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Thermally-controlled centrifuge for isotopic separation

Symbols

A. CENEDESE and D. CUNSOLO (ROMA)

AMONG the various methods proposed to obtain lighter component enrichment in the isotopic
separation of uranium, ultracentrifugation is becoming more and more interesting today, as this
process becomes a useful alternate method to gaseous diffusion. The ultracentrifuge main gas-
dynamic features are investigated in the present study. In particular, the field inside the centri-
fuge has been subdivided into three axial zones: A) an internal central zone, characterized by
an essentially axial flow; B) two external zones, near the two caps of the centrifuge; C) two in-
termediate zones, of a length of the order of the radius. For the analytical solution the lineariz-
ed Navier-Stokes equations have been considered. The central zone flow is solved by separating
the independent variables; the corresponding eigenvalue problem has been solved numerically.
A series of eigensolutions which satisfy boundary conditions at the walls of the cylinder has
been calculated. An integral method for the superimposition of the above mentioned eigensolu-
tions is proposed in order to satisfy the conditions at the tops for thermally-controlled centri-
fuges.

Wiérdd réznych metod proponowanych do otrzymywania lzejszej skladowej wzbogacania przy
oddzieleniu izotopbw uranu stosowanie ultrawiréwki staje si¢ dzi§ coraz bardziej atrakcyjne,
podobnie jak w dyfuzji gazow proces ten jest bardzo uzytecznym i alternatywnym sposobem.
W niniejszej pracy badane sa gléwne cechy gazodynamiczne ultrawiréwki. W szczegolnosci pole
wewnatrz wir6wki podzielono wzgledem jej osi na trzy strefy: A) strefa wewnetrzna, centralna
scharakteryzowana przez gléwny przeptyw osiowy; B) dwie strefy zewnetrzne w poblizu dwéch
kotpakéw wirébwki,; C) dwie strefy posrednie o dlugosci rzgdu promienia. Celem uzyskania
rozwiazania analitycznego rozwazono zlinearyzowana posta¢ rébwnar Naviera-Stokesa. Prze-
plyw w strefie srodkowej wyznaczono metoda rozdzielenia zmiennych niezaleznych, przy czym
odpowiedni problem na wartodci wlasne rozwigzano numerycznie. Z rozwigzan wlasnych skon-
struowano szereg spelniajacy warunki brzegowe na $ciankach cylindra. Dla superpozycji wyzej
wspomnianych rozwigzan wlasnych zaproponowano metode calkowa, by méc spelni¢ warunki
na koficach sterowanych termicznie wirbwek.

Cpenu pasHbIX METOHNOB, NPENIOMEHHBIX M/IA MONydeHHA Oonee JIErKOro KOMIIOHEHTa obo-
ralleHHs MNpPH pasfelieHHH H30TONOB YPaHA, NMPHMEHEHHE YJIBTPauCHTPH(YTH CTAHOBHTCA
cerogHs Bee Gostee u Gostee aTPaKIMOHHBIM, H aHATIONMYHO KaK B Auddy3aun rasos 3ToT npoLuecc
AIBJIAETCHA TIOJIE3HBIM M AJIbTEPHATHBHEIM criocobom. B Hacrosuleit pabote HcilemoBaHk! IlaB-
Hble ra30MHaMHYecKue CBOMCTRA yabTpaleHTpudyri. B YacTHOCTH nosie BHYTPH LeHTPHbYTH
pasjieJieHo, Mo OTHOUIEHHIO K €€ OCH, Ha TPH 30HLI: A) IEHTpaNbHaA BHYTPEHHAsd 30HA OXa-
PaKTepH30BaHa TJIABHBIM OCEBBLIM TedeHuem: B) aBe BHelllHMe 30HBI BOMHM3M JBYX KOJITAKOB
neHTpHGYrH: B) nBe mpoMe)KyTOUYHBIE 30HEI, C JUIMHOM mMopAaKa paguyca. C 1ensio mosyde-
HHs aHAJIMTHYECKOT0 PeleHUs PACCMOTPEH JIMHeapH30BaHHEI B ypaBHenui Haepe-Croxca,
TeueHne B LEHTPaILHOH 30HE ONpEE/IEHO METOIOM PasfelieHHA HE3aBHCHMBIX IEPEMCHHBIX,
mpUYeM COOTBETCTBYIOLLAs 3ajada Ha coGCTBeHHBbIE 3HaYeHMsA pemreHa umcieHHo. K3 cob-
CTBEHHBIX pPeleHHH MOCTPOEH PAJK YIOBJIETBOPAIOUIMH I'DAaHHYHEIM YCIOBHEM HAa CTEHKax
uwInHapa. [ CynepnosuuMy Bblille YIOMAHYTHIX COGCTBEHHbIX PelUEHHIH NpeUIoyKeH HH-
TErpabHLIN METOX, UTOOhLI MOXKHO OBLIO YIOBAETBOPHTE YCIOBHSAM HAa KOHLAX YIPaBJIAEMbIX
TepMHYECKH UeHTprdYyT.
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g correction factor,
! half length of the centrifuge,
P pressure perturbation,



