626.

ON THE GENERAL DIFFERENTIAL EQUATION $\frac{d x}{\sqrt{ } X}+\frac{d y}{\sqrt{ } Y}=0$, WHERE X, Y ARE THE SAME QUARTIC FUNCTIONS OF x, y RESPECTIVELY.
[From the Proceedings of the London Mathematical Society, vol. viII. (1876-1877), pp. 184-199. Read February 8, 1877.]

Write $\Theta=a+b \theta+c \theta^{2}+d \theta^{3}+e \theta^{4}$, the general quartic function of θ; and let it be required to integrate by Abel's theorem the differential equation

$$
\frac{d x}{\sqrt{ } X}+\frac{d y}{\sqrt{ } Y}=0
$$

We have

$$
\left|\begin{array}{llll}
x^{2}, & x, & 1, & \sqrt{ } X \\
y^{2}, & y, & 1, & \sqrt{ } Y \\
z^{2}, & z, & 1, & \sqrt{ } Z \\
w^{2}, & w, & 1, & \sqrt{ } W
\end{array}\right|=0
$$

a particular integral of

$$
\frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{ }}+\frac{d z}{\sqrt{ } Z}+\frac{d w}{\sqrt{W}}=0
$$

and consequently the above equation, taking therein z, w as constants, is the general integral of

$$
\frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{Y}}=0
$$

viz. the two constants z, w must enter in such wise that the equation contains only a single constant; whence also, attributing to w any special value, we have the general integral with z as the arbitrary constant.

626] ON THE GENERAL DIFFERENTIAL EQUATION $\frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{ } Y}=0$.
Take $w=\infty$; the equation becomes

$$
\left|\begin{array}{cccc}
x^{2}, & x, & 1, & \sqrt{ } X \\
y^{2}, & y, & 1, & \sqrt{ } Y \\
z^{2}, & z, & 1, & \sqrt{ } Z \\
1, & 0, & 0, & \sqrt{ } e
\end{array}\right|=0
$$

a relation between x, y, z which may be otherwise expressed by means of the identity

$$
e\left(\theta^{2}+\beta \theta+\gamma\right)^{2}-\left(e \theta^{4}+d \theta^{3}+c \theta^{2}+b \theta+a\right)=(2 \beta e-d)(\theta-x)(\theta-y)(\theta-z),
$$

or, what is the same thing,

$$
\begin{aligned}
& e\left(2 \gamma+\beta^{2}\right)-c=-(2 \beta e-d)(x+y+z) \\
& e 2 \beta \gamma-b=(2 \beta e-d)(y z+z x+x y) \\
& e \gamma^{2}-a=-(2 \beta e-d) x y z
\end{aligned}
$$

where β, γ are indeterminate coefficients which are to be eliminated.
Write

$$
x^{2}-\frac{\sqrt{ } X}{\sqrt{ } e}=P, \quad y^{2}-\frac{\sqrt{ } Y}{\sqrt{ } e}=Q
$$

then we have

$$
\beta x+\gamma+P=0, \quad \beta y+\gamma+Q=0
$$

giving

$$
\beta: \gamma: 1=Q-P: P y-Q x: x-y .
$$

Substituting these values in the first of the preceding three equations, we have

$$
e \frac{2(P y-Q x)(x-y)+(Q-P)^{2}}{(x-y)^{2}}-c=-\left\{\frac{2(Q-P) e}{x-y}-d\right\}(x+y+z)
$$

that is,

$$
e\left\{\frac{2(Q y-P x)}{x-y}+\frac{(Q-P)^{2}}{(x-y)^{2}}+\frac{2(Q-P)}{x-y} z\right\}=c+d(x+y+z)
$$

or, reducing by

$$
\begin{gathered}
Q y-P x=y^{3}-x^{3}+\frac{x \sqrt{ } X-y \sqrt{ } Y}{\sqrt{ } e} \\
Q-P=y^{2}-x^{2}+\frac{\sqrt{ } X-\sqrt{ } Y}{\sqrt{ } e},=y^{2}-x^{2}+(y-x) \frac{M}{\sqrt{ } e}, \text { if } M=\frac{\sqrt{ } X-\sqrt{ } Y}{x-y},
\end{gathered}
$$

this is

$$
\begin{aligned}
& e\left\{\frac{2(x \sqrt{ } X-y \sqrt{ } Y)}{\sqrt{ } e(x-y)}+2 x y+\frac{M^{2}}{e}-2(x+y) \frac{M}{\sqrt{ } e}-2(x+y) z+2 z \frac{M}{\sqrt{ } e}\right\} \\
&=c+d(x+y+z)+e(x+y)^{2}
\end{aligned}
$$

We have Euler's solution in the far more simple form

$$
M^{2}=C+d(x+y)+e(x+y)^{2}
$$

C. IX.
where C is the arbitrary constant. It is to be observed that, in the particular case where $e=0$, the first equation becomes

$$
M^{2}=c+d(x+y+z) ;
$$

and the two results for this case agree on putting $C=c+d z$.
But it is required to identify the two solutions in the general case where e is not $=0$. I remark that I have, in my Treatise on Elliptic Functions, Chap. xiv., further developed the theory of Euler's solution, and have shown that, regarding C as variable, and writing

$$
\left(\mathfrak{E}=a d^{2}+b^{2} e-2 b c d+C\left[-4 a e+b d+(C-c)^{2}\right],\right.
$$

then the given equation between the variables x, y, C corresponds to the differential equation

$$
\frac{d x}{\sqrt{ } X}+\frac{d y}{\sqrt{ } Y}+\frac{d C}{\sqrt{\sqrt{C}}}=0
$$

a result which will be useful for effecting the identification. The Abelian solution may be written

$$
e\left\{\frac{2(x \sqrt{ } X-y \sqrt{ } Y)}{\sqrt{e}(x-y)}-x^{2}-y^{2}+\frac{M^{2}}{e}-2(x+y) \frac{M}{\sqrt{ } e}\right\}-c-d(x+y)=z\{d+2 e(x+y)-2 M \sqrt{ } e\}
$$

and substituting for M its value, and multiplying by $(x-y)^{2}$, the equation becomes

$$
\begin{aligned}
& 2 \sqrt{ } e(x-y)(x \sqrt{ } X-y \sqrt{ } Y)-e\left(x^{2}+y^{2}\right)(x-y)^{2}+(\sqrt{ } X-\sqrt{ } Y)^{2} \\
& -2\left(x^{2}-y^{2}\right)(\sqrt{ } X-\sqrt{ } Y) \sqrt{ } e-c(x-y)^{2}-d(x+y)(x-y)^{2} \\
& =z(x-y)\left\{d(x-y)+2 e\left(x^{2}-y^{2}\right)-2(\sqrt{ } X-\sqrt{ } Y) \sqrt{ } e\right\} .
\end{aligned}
$$

On the left-hand side, the rational part is

$$
X+Y+c\left(-x^{2}+2 x y-y^{2}\right)+d\left(-x^{3}+x^{2} y+x y^{2}-y^{3}\right)+e\left(-x^{4}+2 x^{3} y-2 x^{2} y^{2}+2 x y^{3}-y^{4}\right)
$$

which, substituting therein for X, Y their values, becomes

$$
=2 a+b(x+y)+c .2 x y+d x y(x+y)+e .2 x y\left(x^{2}-x y+y^{2}\right)
$$

and the irrational part is at once found to be

$$
=2 \sqrt{ } e(x-y)(x \sqrt{ } Y-y \sqrt{ } X)-2 \sqrt{X Y} .
$$

The equation thus is

$$
z=\frac{\left\{\begin{array}{c}
2 a+b(x+y)+c \cdot 2 x y+d x y(x+y)+e .2 x y\left(x^{2}-x y+y^{2}\right) \\
+2 \sqrt{ } e(x-y)(x \sqrt{ } Y-y \sqrt{ } X)-2 \sqrt{X Y}
\end{array}\right\}}{(x-y)\left\{d(x-y)+2 e\left(x^{2}-y^{2}\right)-2(\sqrt{ } X-\sqrt{ } Y) \sqrt{ } e\right\}},
$$

which equation is thus a form of the general integral of $\frac{d x}{\sqrt{ } X}+\frac{d y}{\sqrt{ } V}=0$, and also a particular integral of $\frac{d x}{\sqrt{ } X}+\frac{d y}{\sqrt{ } Y}+\frac{d z}{\sqrt{ } Z}=0$.

