = 3, as (1—y) = 0. This singularity is then annihilated by introducing into #, a comple-

1

(H)

mentary function of the form E,_; s"3 e~*%*; for an appropriate choice of E,_s, the
corresponding eigen solution #{®} combines with U™ to form a final solution u{® which
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exhibits no 6’(X), p > 0, behaviour as (1—y) = 0 but which behaves like a multiple
of 8"-3(1—y) as X — 0. That is, at each level beyond » = 2, a “strong” singularity of
the 82" 9(X)-type is replaced by a “weaker” one in 0™~ 3(1—y).

A further alternative method of obtaining u, to all orders is the use of Fourier sine
transforms with respect to X. Introducing

(4.34) (A, 3) = [ u®sin(AX)dX,

0
and multiplying the governing equation for each u{™ by sin (1X), then integrating from
X = 0 to X = o, etc., as outlined, for example, in SNEDDON[16], the solution for each u,
is found using conditions (4.6); — (4.6), and each ¥{™ then follows using the inversion
formula

2 [ .
(4.35) =2 of B4, Psin(AX)di.

This method yields a unique solution, the least singular solution, at all levels. That is,
a minimum singularity principle is “built-in” to the Fourier sine transform method which
is lacking in the Laplace transform method, and the former is thus to be preferred when
dealing with the (s) layer in this particular configuration.

4.3. The rear corner layer

In the (c), layer on y = —1, one adds to (u;+ug+u;) a correction term {u.(X, Yo)},
in order to satisfy the condition u(x, —1) = 0. Since (u; +uy) satisfies this condition iden-
tically, we simply substitute (u.), into the first of Eqgs. (3.2) and use the boundary condi-
tions from Fig. 2 to deduce that

(4.36 m L & 9 Ny =0
-36) axz * gy T gye | W = 0
with

(u(X,0)), = —u (X, —1),
4.37) (), »0 as X andlor Y°- co.
Expanding (u.), asymptotically as
(4.38) @) = D uPX, Y)M™,

n=1

and substituting into Eq. (4.36), we have

a? é
T T
(ayaz + aY° )“c ’

4.3
( 9) 82 a azu(n—l)
(et o 252

57°2 T 370 Xz

16*
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From Eq. (4.39); and conditions (4.37) plus results (4.11°),
2 1
(4.40) U = —uOX, —1)e = 7 [ erfc(X/202)db.
0

ul® satisfies

o 0 (2) 82 Y — p—Ye 3
(4.41) (—3—},‘,—24-?):&

e = 6X2 e dXz {"(l)(X -1} = —e " erfc(X/2?),
with
Xe~X*/8
(#42) UP(X,0) = —uPX, —1) = ———,
(8n)2
¥ -0 as X andfor Y°— .
Hence

e~ X8 Y"-—d-z— (X, — l)l
dXz (4 3

(443) uP =c"
(87)2
Y 3
= [__ —e X8 ¢ Y°erfc(Xf‘2’)| :
(87)?
ul® satisfies

(4.44) ( )u‘ax Y
: 27z T a7 ox>
Yo
= X {a2-x9e s 2r° f (X252 —12)5% %15 ds),
@!ny
with (see result (4.25))
4_ - -X/8
4.49) W PR | TR RV (i . L iie
(219:':)5
u® >0 as X andfor Y°- c0.
Hence
3 Xe ™' a 2 ory2 —Xx2/8
@46) 1P =5 (X4 —8X7—144 4 16Y°(X2—12)) e
(2'°xp

1
—16¥°(Y°+2) [ (X252 — 12)s%e~X5"/%s},
0
We can continue indefinitely in this manner, expanding (i), to the same order as u;.