934 A. CeneDESE AND D. CuUNSOLO

velocity,

radial coordinate,

adimensional components of the velocity,

r/R,

z/R,

axial coordinate, evaluated from the plane of symmetry of the centrifuge,
conductivity of the gas,

degree Kelvin,

wR/V,

radial factor of the pressure,

radius of the centrifuge,

temperature perturbation,

[po(1)/o0(1)]*72,

radial factors of the velocity components,

n't eigenvalue,

cap zone thickness,

q(0, 0)/V,, perturbation parameter,

n/d(x),

A=y,

radial factor of the temperature,

/R,

viscosity of the gas,

density perturbation,

azimuthal coordinate,

angular velocity of the centrifuge,

rigid rotation dimensional pressure,

rigid rotation dimensional density,

average temperature of the gas, in degrees Kelvin,
adimensional temperature perturbation of the top of the centrifuge,
wR, peripheral speed,

Rogo()/,

@*R*o(1)/KT,,

M?,

zero point for the axial component of velocity.
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1. Introduction

AMONG the various proposed methods for the enrichment of uranium in its lightest iso-
tope U332°, ultra-centrifugation plays a fundamental role. In fact, this process is considered
to be the only concrete alternative to gaseous diffusion [1, 2, 3].

Uranium, brought to the gaseous state in the form of UFg, is centrifugated; conse-
quently, the axial zone is enriched in the lightest component while the peripheral zone is
enriched in the heaviest component.

In order to obtain appreciable results, the small difference between the molecular
weights of the two isotopes requires very elevated peripheral velocities (over 300 m/sec)
and a considerable series of stages.

If a recirculation is generated in the centrifuge a variation in the concentration is ob-
tained in the axial direction as well, [4], in such a way that by extracting from and injec-
ting the fluid in the proper zones, it is possible to increase the efficiency of each stage con-
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siderably. Gaseous recirculation can be generated by means of proper asymmetries of
a mechanical or thermic type (for example, by bringing the tops to different temperatures).

The practical impossibility of carrying out experimental measurements in the fluid-
dynamic field and the requirement of knowing such a field in order to utilize the tech-
nique, has greatly encouraged studies of a theoretical nature; however, such studies
are only in part able to face the problem in its entirety and complexity.

For this reason the fluid-dynamic field can be studied only at the price of making no-
table simplifications.

Afterwards, the thermically-controlled centrifuge will be taken into consideration by
assuming that the jump in temperature between the tops is such that the recirculation
velocities are small as compared to the peripheral velocity. Assuming as the perturbation
parameter, €, the ratio between the velocity of the fluid at the center of the centrifuge
w(0, 0) and the peripheral velocity wR and having developed all the quantities in a power
series of such a parameter, the equations which govern the phenomenon are of the first
order [14, 15]:

(1.1) V:-fq=0,
1 1 1
(1.2) —xp0i+2k A q+WV(fp) = T{?qu+ WV(V " q),
(1.3) ViT+ ;i q-Vf=0,
(1.4) p=p+T.

F1G. 1. General view of the centrifuge.
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hal

FiG. 2. Behaviour of the radial forces, of the velocity components and of the temperature in the three
zones.