Multiplying the numerator and the denominator by

$$
d(x-y)+2 e\left(x^{2}-y^{2}\right)+2(\sqrt{ } X-\sqrt{ } Y) \sqrt{ } e
$$

the denominator becomes

$$
=(x-y)^{3}\left[\{d+2 e(x+y)\}^{2}-4 e\left(\frac{\sqrt{ } X-\sqrt{ } Y}{x-y}\right)^{2}\right]
$$

which, introducing herein the C of Euler's equation, is

$$
=(x-y)^{3}\left(d^{2}-4 e C\right) .
$$

We have therefore

$$
\begin{aligned}
& z(x-y)^{3}\left(d^{2}-4 e C\right)=\left\{2 a+b(x+y)+c .2 x y+d x y(x+y)+e .2 x y\left(x^{2}-x y+y^{2}\right)\right. \\
& \quad+2 \sqrt{ } e(x-y)(x \sqrt{ } Y-y \sqrt{ } X)-2 \sqrt{ } X Y\} \times\left\{d(x-y)+2 e\left(x^{2}-y^{2}\right)+2 \sqrt{ } e(\sqrt{ } X-\sqrt{ } Y)\right\}
\end{aligned}
$$

Using © to denote the same value as before, the function on the right-hand is, in fact,

$$
=(x-y)^{3}\{2 b e-c d+d C+2 \sqrt{ } e \sqrt{ }(\varsigma\} ;
$$

and, this being so, the required relation between z, C is

$$
z\left(d^{2}-4 e C\right)=\{2 b e-c d+d C+2 \sqrt{ } e \sqrt{ }(\mathbb{C}\} .
$$

To prove this, we have first, from the equation

$$
\left(\frac{\sqrt{ } X-\sqrt{ } Y}{x-y}\right)^{2}=C+d(x+y)+e(x+y)^{2}
$$

to express © as a function of x, y. This equation, regarding therein C as a variable, gives

$$
\frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{ } Y}+\frac{d C}{\sqrt{\sqrt{C}}}=0
$$

and we have therefore

$$
-\sqrt{ } \mathfrak{C}=\sqrt{ } X \frac{d C}{d x}=\sqrt{ } Y \frac{d C}{d y}
$$

viz. $\sqrt{ } X \frac{d C}{d x}$ will be a symmetrical function of x, y. Putting, as before

$$
M=\frac{\sqrt{ } X-\sqrt{ } Y}{x-y}
$$

we have

$$
C=M^{2}-d(x+y)-e(x+y)^{2},
$$

and thence

$$
\frac{d C}{d x}=2 M \frac{d M}{d x}-d-2 e(x+y)
$$

We have

$$
\frac{d M}{d x}=\frac{1}{x-y} \frac{X^{\prime}}{2 \sqrt{ } X}-\frac{\sqrt{ } X-\sqrt{ } Y}{(x-y)^{2}},
$$

and hence

$$
\begin{aligned}
\sqrt{(\mathcal{S}}(x-y)^{3}= & -\sqrt{ } X(x-y)^{3}\left\{2 M \frac{d M}{d x}-d-2 e(x+y)\right\} \\
= & -(x-y) X^{\prime}(\sqrt{ } X-\sqrt{ } Y)+2(X+Y-2 \sqrt{X Y}) \sqrt{ } X \\
& +(d+2 e \overline{x+y})(x-y)^{3} \sqrt{ } X \\
= & {\left[(x-y) X^{\prime}+2 X+2 Y+(d+2 e \overline{x+y})(x-y)^{3}\right] \sqrt{ } X } \\
& +\left[(x-y) X^{\prime}-4 X\right] \sqrt{ } Y .
\end{aligned}
$$

We obtain at once the coefficient of $\sqrt{ } Y$, and with little more difficulty that of $\sqrt{ } X$; and the result is

$$
\begin{aligned}
\sqrt{ }\left((x-y)^{3}=\right. & -\left[4 a+3 b x+2 c x^{2}+d x^{3}+y\left(b+2 c x+3 d x^{2}+4 e x^{3}\right)\right] \sqrt{ } Y \\
& +\left[4 a+3 b y+2 c y^{2}+d y^{3}+x\left(b+2 c y+3 d y^{2}+4 e y^{3}\right)\right] \sqrt{ } X .
\end{aligned}
$$

We have also

$$
\begin{aligned}
C(x-y)^{2} & =(\sqrt{ } X-\sqrt{ } Y)^{2}-d(x+y)(x-y)^{2}-e(x+y)^{2}(x-y)^{2} \\
& =X+Y-d\left(x^{3}-x^{2} y-x y^{2}+y^{3}\right)-e\left(x^{4}-2 x^{2} y^{2}+y^{4}\right)-2 \sqrt{X Y} \\
& =2 a+b(x+y)+c\left(x^{2}+y^{2}\right)+d x y(x+y)+2 e x^{2} y^{2}-2 \sqrt{ } X \bar{Y}
\end{aligned}
$$

or, say

$$
\begin{aligned}
C(x-y)^{3}=2 a(x-y)+b\left(x^{2}-y^{2}\right)+c\left(x^{3}-x^{2} y\right. & \left.+x y^{2}-y^{3}\right)+d x y\left(x^{2}-y^{2}\right) \\
& +2 e x^{2} y^{2}(x-y)-2(x-y) \sqrt{X \boldsymbol{Y}} .
\end{aligned}
$$

We can hence form the expression of

$$
(x-y)^{3}\{2 b e-c d+d C+2 \sqrt{ } e \sqrt{ }(\mathfrak{C}\}
$$

viz. this is

$$
\begin{gathered}
=(2 b e-c d)(x-y)^{3}+2 a d(x-y)+b d\left(x^{2}-y^{2}\right)+c d\left(x^{3}-x^{2} y+x y^{2}-y^{3}\right)+d^{2} x y\left(x^{2}-y^{2}\right) \\
+2 d e x^{2} y^{2}(x-y)-2 d(x-y) \sqrt{X Y} \\
+2 \sqrt{ } e\left\{\left[-\left(4 a+3 b x+2 c x^{2}+d x^{3}\right)-y\left(b+2 c x+3 d x^{2}+4 e x^{3}\right)\right] \sqrt{ } Y\right. \\
\left.+\left[\left(4 a+3 b y+2 c y^{2}+d y^{3}\right)+x\left(b+2 c y+3 d y^{2}+4 e y^{3}\right)\right] \sqrt{ } X\right\},
\end{gathered}
$$

and this should be

$$
\begin{aligned}
=\{2 a+ & b(x+y)+c .2 x y+d x y(x+y)+e .2 x y\left(x^{2}-x y+y^{2}\right) \\
& +2 \sqrt{ } e(x-y)(x \sqrt{ } Y-y \sqrt{ } X)-2 \sqrt{X} Y\} \times\left\{d(x-y)+2 e\left(x^{2}-y^{2}\right)+2 \sqrt{ } e(\sqrt{ } X-\sqrt{ } Y)\right\}
\end{aligned}
$$