4.4, The rear inner-corner layer

In the (ic), layer near x = —/, y = — 1, a further correction term {u;(x, ¥°)}, must
be added to those contributions already introduced, in order to satisfy u(—1/,y) = M~
(1+); (), satisfies

(4.47)

a2 a2
(axz + aYoz + 6yo)(uic)r - 0
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with
{0, Y°)} = —uu(=1, Y°)— {4,(0, Y°)},;
(4.48) {tic(x, 0)}, = 0,
(), -0 as yx andfor Y°- c0.
Expanding (v;.), asymptotically as

=]

(4.49) e = D uP(x, YIM™,

n=1
it follows that since uf’ satisfies Eq. (4.47) and conditions (4.48), and (see results (4.2),
(4.40))

(4.50) U0, Y) = —uy(—1,0—uiP0, ¥Y) =0,
S0
(4.51) P =0,

From result (4.43),
(4.52) U2, Y°) = —uP0,Y°) = —Y° ",
and, on introducing
(4.53) Uy(k, Y°) = f uf?’ sin(ky)dy

0

multiplying the governing equation for u{2’ by sin(ky) and integrating over 0 < y < o0,
using conditions (4.48);, (4.52) it follows that

(4.54) -—-dz 4 —k2|U, = kY’ ¥

‘ av*z T ay° i R

Since (see conditions (4.48)) U, — 0 as ¥° - oo and U,(k,0) = 0, so
(4.55) U, = —k™1Y%e " +k 3 —e ),

1

2
where § = -;—+ (% +k2) , and hence

(4.56) u® = -;2; f k=3 {(1=Kk2Y°)e ¥ —e P }sin(ky)dk.
o
Further terms may be obtained by similar procedures and (u;.), obtained to the same
order as u, and (u.),.
5. The volumetric flow-rate

Before turning finally to the (), layer near x = —I, y = +1, mention must be made
of the volumetric flow-rate, expressed (using symmetry) in the form

1 0 1 o
(5.1) F=2 [ [oeaxdy=2 [ [ {u=M-'(+y}dxdy,

ym=—1x=~] yu—1x==]
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and which involves summing the integrals of the various contributions to u over the left-hand
half of the fluid cross-section. It is important to note that the results for u, are not defined
5o as to be valid in the (ic), layer; integration of u, over this layer would seem therefore
to introduce an error into the solution for F. However, as will be shown in Sec. 6, u; is,
in fact, the outer expansion of (4;.)s as one moves out from the (ic), layer into the (s) layer.
Thus, by integrating {(u.),— ,} over the cross-section the suggested error referred to above
is cancelled, and contributions from the (ic), layers are simply added to those from the
(D), (H), (c), and (ic), regions.

We here stress that (4;,.); cannot be obtained as an asymptotic series using the classical
approach; however, we can estimate the order of magnitude of the contribution of
{(wi)y—u,} = # to the flow-rate. Since u{" is continuous and non-singular at all points,
whilst 2{®’, though bounded, is discontinuous at the corner X = 0 = (1—y), it follows that
i is 0(M —2). The (ic) layers being of dimensions 0(M ~*) we conclude that # first contributes
to F at the O(M ~#) level. Integration of (u;,.), over the entire cross-section would, of course,
yield the full flow-rate contribution from the (ic); and (s) layers.

All errors due to integrating the correction terms ug, #;, (¥.), and (), outside their
“regions of influence” (excepting that referred to above) may readily be shown to be expo-
nentially small in M. Those terms in F up to and including those of O(M~7/2) may be
evaluated by integration of the leading terms in u;, ug, u,, (¥.), and (4;.),, though we will
not perform the calculations here. The 0(M ~#) term in F cannot be found without knowing
the full solution in the (ic); layer (see earlier comments).

6. Closed form solutions

We will now derive a closed form solution for u in the (ic), layer, from which the (s)
layer solution can be derived to all orders; the procedure is due to Topp (see [17]). The
correction , that must be added to (¥, +ug +u,) in order to satisfy the boundary conditions
on u(x, —1) and u(—1/, y) on the boundaries of the (c), and (ic), layers will also be obtained
in closed form.

