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On generalized solutions of a nonlinear boundary value problem
of elasticity
Resonance case

J. CHMAJ and M. MAJCHROWSKI (WARSZAWA)

THE DIrICHLET problem for the general Lamé equations with a nonlinear right hand side is
considered. It is assumed that the homogeneous problem has p linearly independent weak sol-
utions (resonance case). Necessary and sufficient conditions of the Landesman-Lazer type are
proved for the existence of the weak solution to the nonlinear problem.

Rozwazono zagadnienie Dirichleta dla ogélnego ukladu rownan Lamégo z nieliniowymi pra-
wymi stronami. Zalozono, ze zagadnienie jednorodne ma p liniowo-niezaleznych slabych
rozwiazan (przypadek rezonansowy). Wyprowadzono warunki konieczne i dostateczne typu
Landesmana-Lazera dla istnienia stabych rozwigzan zagadnienia nieliniowego.

PaccmarpuBaerca 3agavya Jupuxne s oOlueil cuCTeMbl ypaBHeHH Jlame ¢ HeMMHEHHBIMM
NpaBbIMH cTopoHamu. Ilpeamanaraercss, 4To 3ajjaya OJHOPOAHAA HMMEET p JIMHEHHO-He3a-
BHCHMBIX CJ1a0bIX pelleHHIl (Pe30HAHCHBIN CIIyuaii). BuiBeqeHb! HeOOXOAUMBIE H JOCTATOUHLIE
ycnosus tvna Jlangecmana-Jlasepa JUIsT CYILECTBOBAHMS PeELIEHH HEJIMHEHHON 3aJauH.

1. Introduction

LET D = R® be a domain and D its Lipschitz boundary. The following Dirichlet Problem
of the Theory of Elasticity will be considered: Find the displacement (vector-) function u
satisfying the general Lamé equations

3

0 ) 0 0 0

(1.1 B_)q(Adlvu)+ S [ij u( 3;; + a;lj )]+w2u, = —gi(x,u(x)), xeD,
i=1

and the boundary conditions
(L.2) u(x)=0, xedD, (=1,2,3),
where A4, p are Lamé coefficients such that A, u € L*(D), A(x) = 0, u(x) = po > 0 for

all x € D, where Mo is a constant, @ is a real constant, g: Dx R®> — R3? is a given vector
function, components g;(x, uy, us, u3), (i = 1, 2,3), satisfy the Carathéodory continuity
condition, i.e. g; are measurable with respect to x for fixed (uy, #5, #3), —00 < w; < + 0,
and continuous in (4y, #,, #3) for almost all x € D.

Let us introduce the following spaces (notation as in [6]) W = [L*(D)]%, W=

= [f°I1]3, the respective norms

3 3
lalty = ( 3 adiz), Wl = (X 1l 3,)"
i=1

i=1
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and inner products

3 3
]
0w = O (i, 0)us, @00 = Y (4, 9z,
i=1 i=1

(H, is the well-known Sobolev space). W and W are Hilbert spaces.
In consistency with the definition 1.1 of the paper [3], we define the weak (general-
ized) solution to the problem (1.1), (1.2).
DEFINITION 1.1. A function u is called the weak solution of the Dirichlet problem (1.1),
1.2 i
(1.3) ue W,
3

. i _‘u_ au] au, 3’01 )]
(1.4) J‘[Z(dlvu)(dlvv)-i- 7. (3x, + axj)( o, + 2, dx

D i,j=1

: 3
—0? f( ;2 m'o;)dx= f Eg;(x, u(x))o,(x)dx  for all ve W.
D i=1

D i=1
In the paper [3] we have considered the nonresonance case of the problem (1.1), (1.2),
i.e. the problem (1.1), (1.2) under the condition that the linear homogeneous problem

X
2 : ol B ou, | du ] :
- =0

(1.5) = (,1dwu)+; [ o y(axj + axi) fat =0, xel,
(1.6) wu(x)=0, xeoD (i=1,2,3),
has only the trivial weak solution.

For g; satisfying the inequality
(1.7) g, 10, 1, u3)] < @ (x)+b 2 el

where aq;(x) € L?*(D), and b is a sufficiently small positive constant, we have proved the
existence of a weak solution to the problem (1.1), (1.2). In the present paper we consider
the resonance case, i.e. the problem (1.5), (1.6) may have now nontrivial weak solutions.
Necessary and sufficient conditions will be proved for the existence of a weak solution
to the problem (1.1), (1.2).

E. M. LanDesMAN, A. C. LAZER [5] have been the first to consider the 51mllar prob-
lem

Lu+ou+g(u) = h(x), xeDcR'; u(x)=0, xeaD,

where L is a second-order, self-adjoint, uniformly elliptic on D, « is a positive constant,
g is a real-valued function, bounded and continuous on the real line (satisfying some addi-
tional restrictions), k is a real function in L2(D). *

These authors gave a necessary and sufficient condition for the existence in case L+ ol
has one-dimensional null space. S. A. WiLLIAMS [7] extended the result to finite dimen-
sional null space. The proofs of the sufficient conditions in [5] and [7] were based on
Schauder’s Fixed Point Theorem. P. Hess [4] contributed to the subject by a short and
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elegant method of proving the sufficient condition. Since then the matter has been devel-
oped in various directions by many authors. The most comprehensive paper so far is that
written by H. BRrezis and L. NIRENBERG [2] (see further references there).