The function on the right-hand is, in fact,

$$
\begin{aligned}
=\{ & \left\{2 a+b(x+y)+c .2 x y+d x y(x+y)+e .2 x y\left(x^{2}-x y+y^{2}\right)-2 \sqrt{X Y}\right\} \\
& \times\left\{d(x-y)+2 e\left(x^{2}-y^{2}\right)\right\}+4 e(x-y)(\sqrt{ } X-\sqrt{ } Y)(x \sqrt{ } Y-y \sqrt{ } X) \\
+ & 2 \sqrt{ } e(\sqrt{ } X-\sqrt{ } Y)\left\{2 a+b(x+y)+c .2 x y+d x y(x+y)+e .2 x y\left(x^{2}-x y+y^{2}\right)-2 \sqrt{ } X Y\right\} \\
& +2 \sqrt{ } e(x-y)(x \sqrt{ } Y-y \sqrt{ } X)\left\{d(x-y)+2 e\left(x^{2}-y^{2}\right)\right\},
\end{aligned}
$$

$$
\begin{equation*}
\text { on the general differential equation } \frac{d x}{\sqrt{ } X}+\frac{d y}{\sqrt{ } Y}=0 \text {. } \tag{597}
\end{equation*}
$$

viz. this is

$$
\begin{aligned}
& =\left\{2 a+b(x+y)+c .2 x y+d x y(x+y)+e .2 x y\left(x^{2}-x y+y^{2}\right)\right\} \\
& \times\left\{d(x-y)+2 e\left(x^{2}-y^{2}\right)\right\}+4 e(x-y)(-x Y-y X) \\
& \quad-2 \sqrt{\overline{X Y}\left\{d(x-y)+2 e\left(x^{2}-y^{2}\right)\right\}+4 e(x-y)(x+y) \sqrt{X} \bar{Y}} \\
& +2 \sqrt{ } e\left\{\begin{array}{c}
\sqrt{ } X\left\{2 a+b(x+y)+c \cdot 2 x y+d x y(x+y)+e \cdot 2 x y\left(x^{2}-x y+y^{2}\right)\right. \\
\left.+2 Y-(x-y) y\left[d(x-y)+2 e\left(x^{2}-y^{2}\right)\right]\right\} \\
-\sqrt{ } Y\left\{2 a+b(x+y)+c .2 x y+d x y(x+y)+e .2 x y\left(x^{2}-x y+y^{2}\right)\right. \\
\left.+2 X-(x-y) x\left[d(x-y)+2 e\left(x^{2}-y^{2}\right)\right]\right\}
\end{array}\right\},
\end{aligned}
$$

which is, in fact, equal to the expression on the left-hand side.
To complete the theory, we require to express $\sqrt{ } Z$ as a function of x, y. It would be impracticable to effect this by direct substitution of the foregoing value of z; but, observing that the value in question is a solution of $\frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{ } Y}+\frac{d z}{\sqrt{ } Z}=0$, or, what is the same thing, that $\frac{1}{\sqrt{ } X}+\frac{1}{\sqrt{ } Z} \frac{d z}{d x}=0, \frac{1}{\sqrt{ } Y}+\frac{1}{\sqrt{ } Z} \frac{d z}{d y}=0$, we can from either of these equations, considering therein z as a given function of x, y, calculate $\sqrt{ } Z$.

Writing for shortness

$$
z=\frac{J-2 \sqrt{ } e y(x-y) \sqrt{ } X+2 \sqrt{ } e x(x-y) \sqrt{ } Y-2 \sqrt{X Y}}{R-2 \sqrt{ } e(x-y) \sqrt{ } X+2 \sqrt{ } e(x-y) \sqrt{ } X}
$$

where

$$
\begin{gathered}
R=(x-y)^{2}\{d+2 e(x+y)\} \\
J=2 a+b(x+y)+2 c x y+d x y(x+y)+2 e x y\left(x^{2}-x y+y^{2}\right)
\end{gathered}
$$

or, if for a moment $z=\frac{N}{D}$, then

$$
\frac{d z}{d x}=\frac{1}{D^{2}}\left(D \frac{d N}{d x}-N \frac{d D}{d x}\right)=-\frac{\sqrt{ } Z}{\sqrt{ } X}
$$

that is,

$$
\sqrt{ } Z=\frac{\sqrt{ } X}{D^{2}}\left(N \frac{d D}{d x}-D \frac{d N}{d x}\right),=\frac{\Omega}{D^{2}} \text { suppose }
$$

or, writing for shortness $X^{\prime}, R^{\prime}, J$ to denote the derived functions $\frac{d X}{d x}, \frac{d R}{d x}, \frac{d J}{d x}$, (Y^{\prime} is afterwards written to denote $\frac{d Y}{d y}$, but as the final-formulæ contain only $X^{\prime},=\frac{d X}{d x}$, and $Y^{\prime},=\frac{d Y}{d y}$, this does not occasion any defect of symmetry), we find

$$
\begin{aligned}
\Omega= & N\left\{R^{\prime} \sqrt{ } X-2 \sqrt{ } e X-\sqrt{ } e(x-y) X^{\prime}+2 \sqrt{ } e \sqrt{ } X Y\right\} \\
& -D\left\{J^{\prime} \sqrt{ } X-2 \sqrt{ } e y X-\sqrt{ } e(x-y) y X^{\prime}+2 \sqrt{ } e(2 x-y) \sqrt{X Y}-X^{\prime} \sqrt{ } Y\right\}
\end{aligned}
$$

598 ON THE GENERAL DIFFERENTIAL EQUATION $\frac{d x}{\sqrt{ } X}+\frac{d y}{\sqrt{Y}}=0$.
and substituting herein for N, D their values, and arranging the terms, we find

$$
\Omega=\sqrt{ } e \mathfrak{A}+\mathfrak{B} \sqrt{ } X+\mathfrak{C} \sqrt{ } Y+\sqrt{ } e \mathfrak{D} \sqrt{ } X Y
$$

where

$$
\begin{aligned}
\mathfrak{A}= & -J\left\{2 X+(x-y) X^{\prime}\right\} \\
& -2(x-y) y R^{\prime} X \\
& -4 X Y \\
& +R y\left\{2 X+(x-y) X^{\prime}\right\} \\
& +2(x-y) X J^{\prime} \\
& +2(x-y) X^{\prime} Y, \\
\mathfrak{E}= & -4 e y(x-y) X \\
& -2 e(x-y) x\left\{2 X+(x-y) X^{\prime}\right\} \\
& -2 R^{\prime} X \\
& +R X^{\prime} \\
& +2 e(x-y) y\left\{2 X+(x-y) X^{\prime}\right\} \\
& +4 e(x-y)(2 x-y) X,
\end{aligned}
$$