A. In the (ic); layer, we may take

(6.1) u ~ ur+{uic(x, Y)}y = 2M ™" + (tic)s-

Substituting into the first of Eqs. (3.2) and the boundary conditions of Fig. 2 we obtain
2 2

(6.2) (Fa;c? a—a};—%) i)y =0,

with

(6.3) {uc(x, 0} =0, {40, V)}y = —YM™2,

and

(6.4) (uje)y >0 as yx— o0,

Introducing U*(k, Y¥) = f (u;.)ssin(ky)dy, and proceeding as in SNEDDON [16], we obtain
0

(6.5) U* = —=M~%k~'Y+M~2k~3(1-e"*),
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where

X
6.5' il s (1 k‘)z
(6.5 e=olk) = —z+\z+ ;

Hence
M2 [ ,
(66 et DYy = = ¥M=24 2 [ k21— e-Tysin(kp) k.
0

1 .
Setting x = M2X, Y = M(1—y), k = kM ? yields the following closed form for the
outer expansion of (u)s:

60 ol = w14 M7 (B,
0

with

68 a=a= —-;-+%(1+4E3M")5

~ M K AM242KM 3+ ..., for M > 1.
Thus, for M > 1,

69)  {ualX, )}y = M- 2

f k=3(1 —e~Fa-»)sin(kX) dk

ZM . 4M-3

(1=y) f fe-F1-» sin (kX) dk + (1—y) f fde-Ba-»gin(kX) di

M_

—y)zf k’e""“"”sm(kX)dk +0(M~%).
The first integral term vanishes when (1 —y) = 0 and its ﬁrst partial derivative with respect
to (1—y) is

Mt [ - _ '
+ fk“e'*"“”sin(kX)dk = M~terf {X[2(1-y)*};
0

it therefore equals
1—y

(6.10) M-t(y—1)+M! ferf(xlzez)de

the M~1u" obtained in result (4.11°).
The next integral terms equals

oo

0

6.11)  M-2(1-y)—mmr—

= M*(1=Y) a(l (erf{X,-‘Z(l }’)2})
which checks with the M~2u{® of result (4.15),.
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The O(M ~3?) integral term may likewise be shown to check with result (4.20). Thus the
series expansion-for u, can be obtained to all orders as the outer expansion of the closed
form (6.6).

B. We now seek a closed form solution for (u.+u;.), near x = —I/, y = —1. A correc-
tion must be added to the closed form solution for the (s) and (ic), regions in order to
satisfy u(x, —1) = 0 and u(—/,y) = M~* (1+y). We denote this correction by u,, the
(r) region being defined as the union of the (c), and (ic), layers. In the (ic), layer, u.(x, Y°)
satisfies Eq. (4.47) and the conditions (see results (4.2), (6.7))

6.12) u(0,Y%) = —up(—=1,¥°) = 2M~te7 ¥,
2M~* w"'—a T2 _ o= 2MakN gin (% T
(6.13)  u(x,0) = —u,(X, -1) = — = k=3(1 —2k2 — e~ 2M2Nsin(kX) dk
0
—2M~?

- f k=3(1 = 2Mk? — e~ 2M2®) sin (ky) dk,
(i}

1 - '__.l_
 after setting X = ¥M 2 k = kM 2 and with a(k) defined in line (6.5), and

(6.14) u,—»0 as x andfor Y°— 0.

Introducing
oo
(6.15) U, = [ wsin(kx)dy
0

and proceeding in the usual manner yields

d3 d 2 =] Yo
(6.16) 'd—}m?‘f'?ﬁ——k Ur = —2kM'e »
with
(6.17) Uk, 0) = — M~ 2k-3(1 —2Mk?— ¢~ 2M2®)
and
(6.18) U -0 as Y°- 0.
Thus
(6.19) U, = 2(kM)~2e™ " — M~ 2k~ 3(1 — ¢~ 2Ma() = Yb(k)
where
1
1 (1 -
(6.:20) By = 1+a(k) = 5 +(7+K7) ,
and hence

