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Water wave stability
P.J. BRYANT (CHRISTCHURCH)

THE first approximation to water wave motion is the linear theory of dispersive infinitesimal
waves. Higher approximations for waves of small but finite amplitude describe non-linear in-
teraction effects which are weak, but which may cause slow changes in amplitude and phase
velocity. In the linear theory, any sinusoidal wave propagates over water of uniform depth with
a constant velocity without change of form. When non-linear effects are included, it is only the
permanent waves, which include Stokes waves and cnoidal waves, that propagate with a con-
stant velocity without change of form. Stokes waves of almost all wavelengths have been shown
by Benjamin and others to be unstable to sideband disturbances. Cnoidal waves, which are
permanent waves on shallow water, are stable to most but not all disturbances. Even when
a cnoidal wave is stable, the margin of stability can be made to be so small that small disturb-
ances cause large changes to the wave properties. It is found that the large changes are periodic,
indicating that in such cases cnoidal waves are stable in a non-linear sense.

Pierwszym przyblizeniem ruchu falowego w wodzie jest liniowa teoria infnitezymalnych fal
dyspersyjnych. Wyisze przyblizenia dla fal o malej lecz skoriczonej amplitudzie opisuja nieli-
niowe efekty oddzialywania, ktore cho¢ stabe moga powodowaé¢ powolne zmiany amplitudy
i predkoscei fazy. W teorii liniowej dowolna fala sinusoidalna w wodzie na jednakowej glebokosci
rozprzestrzenia si¢ ze stala predkoscia bez zmiany postaci. Gdy dodamy efekty nieliniowe je-
dynymi falami rozprzestrzeniajacymi sig ze stalg predkoscia i bez zmiany postaci s fale o ksztal-
cie stalego nieskonczonego impulsu. Do nich naleza fale Stokesa i fale knoidalne. Benjamin
i inni wykazali, ze fale Stokesa o prawie wszystkich dlugoséciach fal s3 niestateczne dla zaburzen
z pasma rezonansowego (sideband). Fale knoidalne, ktore sa falami ustalonymi na plytkiej
wodzie, sa stateczne dla wiekszosci lecz nie wszystkich zaburzen. Nawet wtedy, gdy fala kno-
idalna jest stateczna, zakres stateczno$ci mozna uczyni¢ tak maly, ze male zaburzenia beda
powodowaé duze zmiany wilasnosci fal. Wykazano, ze duze zmiany sa periodyczne, co wskazuje,
#e w takich przypadkach fale knoidalne sa stateczne w sensie nieliniowym.

ITepBbiM npubamKeHHeM BOTHOBOTO JBHKEHHUA B BoJle ABJIACTCA MUHeHHas Teopusa HHOHHK-
TE3UMANBHBIX JHCTEPCHBIX BOJIH. BhICiliHe npHOAHMKEHUA ONA BOJH C Majoi, HO KOHEYHOIl
aMIUIMTYI0H ONMCHLIBAIOT HeJIHMHeliHble 3((deKThl B3auMONEHCTBHA, KOTOpbIe, XOTA cialble,
MOTYT BbI3bIBaTh MEIIEHHBIE H3MEHEHHA aMIIMTY/bl ¥ CKOpocTH (a3bl. B smHeiinoit Teopun
NPOM3BOJILHAST CHHYCOMJAJbHAA BOJNHA B BOJE HA OAMHAKOBOK ry0MHe pacnpocTpaHAercs
C MOCTOAHHOMN CKOpOCThIO Oe3 uameHenus suna. Korga noGasum HenmHeliHble 3ddeKTh! equH-
CTBEHHBLIMH BOJIHAMH PAclpOCTPAaHAIOLIMMHUCA C IOCTOAHHONW CKOPOCTBIO M 663 M3MeHEeHMA
BHJIa ABJIAIOTCA BOJIHBL O ¢hopMe mmocToaHHOro GeckoHeuHoro ummyieca. K Hum npunagieyxar
BoJHbl CTOKCa H KHOM/JA/IbHEIE BOJIHBI. BeHBAMHH H JApYTHe NOKasaiH, uTo BosHBI CroKCca,
0 MOYTH BCeX JUIMHAX BOJIH, HEVCTOWYMBBI /I8 BO3SMYIIECHHII M3 PE30HAHCHOTO AMANa3oHa.
KuonpaneHble BOJHBI, KOTOPbIE ABJIAIOTCA YCTAHOBHMBIUHMHCH BOJHAMH HA MeEJIKOH BOJE,
ycroiuuBel 4717 OONBIIMHCTBA HO HE A Beex BosmymleHwuii. [[ake Torga, Korjga KHOMAAIb-
Has BOJIHA YCTOIYMBA, 00J1aCTh YCTOMYHBOCTH MOYKHO CIEJIaTh TAK MAJIOi, YTO MaJIble BO3MYILLe-
Husg GyayT BbI3bIBATH Gosbinme M3ameHeHus cBolicTB BonH. [lokazano, uro Gonbline uame-