$$
\begin{aligned}
\mathfrak{B}= & J R^{\prime} \\
& +2 e(x-y) y\left\{2 X+(x-y) X^{\prime}\right\} \\
& +4 e x(x-y) Y \\
& -R J^{\prime} \\
& -2 e(x-y) y\left\{2 X+(x-y) X^{\prime}\right\} \\
& -4 e(x-y)(2 x-y) Y, \\
\mathfrak{D}= & 2 J \\
& +2(x-y) x R^{\prime} \\
& +2\left\{2 X+(x-y) X^{\prime}\right\} \\
& -2(2 x-y) R \\
& -2(x-y) X^{\prime} \\
& -2(x-y) J^{\prime},
\end{aligned}
$$

where the terms have been written down as they immediately present themselves; but, collecting and arranging, we have

$$
\begin{aligned}
& \mathfrak{N}=2 X(-J+R y-2 Y)+(x-y)\left\{2 X J^{\prime}+2 X^{\prime} Y-X^{\prime} J-2 y R^{\prime} X+y R X^{\prime}\right\} \\
& \mathfrak{B}=\quad J R^{\prime}-J^{\prime} R-4 e(x-y)^{2} Y, \\
& \mathfrak{(5}=-2 X R^{\prime}+X^{\prime} R+4 e(x-y)^{2} X-2 e(x-y)^{3} X^{\prime} \\
& \mathfrak{D}=2 J+4 X-2 R x+2(x-y)\left(x R^{\prime}-R-J^{\prime}\right)
\end{aligned}
$$

To reduce these expressions, writing

$$
\begin{aligned}
& M=d+2 e(x+y) \\
& \Lambda=c+d(x+y)+e\left(x^{2}+y^{2}\right)
\end{aligned}
$$

we have $R=(x-y)^{2} M$, and therefore $R^{\prime}=2(x-y) M+2 e(x-y)^{2}$; also

$$
J=X+Y-(x-y)^{2} \Lambda
$$

also, from the original form,

$$
J^{\prime}=b+2 c y+d\left(2 x y+y^{2}\right)+e\left(6 x^{2} y-4 x y^{2}+2 y^{3}\right) .
$$

The final values are

$$
\begin{aligned}
& \mathfrak{A}=\quad-X^{2}-6 X Y-Y^{2}+(x-y)^{4}\left\{\Lambda^{2}+(-b+d x y) M+x y M^{2}\right\} \\
& \mathfrak{B}=(x-y) M\left\{4 Y+(x-y) Y^{\prime}\right\}+2 e(x-y)^{3} Y^{\prime}, \\
& \mathfrak{6}=-(x-y) M\left\{4 X-(x-y) X^{\prime}\right\}-2 e(x-y)^{3} X^{\prime}, \\
& \mathfrak{D}=
\end{aligned}
$$

which, once obtained, may be verified without difficulty.

Verification of \mathfrak{N}.—The equation is

$$
\begin{aligned}
& -X^{2}-6 X Y-Y^{2}+(x-y)^{4}\left\{\Lambda^{2}+(-b+d x y) M+x y M^{2}\right\} \\
& =2 X(-J+R y-2 Y)+(x-y)\left\{2 X J^{\prime}+2 X^{\prime} Y-X^{\prime} J-2 y R^{\prime} X+y R X^{\prime}\right\}
\end{aligned}
$$

or, putting for shortness

$$
\Lambda^{2}+(-b+d x y) M+x y M^{2}=\nabla
$$

this is

$$
\begin{aligned}
(x-y)^{4} \nabla= & X^{2}+6 X Y+Y^{2} \\
& +2 X\left\{-X-3 Y+(x-y)^{2} \Lambda+(x-y)^{2} y M\right\} \\
& +(x-y)\left\{2 X J^{\prime}+2 X^{\prime} Y-X^{\prime} J-2 y R^{\prime} X+y R X^{\prime}\right\} \\
= & -X^{2}+Y^{2}+2(x-y)^{2} X \Lambda+2(x-y)^{2} y X M \\
& +(x-y)\left\{2 X J^{\prime}+2 X^{\prime} Y-X^{\prime} J-2 y R^{\prime} X+y R X^{\prime}\right\}
\end{aligned}
$$

we have $-X^{2}+Y^{2}=-(X-Y)(X+Y)$, where $X-Y$ divides by $x-y,=(x-y) \Omega$ suppose; hence, throwing out the factor $x-y$, the equation becomes

$$
\begin{aligned}
&(x-y)^{3} \nabla=-\Omega(X+Y)+2(x-y) X \Lambda+2(x-y) y X M \\
&+2 X J^{\prime}+2 X^{\prime} Y-X^{\prime}\left\{X+Y-(x-y)^{2} \Lambda\right\} \\
&-2 y X\left\{2(x-y) M+2(x-y)^{2} e\right\}+(x-y)^{2} y M X^{\prime}, \\
&=-\Omega(X+Y)+2 X J^{\prime}-X^{\prime}(X-Y) \\
&+2(x-y) X \Lambda-2(x-y) y X M \\
&+(x-y)^{2} X^{\prime} \Lambda-4(x-y)^{2} e y X+(x-y)^{2} y M X^{\prime} .
\end{aligned}
$$

We have $2 X J^{\prime}=J^{\prime}(X+Y)+J^{\prime}(X-Y)$, and hence the first line is

$$
=\left(-\Omega+J^{\prime}\right)(X+Y)+J^{\prime}(X-Y) ;
$$

$-\Omega+J^{\prime}$, as will be shown, divides by $x-y$, or say it is $=(x-y) \Phi$, and, as before, $X-Y$ is $=(x-y) \Omega$; hence, throwing out the factor $x-y$, the equation becomes

$$
(x-y)^{2} \nabla=\Phi(X+Y)+\Omega\left(J^{\prime}-X^{\prime}\right)+2 X \Lambda-2 y X M+(x-y)\left\{X^{\prime} \Lambda-4 e y X+y M X^{\prime}\right\} .
$$

We have

$$
\Omega=b+c(x+y)+d\left(x^{2}+x y+y^{2}\right)+e\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)
$$

and thence

$$
-\Omega+J^{\prime}=c(-x+y)+d\left(-x^{2}+x y\right)+e\left(-x^{3}+5 x^{2} y-5 x y^{2}+y^{3}\right) ;
$$

or, dividing this by $(x-y)$, we find

$$
\Phi=-c-d x-e\left(x^{2}-4 x y+y^{2}\right),
$$

or, as this may be written,

$$
\Phi=-\Lambda+d y+4 e x y .
$$

600 on the general differential equation $\frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{Y}}=0$.
We find, moreover,

$$
J^{\prime}-X^{\prime}=2 c(-x+y)+d\left(-3 x^{2}+2 x y+y^{2}\right)+e\left(-4 x^{3}+6 x^{2} y-4 x y^{2}+2 y^{3}\right)
$$

which divides by $(x-y)$, the quotient being

$$
-2 c-d(3 x+y)-e\left(4 x^{2}-2 x y+2 y^{2}\right),
$$

viz. this is

$$
=-2 \Lambda-(x-y)(d+2 e x)
$$

Hence the equation now is

$$
\begin{aligned}
(x-y)^{2} \nabla=(X & +Y)\{-\Lambda+d y+4 e x y\}+2 X \Lambda-2 y X M \\
& +(x-y) \Omega\{-2 \Lambda-(x-y)(d+2 e x)\} \\
& +(x-y) \quad\left\{X^{\prime} \Lambda-4 e y X+y M X^{\prime}\right\} .
\end{aligned}
$$