621)  u(x, Y=

s 5
M [ ko2 ke ™~ (1~ )P} sin(kn) dk.
0



MAGNETOHYDRODYNAMIC FLOW IN A RECTANGULAR DUCT 963

Adding results (6.21) and (6.6) gives the correction to (u; +uy) “near” the wall x = -/
in the form

(622) {h‘.-.:(X, Y)}f""“r(x, Yo)
ZM_Z 4 -3 2 —aY 2 —Ye -2 0 o
= | K {1-RY—e " + 2 Me™ " ~ (1= =) P} sin (kp) dk»
0

which matches with results obtained in [17] as Dg — oo.
For M > 1, the major contribution to the integral in result (6.21) comes at small k;
from (6.20) for M > 1 and k small,

(6.23) a(k) = Blk)—1 ~ k> —k*+2kS+ ...
and
(6.24) (1—e~22M)e=PY° ~ 2k2M(1 — k%) (1—Kk2Y®)e ™",

Substituting the latter approximations into (6.21) it is readily seen that the 0(M~!)

correction term from the (ic), layer is identically zero; this checks with the earlier result
(4.51").

1
Setting y = M2X, k = M 2k in (6.21), (6.23) and (6.24),

_1 w— = R = =
(6.25)  u/(X,Y°) = 25; fk-3{2kle~"°—(1—e-“("w)e-ﬂ(‘*“}sin(kX)dk,
0
where
(6.26) a(k) = Bk)—1 ~ kKM~ —k*M-2 4+ 2kSM 3+ ...
and
6.27) e~ 22®M o= 4 okapr-1) gmBRIYC | ooYo(] _f2p-1Y0),

The leading contribution is
2M-te P {1— 7t [ (1-e- ) k-3sin(kX) dk,
(1]
which reduces, after successive integrations by parts, to the form
(6.28) M-1eY {2-!-:1" [ E=1({x2(1 — e~ )~ 4(1 — 4k2e~ )} sin (kX)
0

—SI(Xe“ﬁ'cos(f}X))dk"}
1

1 2 3 2\2
= M_le_“{Z-}-EXz(l —erf{X,’Z’})—Zerf(X!Z‘)—(g) Xe_xz;s}
(see [13], pp. 15, 73).
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This matches with the M~'u{" of result (4.40), for

Xe~ X214

U = =10 {2 [Berf (X)207)]2 — f dﬁ}

D 2eh)2

I

- e*"°{2-2erf(X!2;)—X (%)ze_m * "Xzi(l —~af{X] 2;})}'

The next contribution is

2. Yo o0 B h. _ _ _
f6agy 2Me f -1(2k2e=2 4 yo(1 — e~ 2¥)}sin (kX) dk
0

3 1
= M2 | Yo(1 —erf {X/2%}) + X(8n) 2~ X2},
which matches the M~2u(® from result (4.43). Thus
(6.30) w, = M~ +M-2u®

+m_- f k=3 {ePTo(1 — e 2°M) 4 ¥ (1 —k2YO)(1 — e~ 2M¥) — 2 Mk*e~ 2M*) ) sin (k) dk,

a(k), B(k) being defined in line (6.20).
The leading (ic), correction term is thus

2M~2 r

(6.31) fk"3{e“r°(1-k2Y°)-e‘“°} sin(ky)dk,
b

which matches the M~2u{? of result (4.56).
One can proceed indefinitely in this manner, working in terms of X and k when seeking
(c), layer correction terms and in terms of y, k in deriving (ic), corrections.

7. Conclusions

The actual calculation of the flow-rate, F, and its matching with the result of WiL-
LiaMs [18] will be dealt with in a future paper (see also TopD [19]).