HEeHMA MEPHOAMUYECKH, UTO YKA3bIBAaeT HA TO, YTO B TAKHX CIy4asdX KHOHJA/IbHble BOJHBL
VCTOHYMBLI B HEJIMHEHHOM CMBICIIE.

1. Introduction

A PERIODIC wave train on water of uniform depth may be unstable in the sense of a loss
of periodicity, or as a breaking of waves. The former effect is known to occur for small
but finite amplitudes, while the latter is a large amplitude phenomenon. It is the former
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effect which is discussed here. Much of the recent work on wave propagation -and
stability is described in the book by WHITHAM [6].

The linear theory for water waves of infinitesimal amplitude admits sinusoidal solu-
tions, each propagating unchanged on the water surface. When non-linear interactions
between wave components are included in the model, the class of permanent waves which
propagate unchanged on the water surface is more restricted. Stokes waves are permanent
waves on water of uniform depth, their main defining property being that the n-th har-
monic is proportional to the n-th power of the amplitude to wavelength ratio of the wave.
There is the additional restriction that for Stokes waves on shallow water, the amplitude
to wavelength ratio must be very small compared with the depth to wavelength ratio,
which means in effect that Stokes waves on shallow water are only of infinitesimal ampli-
tude. The permanent periodic waves on shallow water of small but finite amplitude are
called cnoidal waves.

A sinusoidal wave component on the water surface may be represented by the real
part of a(k) expi(k. x—wt) where k is the wave number on the mean horizontal water
surface and w = w(k) is the frequency given in terms of k by the dispersion relation.
If two or more wave components interact, the sum and difference components k, +k,
are generated with frequencies’'w, +w,. Resonant forcing occurs if the forced frequency
of one of the generated components is the same as its natural frequency, that is, for
example,

(l.l) W, +w, = w(k1+kz).

Such resonant interaction is the basis of the instability of Stokes waves described by
BENJAMIN [1] and others. If the harmonics of a Stokes wave are denoted by k, 2k, ...,

then a first approximation to the frequencies of the harmonics is w(k), 2w(k), .... For
a sideband modulation » of the wave, where |%| < |k|, resonant forcing occurs when
(1.2) wk=x)+wk+x) = 2w(k).

More accurately, the dispersion relation is dependent on wave amplitude as well as wave-
number when non-linear interactions are involved, so provided the amplitude disper-
sion does not nullify the resonance, instability occurs in the neighbourhood of the curve
in wave number space described by Eq. (1.2). BENJAMIN [1] showed that for disturbances
» parallel to the wave number k on water of uniform depth A, such instability exists
only when kh > 1.363. BENNEY and RoOSKES [2] generalised this result by showing that
instability could also occur for smaller values of kk when % is oblique to k.

The dispersion relation for infinitesimal waves of wave number k propagating in a fixed
direction on water of uniform depth 4 is

o = (gktanhkh)'/?.
For waves on shallow water, kh <€ 1, and

(1.3) w = kco[l = —lls— (kh)2+0(kh)‘],

where ¢, = (gh)'/? is the linear long wave velocity. It follows that
(1.4) w+w, = ok, +k,) x (1+0(kh)?),
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so that as kh — 0, the interaction between two wave components tends towards the
resonant interaction of Eq. (1.1). This type of interaction is described as near-resonant.
Although permanent waves are linearly stable to periodic disturbances in the same direc-
tion, the near-resonant interactions that occur between the periodic disturbance and all
the harmonics of a cnoidal wave make the margin of stability to such a disturbance
vanishingly small [5].