The first line is
which is

$$
(X+Y)\{-\Lambda+y M+2(x-y) y e\}+2 X \Lambda-2 y X M
$$

$$
=(\Lambda-y M)(X-Y)+2(x-y) \text { ey }(X+Y)
$$

hence, throwing out the factor $x-y$, the equation becomes

$$
\begin{aligned}
(x-y) \nabla & =(\Lambda-y M) \Omega+2 e y(X+Y)-2 \Lambda \Omega+X^{\prime} \Lambda-4 e y X+y M X^{\prime}-(x-y) \Omega(d+2 e x) \\
& =(\Lambda+y M)\left(-\Omega+X^{\prime}\right)-2 e y(X-Y)-(x-y) \Omega(d+2 e x) .
\end{aligned}
$$

We have

$$
-\Omega+X^{\prime}=c(x-y)+d\left(2 x^{2}-x y-y^{2}\right)+e\left(3 x^{3}-x^{2} y-x y^{2}-y^{3}\right),
$$

which is $=(x-y)(\Lambda+x M)$: also $(X-Y)=(x-y) \Omega$, as before; whence, throwing out the factor $x-y$, the equation is

$$
\nabla=(\Lambda+x M)(\Lambda+y M)-2 e y \Omega-(d+2 e x) \Omega,
$$

that is,

$$
\nabla=(\Lambda+x M)(\Lambda+y M)-M \Omega
$$

viz. substituting for ∇ its value, reducing, and throwing out the factor M, the equation becomes

$$
-b+d x y=(x+y) \Lambda-\Omega
$$

which is right.
Verification of \mathfrak{B}.-The equation is

$$
\begin{aligned}
J\left\{2(x-y) M+2 e(x-y)^{2}\right\} & -J^{\prime}(x-y)^{2} M-4 e(x-y)^{2} Y \\
& =4(x-y) M Y+(x-y)^{2} M Y^{\prime}+2 e(x-y)^{3} Y^{\prime}
\end{aligned}
$$

which, throwing out the factor $x-y$, is

$$
0=2 M(-J+2 Y)+(x-y) M\left(J^{\prime}+Y^{\prime}\right)+2 e(x-y)(-J+2 Y)+2 e(x-y)^{2} Y^{\prime}
$$

Here $-J+2 Y,=-(X-Y)+(x-y)^{2} \Lambda$, is divisible by $(x-y)$: hence, throwing out the factor $x-y$, the equation is

$$
\begin{aligned}
& 0=M\left\{-2 b-2 c(x+y)-2 d\left(x^{2}+x y+y^{2}\right)-2 e\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)\right\} \\
&+M\left(J^{\prime}+Y^{\prime}\right)+2 M(x-y) \Lambda+2 e(-J+2 Y)+2 e(x-y) Y^{\prime}
\end{aligned}
$$

In the first and second terms, the factor which multiplies M is

$$
c(-2 x+2 y)+d\left(-2 x^{2}+2 y^{2}\right)+e\left(-2 x^{3}+4 x^{2} y-6 x y^{2}+4 y^{3}\right)
$$

which is divisible by $x-y$; also $-J+2 Y$, $=-(X-Y)+(x-y)^{2} \Lambda$, is divisible by $(x-y)$: hence, throwing this factor out, the equation is

$$
\begin{aligned}
0=M & \left.M-2 c+d(-2 x-2 y)+e\left(-2 x^{2}+2 x y-4 y^{2}\right)\right\}+2 M \Lambda \\
& +2 e\left\{-b-c(x+y)-d\left(x^{2}+x y+y^{2}\right)-e\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)\right\} \\
& +2 e(x-y) \Lambda+2 e Y^{\prime} .
\end{aligned}
$$

Here in the first line the coefficient of M is $=e\left(2 x y-2 y^{2}\right)$: hence, throwing out the constant factor $2 e$, the equation is

$$
0=-b-c(x+y)-d\left(x^{2}+x y+y^{2}\right)-e\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+Y^{\prime}+(x-y) y M+(x-y) \Lambda
$$

The first five terms are

$$
=c(-x+y)+d\left(-x^{2}-x y+2 y^{2}\right)+e\left(-x^{3}-x^{2} y-x y^{2}+3 y^{3}\right),
$$

which is divisible by $x-y$; throwing out this factor, the equation is

$$
0=-c-d(x+2 y)-e\left(x^{2}+2 x y+3 y^{2}\right)+\Lambda+y M
$$

which is right.
Verification of 5 .-We have

$$
\begin{aligned}
-2 X\left\{2(x-y) M+2 e(x-y)^{2}\right\} & +(x-y)^{2} X^{\prime} M+4 e(x-y)^{2} X-2 e(x-y)^{3} X^{\prime} \\
& =-(x-y) M\left\{4 X-(x-y) X^{\prime}\right\}-2 e(x-y)^{3} X^{\prime}
\end{aligned}
$$

which is, in fact, an identity.
Verification of \mathfrak{D}.-The equation may be written

$$
\begin{aligned}
4 X+4 Y+ & 4 e(x-y)^{4} \\
= & 2 X+2 Y-2(x-y)^{2} \Lambda \\
& +4 X-2 x(x-y)^{2} M \\
& +2(x-y)\left\{2(x-y) x M+2 e x(x-y)^{2}-M(x-y)^{2}-J^{\prime}\right\}
\end{aligned}
$$

viz. this is

$$
\begin{aligned}
& 0=2 X-2 Y-4 e(x-y)^{4}-2(x-y)^{2} \Lambda+2 x(x-y)^{2} M \\
&+4 e x(x-y)^{3}-2 M(x-y)^{3}-2(x-y) J^{\prime}
\end{aligned}
$$

c. IX.

The first term $2(X-Y)$ is divisible by $2(x-y)$; throwing this factor out, the equation becomes

$$
\begin{aligned}
& 0=b+c(x+y)+d\left(x^{2}+x y+y^{2}\right)+e\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)-J^{\prime} \\
& \quad 2 e(x-y)^{3}-(x-y) \Lambda+x(x-y) M+2 e x(x-y)^{2}-M(x-y)^{2}
\end{aligned}
$$

Substituting for J^{\prime} its value, the first line becomes

$$
c(x-y)+d\left(x^{2}-x y\right)+e\left(x^{3}-5 x^{2} y+5 x y^{2}-y^{3}\right),
$$

which is divisible by $(x-y)$; hence, throwing out this factor, the equation is

$$
0=c+d x+e\left(x^{2}-4 x y+y^{2}\right)-\Lambda+x M-2 e(x-y)^{2}+2 e x(x-y)-M(x-y)
$$

where the sum of all the terms but the last is $=d(x-y)+e\left(2 x^{2}-2 x y\right)$: hence, again throwing out the factor $x-y$, the equation becomes

$$
0=d+2 e x-2 e(x-y)+2 e x-M
$$

which is right.
Recapitulating, we have for the general integral of $\frac{d x}{\sqrt{ } X}+\frac{d y}{\sqrt{ } Y}=0$, or for a particular integral of $\frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{ } Y}+\frac{d z}{\sqrt{ } Z}=0$,

$$
z=\frac{J-2 \sqrt{ } e(x-y) y \sqrt{ } X+2 \sqrt{ } e(x-y) x \sqrt{ } Y-2 \sqrt{X Y}}{(x-y)^{2} M-2 \sqrt{ } e(x-y) \sqrt{ } X+2 \sqrt{ } e(x-y) \sqrt{ } Y}
$$