In the present paper we have outlined an expansion scheme yielding the solution in all
regions except the (ic); layer to all orders, and have derived a closed form solution for u
in the latter layer, from which the (s) layer solution can be obtained to all orders as an
outer expansion. A closed form solution in the (r) region was also found, from which (c),
and (ic), layer correction terms can be obtained to any order. The superiority of the
“improved” Todd method over the Laplace transform method in deriving (s) layer correction
terms has been firmly established. Both the former and the Fourier sine transform methods
are clearly to be preferred when dealing with this and similar problems. A principle of
minimum singularity is “built-in” to the Fourier sine transform method, at least as applied
to the configuration presently under consideration, which is lacking in the Laplace transform
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method. We are not clear as to why this is so, but Professor W. D. LAKIN (Toronto, Cana-
da) has given some thought to this matter and is believed to have found an explanation
for this difference between the results obtained by the two transform methods.

In a further paper, we will consider a duct having walls BB of arbitrary, non-zero
conductivity and will endeavour to derive the solution for v, b to all orders in each of the
key regions.

Appendix

Further attempts to justify the choice 4, = I in expression (4.24) for u{3}

(i) On adding the eigen function 43 (result (4.24)) to the “provisional” solution U{®
(result (4.23)), we will integrate the expression {#{3+ U™ }F(X) = u{¥F(X), where F(X)
is any “good” trial function (as defined in LIGHTHILL [15]), along a path consisting of the
line y = 1 indented below to avoid the corner X = 0 = 1 —y and symmetric about x = —/,
in an attempt to pick up the singularities in #¢> at the corner when the indentation shrinks
to zero. We hope to show that 4, = 1 is the only choice of 4, which annihilates the ¢'(X)
behaviour in #* as (1—y) — 0, hence minimising the overall singularity at the corner.

The initial indentation cuts across the wake of the parabolic side-layer near x = ~1,
y =1 (see Fig. 4); it consists of that portion of the line 1—y = f—K]|X| for which
|X| € BK-1, K and B being small and positive.

x=-{, y=1
A X=0=1-y
BK™

—_—

Y7y

F1G. 4. Simple path of integration, indented to avoid the corner X = 0 = 1—y.

As f — 0, the indentation vanishes; the lines AC, CB reduce to the corner point if
L, = lim (8K~') = 0, to the finite interval |X| < u of the line y = 1 if L, = u, a positive
B0

constant, or to the entire line y = 1 if Bk~ - o0 when f# — 0 (i.e., K = K(ff) = 0 more
rapidly than does g itself). In what follows, we will take results (4.23), (4.24) as being
valid for X < 0, i.e., US®, 42 will be treated as odd in X.

Now, for those sections of y = 1 on which |[X| > BK~!, u{® is identically zero (see
condition (4.6);), while on AC and CB,

l—y =pf-K|X| and |d(1-y)/dX|= K.
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Consider I = [ F(X)u{® ds taken over the indented contour. Since %> is odd in X and
—00
1

ds = (1+K?)?2dX, so

\ K-

I=201+K% [ Fo(X)uPdx,
0

where Fo(X) = —é-{F(X) —F(—X)}, the odd part of F(X).

ﬂx"
2
WLHES A {4+32A0+

32:;2 o (B-KX)?

2 4
(AD ie I= ..} X }

B—KX  (B—KX)*
exp{—X?/4(B—KX)}dX.
1 1
Introducing ¢ = X/2(B—KX)2, so that X = —2Kr2+2t(8+K?1?? and (X+2K1?)dX =
1
= 4(B—KX)tdt = 2(B+ K?t?)? tdX, (A.l.) reduces to

A2 I=

2 2 2 242y2
his fF"( 2 +2'(ﬁ+K’)) e {(8Ag -+ 1)1-+46>— 415} dr.
0

23,2 B+K? ;2)2
As fi — 0, the limiting value of I depends on the value of L, = limfK~2, though the
p—0
argument of F, clearly tends to zero as § — 0, for all K. For “small” values of £, F, in
(A.2) can be expanded as a Taylor series about # = 0 and the integration then performed.
Alternatively, one may integrate by parts in (A.2) and then substitute a Taylor series

expansion for F,. It is readily shown that both procedures yield an identical limiting value
for I'as f — 0. Using the former method and taking

(A.3) Fo ~ 2t{—Kt+ (ﬁ+K212);'}F5(0)+

it may be shown that all terms after the first in (A.3) contribute nothing to I in the limit
B — 0, for all K > 0. Substituting (A.3) into (A.2), and noting that Fg(0) = F'(0),

(A4 I= M—K)—F (0)f {1-Kt(B+ K?*t?) 2} {(BAo+1)t*+41*— 415} e~"dt
”2
+ (contributions which -0 as g - 0).