In these equations the terms due to the effect of gravity have been neglected since,
due to the high rotational speeds at work, they prove to be a few orders of magnitude
inferior as compared to those due to centrifugal forces.

The centrifuge (Figs. 1 and 2) can be subdivided into three typical zones in the axial
direction.

A — central zone, with a substantially axial motion in which radial forces are absent.

B — cap-zone in which the buoyancy forces F;, of a thermal nature generate an in-
tense radial motion and, by means of the Coriolis force F,,, an azimuthal motion. This
motion in turn generates a radial Coriolis force, F,,, which is contrary to the effect of Fp;
the resultant of the radial forces is attenuated in the cap-zone within the thickness d(x)
(6(x) =~ :th/Re *f(x)); at the edge of this zone the radial velocity tends towards zero,
while the velocities and the temperatures remain different from zero [8, 9, 10, 11].

C — intermediate zone, of a thickness of the order of the radius of the centrifuge,
in which each one of the two radial forces (thermic and Coriolis) almost equal and opposite
to each other, is attenuated exponentially toward the central zone because of the friction
and the thermic conduction; in a parallel way the temperature and the azimuthal velocity
are reduced to zero exponentially.
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2. Intermediate zone

On the boundary between the intermediate and cap zones radial velocity goes nearly
to zero while the azimuthal velocity v remains finite v, (x).
Thus, after imposing u = 0, the azimuthal equation of motion becomes:

é [dv w© *v
(2.1) % (3% + ?) -—6’;—2— =0
with the following boundary conditions:
22) o(x,0) = 2(0, y) = v(1,y) = 0,
2.3) o(x, A) = v, (x).

By separating the variables through the position v = V(y) ¥(x), the following equations
are obtained:

2.4) ¥(y) = senhpy,
d (dY Y\, .0
(2.5) E(E'F? +B2Y = 0.

The solution of the differential equation (2.5) is the Bessel function J;(fx) of the first
kind and of the order of 1; from the wall conditions the acceptable values f§, for § are de-
duced

Jl(ﬁll) i 09

v is obtained by means of a superimposition

26) v = aysenh(,y) Jy(bu),
1

where the constants a, are to be calculated in order to satisfy the condition at the top (2.3).
Thus, with the hypothesis of zero radial velocity outside the cap-zone, the azimuthal velo-
city attenuates exponentially towards the center of the centrifuge

2.7 v ~ F,(x)e P+ F,(x)e P+ ...,

where f#; = 3.832 and 7 is the distance from the top. It can be deduced that © vanishes
in a distance of the order of the radius.

Since the coefficients which multiply the terms, where # appears in the azimuthal equi-
librium equation and in the energy equation, are very large, (Re and Ce being of the order
107) it is not possible to neglect them in the case in which u is not exactly zero.

The complete equations are the following:

a (w0 v\ &%
2| — S— _— —_— =
239 dx (6)( x)+ ay? <Reju,
2 2
2.9) L PREC PN

W xR
Furthermore, from the equation of the radial impulse it is deduced that
(2.10) 20—xT ~ 0
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. . ) . 2 e 3
since, except near the wall, it results that a—‘g = 0. This conclusion is true for the case

of the isolated side wall, while in the case of the wall having a fixed temperature, different
o 2 ; ap
from zero, it is no longer possible to neglect =
By combining the preceding equations, the following is obtained
0’T | 143ax* 1 0T  9°T _
ox2 ' l4+ax* x ox @ 0y*
where a = Ce/4Re; this equation is solved by separating the variables through the position

(2.12) T(x, y) = 0(x) - senh (8y),
where 0 satisfies the equation

@.11) 0,

1+ 3ax?

l' 20 —
Trax? x0 HHO=0.

(2.13) 0"+
Since it results that constant a is of the order of unity, Eq. (2.13) gives for 6(x) a behaviour
of the type similar to that of the Bessel function Jo(fx) of the first kind and of the order
of zero. The values of § are deduced from the conditions at the limits 7(1, y) = 0.

Since f; = 2.4 in this case also it is deduced that the temperature and thus, for Eq.
(2.10), the azimuthal velocity are attenuated exponentially in the axial direction, in a dis-
tance of the order of the radius.