the corresponding value of $\sqrt{ } \boldsymbol{Z}$ being

$$
\begin{aligned}
& \sqrt{ } e\left[-X^{2}-6 X Y-Y^{2}+(x-y)^{4}\left\{\Lambda^{2}+(-b+d x y) M+x y M^{2}\right\}\right] \\
&+\left[\left\{4 Y+(x-y) Y^{\prime}\right\} M+2 e(x-y)^{2} Y^{\prime}\right](x-y) \sqrt{ } X \\
&-\left[\left\{4 X-(x-y) X^{\prime}\right\} M+2 e(x-y)^{2} X^{\prime}\right](x-y) \sqrt{ } Y \\
& \sqrt{ } Z= \frac{+\left[\quad 4(X+Y)+4 e(x-y)^{4}\right] \quad \sqrt{X Y}}{\left\{(x-y)^{2} M-2 \sqrt{ } e(x-y) \sqrt{ } X+2 \sqrt{ } e(x-y) \sqrt{ } Y\right\}^{2}}
\end{aligned}
$$

where, as before,

$$
\begin{aligned}
& M=d+2 e(x+y) \\
& \Lambda=c+d(x+y)+e\left(x^{2}+y^{2}\right) \\
& J=2 a+b(x+y)+2 c x y+d x y(x+y)+e x y\left(x^{2}-x y+y^{2}\right):
\end{aligned}
$$

also X is the general quartic function $a+b x+c x^{2}+d x^{3}+e x^{4}$, and Y, Z are the same functions of y, z respectively.

In connexion with what precedes, I give some investigations relating to the more simple form $\Theta=a+c \theta^{2}+e \theta^{4}$, or, as it will be convenient to write it, $\Theta=1-l \theta^{2}+\theta^{4}$.

We have

$$
\left.\left.\begin{array}{l}
\left|\begin{array}{ccc}
x, & \sqrt{ } X \\
y, & \sqrt{ } Y
\end{array}\right|=0 \text { a particular integral } \\
\left|\begin{array}{ccc}
x^{3}, & x, & \sqrt{ } X \\
y^{3}, & y, & \sqrt{ } Y \\
z^{3}, & z, & \sqrt{ } Z
\end{array}\right|=0 \text { the general integral }
\end{array}\right\} \text { a particular integral } \begin{array}{l}
\text { of } \frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{ } Y}=0, \\
\begin{array}{llll}
x^{3}, & x, & x^{2} \sqrt{ } X, & \sqrt{ } X \\
y^{3}, & y & y^{2} \sqrt{ } Y, & \sqrt{ } Y \\
z^{3}, & z & z^{2} \sqrt{ } Z, & \sqrt{ } Z \\
w^{3}, & w, & w^{2} \sqrt{ } W, & \sqrt{ } W
\end{array}
\end{array}\right\} \text { a particular integral } \quad \text { of } \frac{d x}{\sqrt{ } X}+\frac{d y}{\sqrt{ } Y}+\frac{d z}{\sqrt{ } Z}=0,
$$

and so on; viz. in taking

$$
\left|\begin{array}{ccc}
x^{3}, & x, & \sqrt{ } X \\
y^{3}, & y, & \sqrt{ } Y \\
z^{3}, & z, & \sqrt{ } Z
\end{array}\right|=0 \text { as the general integral of } \frac{d x}{\sqrt{ } X}+\frac{d y}{\sqrt{ } \boldsymbol{Y}}=0
$$

we consider z as the constant of integration : and so in other cases.
It is to be remarked that it is an essentially different problem to verify a particular integral and to verify a general integral; and that the former is the more difficult one. In fact, if $U=0$ is a particular integral of the differential equation $M d x+N d y=0$, then we must have $N \frac{d U}{d x}-M \frac{d U}{d y}=0$, not identically but in virtue of the relation $U=0$, or we have to consider whether two given relations between x and y are in fact one and the same relation. In the case of a general solution, this is theoretically reducible to the form $c=U, c$ being the constant of integration, and we have then the equation $N \frac{d U}{d x}-M \frac{d U}{d y}=0$, satisfied identically, or, what is the same thing, U a solution of this partial differential equation.

Hence it is theoretically easier to verify that

$$
\left|\begin{array}{ccc}
x^{3}, & x, & \sqrt{ } X \\
y^{3}, & y, & \sqrt{ } Y \\
z^{3}, & z, & \sqrt{ } Z
\end{array}\right|=0
$$

is a general solution, than to verify that

$$
\left|\begin{array}{cc}
x, & \sqrt{ } X \\
y, & \sqrt{ } Y
\end{array}\right|=0
$$

is a particular solution of the differential equation $\frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{Y}}=0$. Moreover, taking the first equation in the before mentioned form

$$
-z=\frac{x^{2}-y^{2}}{x \sqrt{ } Y-y \sqrt{ } X},
$$

and writing therein $z=\infty$, we see that the second equation

$$
\left|\begin{array}{cc}
x, & \sqrt{ } X \\
y, & \sqrt{ } Y
\end{array}\right|=0
$$

is, in fact, a particular case of the first equation, so that we only require to verify the first equation; or, what is the same thing, to verify that

$$
-z=\frac{x^{2}-y^{2}}{x \sqrt{Y}-y \sqrt{ } X}
$$

is the general integral of

$$
\frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{ } Y}
$$

To verify this, we have to show that $d z=\Omega\left(\frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{Y}}\right)$, viz. that $\sqrt{ } X \frac{d z}{d x}=\Omega$, a symmetrical function of (x, y); for then $\sqrt{ } Y \frac{d z}{d y}=\Omega$, and we have the relation in question.

We have

$$
\begin{aligned}
(x \sqrt{ } Y-y \sqrt{ } X)^{2} \sqrt{ } \frac{d z}{d x} & =\sqrt{ } X\left\{\left(x^{2}-y^{2}\right)\left(\sqrt{ } Y-\frac{y X^{\prime}}{2 \sqrt{ } X}\right)-2 x(x \sqrt{ } Y-y \sqrt{ } X)\right\} \\
& =\sqrt{ } X\left\{\left(x^{2}-y^{2}-2 x^{2}\right) \sqrt{ } Y-\frac{\left(x^{2}-y^{2}\right) y X^{\prime}}{2 \sqrt{ } X}+2 x y \sqrt{ } X\right\} \\
& =-\left(x^{2}+y^{2}\right) \sqrt{X Y}+2 x y X-\frac{1}{2}\left(x^{2}-y^{2}\right) y X^{\prime}
\end{aligned}
$$

Writing here $X=1-l x^{2}+x^{4}$, then $X^{\prime}=-2 l x+4 x^{3}$, and we have the last two terms

$$
\begin{aligned}
& =2 x y\left(1-l x^{2}+x^{4}\right)+\left(x^{2}-y^{2}\right) x y\left(l-2 x^{2}\right) \\
& =x y\left\{2-2 l x^{2}+2 x^{4}+\left(x^{2}-y^{2}\right)\left(l-2 x^{2}\right)\right\} \\
& =x y\left\{2-l\left(x^{2}+y^{2}\right)+2 x^{2} y^{2}\right\} .
\end{aligned}
$$