Neglecting the latter terms and integrating the leading one by parts yields, for “small” g,

(A.5) ~ (1 +K2)2F’(0){2(A0_. 1)—n 7 P@Ao+ 14417 -41‘"‘)9" dr}

0 (t*+pK~ z)2
If L, = lim BK~2 = 0, then J — 0 as § — 0 for all 4, ; this represents a failure to pick
50
up the &'(X) behaviour as (1—y) — 0. If L, does not exist (i.e. K* - 0 more rapidly than
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does B, e.g., K = 0(8)), then I -0 as § — 0 only if 4, = 1; this means that the ¢'(X)
behaviour is removed only by this chosen value of A,.
If L, = A, a positive constant, then as § - 0

1 3 2 _ A4y p—12
(A.6) ;qr(O){z(Arn—n—z f Pidty kit -Sle d:},
0 (;2+3)E
1 ~ 3 2 —12
(A.6') =‘1Fr(0)ﬂ_‘if_t_£.2iﬁ);._ dt # 0’ if Ao = l;

5 (2402

thus, in this third case, the é'(X) singularity can only be removed by an appropriate choice
of Ag = Ao(2) (see (A6)).

Summarising the results obtained above we see that the choice 4, = 1 cannot be fully
justified using the indented contour of Fig. 4. For a suitable subset of the class C,, of curves,
the choice may perhaps be validated using the above procedure; an initial contour 1 —y =
= f > 0, with § — 0 in the limit, may readily be shown to justify the choice 4, = 1,
for example, and integration along a path X = ¢ > 0, with ¢ — 0 in the limit, picks up the
d(1—y) behaviour as X — 0, for all 4, # 0, u{*’ being defined as zero for (1—y) < 0.

A physical interpretation of the three limiting values of L, discussed above is apparent
from Fig. 4. Since (CD)?/BD = BK~2, so L, = 0 corresponds to the point D lying well
within the wake, L, — oo corresponds to D lying well outside the wake and L, = 4 > 0
corresponds to D lying on one of the parabolic streamlines X2/4(1 —y) = constant.

(if) A better way of justifying the choice 4, = 1 in 4} is by consideration of an
analogous physical situation, the heat diffusion problem for an infinitely long, thin rod.
In Eq. (4.19), suppose that u{* represents the temperature in such a rod, having unit
diffusivity; X, (1 —y) represent the length and time coordinates. The right-hand side of the
equation represents — A*(X, 1 —y)/K*, A* being the rate at which heat is supplied to the
rod per unit length per unit time and K* being the rod’s conductivity. The initial tempera-
ture at all points of the rod is zero and the temperature at station X = 0 is held zero for
all time (1—y) > 0. Expression (4.23) would represent a temperature distribution that is
singular as (1—y) —» 0, while the eigen function (4.24) represents the change in distri-
bution due to the insertion of a doublet. Beginning with a source plus sink each of strength

Q at stations X = X'+dX’, X' respectively, suppose dX' — 0 and define 24, = lim
dXx'—0
(Q-dX'), and then finally let X’ — O; the result is an instantaneous doublet at X = 0.

The choice A, = 1 corresponds then to minimising the singularity in the temperature
oo
distribution along the rod as the time (1—y) =0 (because [ F(X)-u*dX = 0 when
—o0
Ao =1).
We have not been able to specify a truly satisfactory Principle of Minimum Singularity
in this paper. The choice 4, = 1 in u{¥ and selection of the appropriate eigen functions for

u{, n > 4, can only be completely justified using the outer expansion of the closed-form
solution for (u;);, derived in Sec. 6.
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