3. Central zone

The central zone has been solved [15] by separating variables through the following
positions:
u = fBsinhfy - X(x),
v = Bsinh By - ¥(x),
3.1) w = coshfy- Z(x),
p = f~'sinhfy- P(x),
T = f~'sinhfy- 0(x).
Having projected the equation of motion along the axes, the system (1.1-1.4) becomes:

(3.2) X'+ %X+SexX+Z =0,
g 4
33) Se~1p' = Zﬁ""Y——x9+—(,6"X+ + Sex(SexX+2Z)-2Z'),
Ref 3
d|.,, Y i
(3.4 E(Y +?)+ﬁ Y = 2RefX,
wy gy Refy 1,
(3.5) Z +xz+ﬁz_ Se P+3ﬁ SexX,

(3.6) 6" + %94 B0+ B> CefxX =0,
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the boundary conditions being the following
X©0)=7Y(0) =20 =6(0) =0,
X)=Y)=21)=06()=0,

the resulting series of eigenvalues f has been evaluated in a previous work [15]. The cor-
responding eigenfunctions have to be combined in order to satisfy proper conditions
at the tops. As an example, the trends of the first eigenfunctions for w(x) are shown in
Fig. 3.
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FiG. 3. Radial behaviour of the first three eigenfunctions, relative to the axial velocity, ¥, = 300 m/sec.,
R =10 cm.

4. Cap-zone

From the previous observations it can be deduced that the axial velocity is essentially
independent of variable y, except in the cap-zone where it is brought to zero and that the
resulting radial force, expressed by the term (2v—xt) is essentially zero within the inter-
mediate zone. As a first approximation we could thus assume that the fluid dynamic be-
haviour in the intermediate zone does not influence the other zones of the centrifuge:
in this situation it is possible to connect the cap-zone directly to the central zone.

A criterion which allows to find a valid solution within the cap-zone and which, at the
same time, gives a superimposition criterion for the eigensolutions valid in the central
zone is suggested.

Let

N
4.1) Ue(x,Y) = D, A Xa(®)* fasinh oy,
1

15 Arch. Mech. Stos. 5-6/76
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N
4.1) Ve(x, ) = D, An Ya(x) Businh oy,

[cont.]

N
We(x, ) = D AuZu(x)coshf,y,
1
N
Pex,3) = D AuPa(x)f5 ' sinhf, y,
1

N
Tu(x,9) = D), Ax0a(x)B; " sinhf, y

be the solution in the central zone and
u(x,y) = u(x, y)—uy(x, 7),
o(x, y) = v(x, y)—vp(x, 1),
4.2) w(x, y) = we(x, y)~ws(x, 1),
p(x,») = pe(x, y)—po(x, 1),
T(x,y) = Te(x, y)+ To(x, 1)
be the complete solution within the cap-zone. The second terms of the second members
of (4.2) are corrective terms which are zero in the central zone, and make it possible to
verify the conditions at the top. In n = 4 it results that:
4.3) w=w=p=0,
while v, and T, do not turn out to be zero, in order to account for the already observed

fact that the azimuthal velocity and the temperature tend to zero exponentially through-
out the whole intermediate zone; the link between these last two quantities at = &

is given by:

20;,+be =0.

Since the equations used up to this point are linearized, they cannot be taken to study
the fluid dynamic behaviour near the edge (x = 1; y = 4); in order to account for this
and to aveid inconsistencies which may be brought about by the equations in this zone,
a g(x) factor equal to one in the whole field, except near the wall where it is rapidly
brought to zero, is introduced.