Hence the equation is

$$
(x \sqrt{ } Y-y \sqrt{ } X)^{2} \sqrt{ } X \frac{d z}{d x}=-\left(x^{2}+y^{2}\right) \sqrt{X Y}+x y\left\{2-l\left(x^{2}+y^{2}\right)+2 x^{2} y^{2}\right\}
$$

or we have

$$
\Omega=\frac{1}{(x \sqrt{ } Y-y \sqrt{ } X)^{2}}\left\{-\left(x^{2}+y^{2}\right) \sqrt{X Y}+x y\left(2-l\left(x^{2}+y^{2}\right)+2 x^{2} y^{2}\right)\right\},
$$

$$
\begin{equation*}
\text { on the general differential equation } \frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{Y}}=0 \tag{626}
\end{equation*}
$$

which is symmetrical in (x, y), as it should be. And observe, further, that since the equation is a particular solution of $\frac{d x}{\sqrt{ } X}+\frac{d y}{\sqrt{ }}+\frac{d z}{\sqrt{ } Z}=0$, we must have $\Omega=-\sqrt{ } \boldsymbol{Z}$; viz. we have

Proceeding to the next case, where we have between x, y, z, w a relation which may be written

$$
\left(x^{3}, x, x^{2} \sqrt{ } X, \sqrt{ } X\right)=0
$$

then here a, b, c, d can be determined so that

$$
\left(c \theta^{2}+d\right)^{2}\left(1+\beta \theta^{2}+\gamma \theta^{4}\right)-\left(a \theta^{3}+b \theta\right)^{2}=c^{2} \gamma\left(\theta^{2}-x^{2}\right)\left(\theta^{2}-y^{2}\right)\left(\theta^{2}-z^{2}\right)\left(\theta^{2}-w^{2}\right)
$$

viz. we have $d^{2}=c^{2} \gamma x^{2} y^{2} z^{2} w^{2}$, or say $d=c \sqrt{ } \gamma x y z w$. And, supposing the ratios of a, b, c, d determined by the three equations which contain (x, y, z) respectively, we have

$$
a: b: c: d=\left(x, x^{2} \sqrt{ } X, \sqrt{ } X\right):-\left(x^{3}, x^{2} \sqrt{ } X, \sqrt{ } X\right):\left(x^{3}, x, \sqrt{ } X\right):-\left(x^{3}, x, x^{2} \sqrt{ } X\right)
$$

or in particular

$$
\frac{d}{c}=\frac{-\left(x^{3}, x, x^{2} \sqrt{ } X\right)}{\left(x^{3}, x, \sqrt{ } X\right)}, \quad=\frac{-x y z\left(x^{2}, 1, x \sqrt{ } X\right)}{\left(x^{3}, x, \sqrt{ } X\right)}
$$

whence we have

$$
w=-\frac{\left(x^{2}, 1, x \sqrt{ } X\right)}{\left(x^{3}, x, \sqrt{ } X\right)}
$$

as a new form of the integral equation; viz. written at full length, this is

$$
-w=\left|\begin{array}{ccc}
x^{2}, & 1, & x \sqrt{ } X \\
y^{2}, & 1, & y \sqrt{ } Y \\
z^{2}, & 1, & z \sqrt{ } Z
\end{array}\right| \div\left|\begin{array}{ccc}
x^{3}, & x, & \sqrt{ } X \\
y^{3}, & y, & \sqrt{ } Y \\
z^{3}, & z, & \sqrt{ } Z
\end{array}\right|
$$

and taking $w=0$ and $=\infty$ respectively, we thus see how

$$
\left|\begin{array}{ccc}
x^{2}, & 1, & x \sqrt{ } X \\
y^{2}, & 1, & y \sqrt{ } Y \\
z^{2}, & 1, & z \sqrt{ } Z
\end{array}\right|=0, \quad\left|\begin{array}{ccc}
x^{3}, & x, & \sqrt{ } X \\
y^{3}, & y, & \sqrt{ } Y \\
z^{3}, & z, & \sqrt{ } Z
\end{array}\right|=0
$$

are each of them a particular integral of

$$
\frac{d x}{\sqrt{ } X}+\frac{d y}{\sqrt{ } Y}+\frac{d z}{\sqrt{ } Z}=0
$$

Reverting to the general form

$$
w=-\frac{\left(x^{2}, 1, x \sqrt{ } X\right)}{\left(x^{3}, x, \sqrt{ } X\right)}
$$

$$
\text { On the general differential equation } \frac{d x}{\sqrt{ } X}+\frac{d y}{\sqrt{ }}=0
$$

this will be a general integral if only

$$
d w=\Omega\left(\frac{d x}{\sqrt{ } X}+\frac{d y}{\sqrt{ } \boldsymbol{Y}}+\frac{d z}{\sqrt{ } \boldsymbol{Z}}\right),
$$

viz. if we have

$$
-\sqrt{ } X \frac{d}{d x} \frac{\left(x^{2}, 1, x \sqrt{ } X\right)}{\left(x^{3}, x, \sqrt{ } X\right)}=\Omega, \text { a symmetrical function of }(x, y, z) \text {. }
$$

The expression is

$$
\Omega=\frac{1}{\left(x^{3}, x, \sqrt{ } X\right)^{2}}\left\{\left(x^{2}, \mathbf{1}, x \sqrt{ } X\right) \sqrt{ } X \frac{d}{d x}\left(x^{3}, x, \sqrt{ } X\right)-\left(x^{3}, x, \sqrt{ } X\right) \sqrt{ } X \frac{d}{d x}\left(x^{2}, 1, x \sqrt{ } X\right)\right\},
$$

or, writing for shortness

$$
\begin{array}{ll}
\alpha=x\left(y^{2}-z^{2}\right), & a=y z\left(y^{2}-z^{2}\right), \\
\beta=y\left(z^{2}-x^{2}\right), & b=z x\left(z^{2}-x^{2}\right), \\
\gamma=z\left(x^{2}-y^{2}\right), & c=x y\left(x^{2}-y^{2}\right),
\end{array}
$$

we have

$$
\begin{aligned}
& \left(x^{2}, 1, x \sqrt{ } X\right)=\alpha \sqrt{ } X+\beta \sqrt{ } Y+\gamma \sqrt{ } Z \\
& \left(x^{3}, x, \quad \sqrt{ } X\right)=a \sqrt{ } X+b \sqrt{ } Y+c \sqrt{ } Z
\end{aligned}
$$

and the formula is

$$
\begin{aligned}
& \left(x^{3}, x, \sqrt{ } X\right)^{2} \Omega \\
& =(\alpha \sqrt{ } X+\beta \sqrt{ } Y+\gamma \sqrt{ } Z)\left\{\left(y^{3} z-y z^{3}\right) \frac{1}{2} X^{\prime}+\left(-3 x^{2} z+z^{3}\right) \sqrt{\left.X Y+\left(3 x^{2} y-y^{3}\right) \sqrt{X Z}\right\}}\right. \\
& -(a \sqrt{ } X+b \sqrt{ } Y+c \sqrt{ } \boldsymbol{Z})\left\{\left(y^{2}-z^{2}\right)\left(X+\frac{1}{2} X^{\prime} x\right)-2 x y \sqrt{ } X Y-2 x z \sqrt{ } X Z\right\} \\
& =(\alpha \sqrt{ } X+\beta \sqrt{ } Y+\gamma \sqrt{ } Z)(L+M \sqrt{ } X Y+N \sqrt{X Z}) \\
& -(a \sqrt{ } X+b \sqrt{ } Y+c \sqrt{ } Z)(P+Q \sqrt{X Y}+R \sqrt{X Z}) \text {, suppose, } \\
& =\frac{\sqrt{ } X+\sqrt{ }+\sqrt{ } Z+\sqrt{X Y Z}}{\alpha L}+ \\
& +\beta M Y+\beta L \quad+\beta N \\
& +\gamma N Z \quad+\gamma L+\gamma M \\
& -a P \quad-a Q X \quad-a R X \\
& -b Q Y-b P \quad-b R \\
& -c R Z \quad-c P \quad-c Q
\end{aligned}
$$

viz. this is

$$
\begin{array}{rlrl}
= & \{\alpha L-\alpha P+Y(\beta M-b Q)+Z(\gamma N-c R)\} & \sqrt{ } X \\
& +\{X(\alpha M-a Q)+\beta L-b P & \} \sqrt{ } Y \\
& +\{X(\alpha N-a R)+\gamma L-c P & \} \sqrt{ } Z \\
& +(\beta N+\gamma M-b R-c Q & &) \sqrt{X Y Z .}
\end{array}
$$