2. Theory

When the water surface consists of a number of discrete Fourier wave components,
the surface displacement may be written

@2.1) n(x, 1) = R D Bk, Hyexpi(k. x~a(k)r),

where the time dependence of B(k, t) is due to the non-linear interactions between wave
components. A permanent wave propagating with wave velocity ¢ in the x-direction has
the form

2.2) n(x, 1) = R D a(k)expik(x—ct).

In considering the stability of such a wave, a more convenient Fourier representation
than Eq. (2.1) for the disturbed wave is

(2.3) n(x, 1) = R D) Ak, t)expik. (x—ct).

It may be shown then that the wave amplitudes A(k, r) satisfy

dA (k)

(2.4) —i(k.c—o®))AK) = —ie Y SU, m)A()A(m)

l+m=k

~ie ) R(, mAQ)A*(m)+0(e?),
1m=k
where the coefficients S(1,,m), R(l, m) are functions of 1, m, w(l), w(m), and kA [5], and*
denotes complex conjugate.

The near resonant interaction between wave components on shallow water [Eq. (1.4)]
leads to significant growth of the harmonics of those components present, a property
for which experimental evidence is available [3]. Although the set of equations (2.4)
may be solved analytically when a small number of wave components are present, the
generation and near-resonant growth of further wave components makes it necessary,
in general, to use a numerical solution for waves on shallow water [4].

The permanent waves are those solutions of Egs. (2.4) for which A(k, t) = a(k) with
dA(k)/dt = 0. The linear stability of the permanent waves is investigated by writing
Ak, 1) = a(k}+A(k t) and linearising in A. The detailed analysis for the case of dis-
turbances parallel to the permanent wave (scalar k) has been described elsewhere [5].
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3. Examples

Some of the stability properties of cnoidal waves are now described for two partic-
ular examples, (i) ¢ = af/h = 0.05, h?/I* = 0.2 and (ii) ¢ = a/h = h*[I* = 0.05, where
a is wave amplitude and 2zl is wavelength. The first contains 6 harmonics exceeding
10~* in magnitude, while the second contains 10 harmonics exceeding the same magnitude.

Equation (1.2) predicts oblique instability for the first permanent wave when, for
example, || = 0.1// and » makes an angle 0.127x with the wave direction. Maximum
instability for |%| = 0.1// is found numerically to occur at 0.1276zx, when a disturbance
of initial amplitude 4 grows according to

(3.1) A(x,t) = @[(0.07cosh0.001 &£+0.23 isinh0.001¢t)exp(0.13et)
+0.93exp(—0.23ie1)],

where ¢ is measured in units of //c,. This is to be compared with the near-resonant sta-
bility of the same permanent wave when » = 0.01// parallel to the wave, when the side-
band wave amplitudes are found to be

A(0.99/1, t) = @[—75.9exp(0.003 ier) + 65.5exp(—0.004iet) + 10.4exp(—0.020 iet)],
32
A(1.01/1, t) = @[75.6exp(—0.003 ist) — 64.2exp(0.004 iet)—11.4exp(0.020 iet))].

The error in Egs. (2.4) is 0(¢?), which means that the solutions in Egs. (3.1), (3.2) are
of doubtful validity for times ¢ exceeding &2t = 0(1). Within this time interval, the ampli-
fication in the near-resonant case is over 100 times greater than in the resonant case. A small
but finite parallel disturbance is amplified to such an extent that non-linear modification
of the permanent wave occurs readily, dominating any resonant interaction due to the
presence of an oblique disturbance.

Resonant instability is found not to occur for the more non-linear second example
described above. Although Eq. (1.2) still predicts the possibility of instability, the modi-
fication of the linear dispersion relation by the increased number of harmonics is such
that resonance does not occur. The near-resonant interaction between a parallel disturb-
ance and the permanent wave is stronger than in the first example because the permanent
wave in the second example has more harmonics closer to resonance. A typical interaction
is illustrated in the figure. A disturbance of 0.1 times the amplitude and 4 times the wa-
velength is applied in phase with the permanent wave. The first crest of the disturbed wave
train is increased in height and therefore speed, the second and fourth crests retain their
undisturbed height and speed, and the third crest is reduced in height and speed. Al-
though the disturbance is small enough that a linear perturbation analysis describes the
initial behaviour of the wave train, consecutive wave crests become sufficiently close that
a non-linear interaction occurs between them: The non-linear interaction takes the form
of wave crests passing through one another, the property being the same as that found
recently for solitary waves [6].
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