Having accounted for boundary layer simplifications, the equations in the cap zone
become

2
(4.4) 20% Re fu, = % g
2
4.5) Cex82fuy = _aa g;" g
6‘:{,, 2 2
4.6) oz = —&2Ref(xT,g2+2vpg),

where { = /d(x).
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The w, can later be deduced from the equation of continuity. For the quantities u;, v,
and T, within the cap-zone polynominal expansions are assumed such that u,(x, §) = 0
may result and the first and second derivatives of these quantities become zero at the ex-
treme boundary of this zone

Ty = D, + (D, + D3 0)(1-20)3,
4.7 vy, = E; +(E;+E30)(1-0)3,
Uy = (By+ B, L+ B3 %) (1-¢)>

The ten quantities &, By, Dy, Ex (k = 1, 2, 3) are determined by imposing first the follow-
ing three conditions at the tops:

N
Up(x,0) = D A Xo(x)* Businhf A = u.(x, 4),
1

N
438) 0(x,0) = Y, 4, Yo(x) - fusinhf, 4 = v,(x, ),

sinh ﬁ,,

Ty(x, 0) = Ty(x)— 2 A0, SR 1) - T, ).

If, as has already been stated, we forego giving a detailed description of the intermediate
zone (f, ~ 1) and we utilize only the first eigenvalues (8, < 1), we obtain

4.9) D,+D, =Ti(x), E,+E,=0, B, =0.

Three conditions are then given from the differential Egs. (4.4), (4.5) and (4.6) applied
to the top:

EZ*ES zoy

(4.10) D,-D; =0,
1 1 5 5
Bz—‘g Ba =EReafxTxg ¥

one condition by applying (4.6) to the boundary of the cap-zone
(4.11) xD,g+2E, =0.

Note that Eqs. (4.4) and (4.5) are identically satisfied at { = 1 from the polynominal po-
sitions assumed.

The last three conditions are obtained by integrating Eqs. (4.4), (4.5) and (4.6) within
the cap zone

Re 8% (3B, +B3) = 60E, 2,
@.12) 8f Cex(3B,+ Bs) = 120 D,g?,
1082 = 362 RCf(xquz"i‘ZE;q).

5%
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From the preceding relationships it results that

D, = JReTA
1™ 4Re+Cex?’
Cex?D,
D:=Ds = e
E,=E;=—E =05xD,g,
Bl = 09
B, = 0.3x Red*fT, g%,
B; =4 B,[3,
6% Ref = _ﬂL ;
1/39(4 Re +Ce x?)

Knowing B,(x) it is possible to calculate the coefficients 4, which appear in Eq. (4.1)
from the continuity equation

ouy  uy 20, _ OWp
4.13) 'é?'l"?‘l*M XUy = 6—?3
that is, by integrating
4.19) G'+§+M’xG+w,,(x,0)=0
with
oy 13
(4.15) G = Uf updn = 180 B,(x) 6(x)
assuming that
(4.16) 70 [ L ST L
’ T \dx T x
and keeping in mind that wy(x, 0) = w.(x, 4) from (4.1) the following is obtained:
N
@4.17) D Acosh (B D) Zo(x) = H(x)
1
this relationship has been solved by means of the method of least squares
1 N
(4.18) 12, 4ucosh (8, ) Z,(x)— HG)| xdx = min.
0T
5. Results

As an example, the equations set forth have been applied to a centrifuge having a 20 cm
diameter and a length of 2 m.

The centrifuge rotates at the peripheral velocity of 300 m/sec with a peripheral pres-
sure of 0.5 atmospheres, an average temperature of 330°K and 20°K difference of temper-
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ature between the two tops; the temperatures have been assumed to be uniform at the
tops; it is not difficult, however, to examine cases in which this hypothesis of uniformity
does not apply.

In Fig. 3 the radial trends of the first three eigenfunctions relating to the axial velocity
are shown. Figure 4 gives the actual trend of the axial velocity; this quantity becomes zero
at r = 9.6 cm and reaches a maximum in the periphery of 13.5 cm/sec. Figure 5 gives the
local flow rate (rgw) as a function of the radius; this flow rate has a maximum of
0.7 gr/(sec. cm), corresponding to a total recirculating flow rate of

R
f2:rrgwdr ~ 2gr/sec.
Ro

In Fig. 6 the thickness d(x), which varies from 1.88 mm. at the center to 0.1 mm at
the periphery, is shown. Finally, Fig. 7 shows the temperature trend and the radial and
azimuthal components of the velocity within the cap-zone, at the station r = 9.8 cm, the
point at which the maximum axial velocity is reached in the central zone.

This study should be considered as the first step towards the complete solution which
will take into account the intermediate zone as well.
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