The coefficient of $\sqrt{X Y Z}$ is here
which is

$$
\begin{aligned}
= & y\left(z^{2}-x^{2}\right)\left(3 x^{2} y-y^{3}\right) & = & y^{2}\left(z^{2}-x^{2}\right)\left(3 x^{2}-y^{2}\right) \\
& +z\left(x^{2}-y^{2}\right)\left(-3 x^{2} z+z^{3}\right) & & +z^{2}\left(x^{2}-y^{2}\right)\left(-3 x^{2}+z^{2}\right) \\
& -z x\left(z^{2}-x^{2}\right)(2 x z) & & -2 x^{2} z^{2}\left(z^{2}-x^{2}\right) \\
& -x y\left(x^{2}-y^{2}\right)(-2 x y) & & +2 x^{2} y^{2}\left(x^{2}-y^{2}\right),
\end{aligned}
$$

$$
=6 x^{2} y^{2} z^{2}-y^{2} z^{4}-y^{4} z^{2}-z^{2} x^{4}-z^{4} x^{2}-x^{4} y^{2}-x^{2} y^{4} .
$$

The coefficient of $\sqrt{ } Y$ is

$$
\begin{aligned}
= & {\left[x\left(y^{2}-z^{2}\right)\left(-3 x^{2} z+z^{3}\right)+y z\left(y^{2}-z^{2}\right) 2 x y\right] X } \\
& +y\left(z^{2}-x^{2}\right) \frac{1}{2} X^{\prime}\left(y^{3} z-y z^{3}\right)-z x\left(z^{2}-x^{2}\right)\left(y^{2}-z^{2}\right)\left(X+\frac{1}{2} X^{\prime} x\right) \\
= & -2 x z\left(x^{2}-y^{2}\right)\left(y^{2}-z^{2}\right) X-z\left(x^{2}-y^{2}\right)\left(y^{2}-z^{2}\right)\left(z^{2}-x^{2}\right) \frac{1}{2} X^{\prime} \\
= & -\left(x^{2}-y^{2}\right)\left(y^{2}-z^{2}\right) z\left\{2 x X+\frac{1}{2}\left(z^{2}-x^{2}\right) X^{\prime}\right\},
\end{aligned}
$$

where the term in \{\} is

$$
\begin{aligned}
& =2 x\left(1-l x^{2}+x^{4}\right)+\left(z^{2}-x^{2}\right)\left(-l x+2 x^{3}\right), \\
& =x\left\{2-l\left(z^{2}+x^{2}\right)+2 z^{2} x^{2}\right\},
\end{aligned}
$$

or the whole coefficient is

$$
=-\left(x^{2}-y^{2}\right)\left(y^{2}-z^{2}\right) z x\left\{2-l\left(z^{2}+x^{2}\right)+2 z^{2} x^{2}\right\} .
$$

We obtain in like manner the coefficient of $\sqrt{ } Z$, and with a little more trouble that of $\sqrt{ } X$; and the final result is

$$
\begin{aligned}
\Omega\left(x^{3}, x, \sqrt{ } X\right)^{2}= & -\left(z^{2}-x^{2}\right)\left(x^{2}-y^{2}\right) y z\left\{2-l\left(y^{2}+z^{2}\right)+2 y^{2} z^{2}\right\} \sqrt{ } X \\
& -\left(x^{2}-y^{2}\right)\left(y^{2}-z^{2}\right) z x\left\{2-l\left(z^{2}+x^{2}\right)+2 z^{2} x^{2}\right\} \sqrt{ } Y \\
& -\left(y^{2}-z^{2}\right)\left(z^{2}-x^{2}\right) x y\left\{2-l\left(x^{2}+y^{2}\right)+2 x^{2} y^{2}\right\} \sqrt{ } Z \\
& +\left(6 x^{2} y^{2} z^{2}-y^{2} z^{4}-y^{4} z^{2}-z^{2} x^{4}-z^{4} x^{2}-x^{2} y^{4}-x^{4} y^{2}\right) \sqrt{X Y Z} .
\end{aligned}
$$

And inasmuch as the equation is a solution of

$$
\frac{d x}{\sqrt{X}}+\frac{d y}{\sqrt{ } Y}+\frac{d z}{\sqrt{ } Z}+\frac{d w}{\sqrt{ } W}=0
$$

it follows that $\Omega=-\sqrt{ } W$, viz. that $\sqrt{ } W$ is by the foregoing equation expressed as a function of x, y, z.

The equation $\left(x^{3}, x, x^{2} \sqrt{ } X, \sqrt{ } X\right)=0$, that is,

$$
\left|\begin{array}{cccc}
x^{3}, & x, & x^{2} \sqrt{ } X, & \sqrt{ } X \\
y^{3}, & y, & y^{2} \sqrt{ } Y, & \sqrt{ } Y \\
z^{3} & z, & z^{2} \sqrt{ } Z, & \sqrt{ } Z \\
w^{3}, & w, & w^{2} \sqrt{ } W, & \sqrt{ } W
\end{array}\right|=0,
$$

608 ON THE GENERAL DIFFERENTIAL EQUATION $\frac{d x}{\sqrt{ } X}+\frac{d y}{\sqrt{ } Y}=0$.
gives

$$
w=\frac{\left(x^{2}, 1, x \sqrt{ } X\right)}{\left(x^{3}, x, \quad \sqrt{ } X\right)}
$$

where the numerator and the denominator are determinants formed with the variables x, y, z.

Writing $\frac{1}{w}$ for w, it follows that the equation

$$
\left.\begin{array}{cccc}
x^{3}, & x, & x^{2} \sqrt{ } X, & \sqrt{ } X \\
y^{3}, & y, & y^{2} \sqrt{ } Y, & \sqrt{ } Y \\
z^{3}, & z, & z^{2} \sqrt{ } Z, & \sqrt{ } Z \\
w, & w^{3}, & \sqrt{ } W, & w^{2} \sqrt{ } W
\end{array} \right\rvert\,=0
$$

gives

$$
w=\frac{\left(x^{3}, x, \quad \sqrt{ } X\right)}{\left(x^{2}, 1, x \sqrt{ } X\right)}
$$

which last equation is a transformation of

$$
\left|\begin{array}{cccc}
x^{4}, & x^{2}, & 1, & x \sqrt{ } X \\
y^{4}, & y^{2}, & 1, & y \sqrt{ } Y \\
z^{4}, & z^{2}, & 1, & z \sqrt{ } Z \\
w^{4}, & w^{2}, & 1, & w \sqrt{ } W
\end{array}\right|=0 .
$$

The two equations, involving these determinants of the order 4 , are consequently equivalent equations.