2. The necessary condition

Following Sect 2 of the paper [3] we denote

3
s [ aivaraiveye e S ([0, 00 (20, 200
21 lu,vdn = Df[ﬁ(dlvu)(dwv)—i- 5 Z(?x_i-i- 8x;)( ax:f + ax; )]dx

ij=1
The form (u, v)3 is the well-defined inner product in W. The norm Il |5 induced by

it is equivalent to the norm || - ||3. Furthermore, there exists a unique element Auc W
(see (2.6) in [3]) such that

(Au, 0Dy = (u,v)y for all wve W.

The latter defines an operator 4: W — W linear and continuous and such that its re-
striction to W is compact.
The equation (1.4) can be written in the operator form

2.2) u—w?du = Ag(x,u), ue W,
The operator 4 is self-adjoint in W and W. Indeed,
(Au, vy = (u, 0w = (v, Wy = {Av, ) = {u, AVdy,

(Au, v)w = (A?u, vdy = {Au, Avdy = {u, A*v)5 = (Av, Wy = (U, AV)y.
Assume that the linear homogeneous problem (1.5), (1.6) has p linearly independent weak
solutions. Hence the equation
(2.3) u—?du=0, wueW
has p linearly independent solutions; they span a subspace of W.

Let w, ..., w!® be a basis of the subspace. Every nonzero element z of that subspace
may be decomposed as

z=oaw+ . +o,w®,  where af+ ...+ai>0.
Let us denote

----- oy = {xED; Wi+ ... +a,w? > 0},
Di,..ap = (X €D; WiV + ... +a,wf? <0}, i=1,2,3.

THEOREM 2.1. Let g;, i = 1,2, 3, satisfy the Carathéodory continuity condition and
inequalities

2.4 h(x) € gi(x,u) < Hi(x) for all (x,u)e DxR®

i=1,2,3, where h(x), H(x) € W. If there exists a weak solution to the problem (1.1),
(1.2), then for all real numbers a, ..., o, with o3+ ... +ai =1

3
2.5) Z[ [ H@zldx= [ hlaldx] 20,

" -
Diia, ..oy LN TR
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where
z; = uwiV+ .+ a,w?.

Proof. Let u be a weak solution to the problem (1.1), (1.2). Then
(u’ w(h)W = wz(Au’ w(h)W+ (Ag(x’ u)’ w(j))W = wZ(u, AW(D)W+ (g(x! u)s Aw(j))W

= (u, WU))W'*'%(E(X, u), wd)y for j=1,..,p.

Hence (g(x,u), w)p =0 and (g(x,u),2)w =0, where z = a; w+ ... +o, WP,
&y, ..., &ty are arbitrary real numbers. Thus, by the assumptions (2.4) we have
3

3
0= fZg,(x, wWzdx = 2[ f gi(x, Wz dx+ f gi(x, u)z,dx]
D i=1

T1 ¢ e -
=D, ey Df (@1, ..cry)

<

| [ E@ede- [ wzld].

LN Di, (@1, -0y

N\

i

I
—

3. The sufficient condition

THEOREM 3.1. Let g, i = 1,2, 3, satisfy the Carathéodory continuity condition, the
inequality (1.7) with b = 0 i.e.
[gi(x’ Uy, Uz, u3)l < ai(x)! Where ai(x) € L2(D)’
and the relations

lim  g(x, uy, uy, u3) = h(x), lim g(x, uy, uy, u3) = Hy(x),
U=~ im0

where limits are taken uniformly with respect to the remaining variables u; where j # i,
h(x), H(x) € W. If for all real numbers o, , ..., &, with &5+ ... +op =1

3
(3.1) DIl S B@ea- [ k@] > o,
el Dl.(a1 ..... @p) DE(al,....a,)
where z; = a,w{V+ ... + o, WP, then there exists a weak solution to the problem (1.1),
(1.2).

Proof. Consider the equation

u—w?dAu=0, wue w.

The number % is an isolated eigenvalue of the compact operator 4. Therefore, for n
sufficiently large the equation

3.2) u—w2du = -’11—Au
has only the trivial solution in W, and there exists u, € W such that
1
(3.3) u,,—cu%‘lu,,—; Au,. = Ag(xs un)

(Theorem 3.1 of the paper [3]).
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Equation (3.3) means that
1
(34) <ll,|, 'v>ﬁ’_w2(un: lz))W_'—n_ (Il,,, W)W = (g(x: ll,.), U)W

for all v e W. We shall prove that |[|u,||3 < const. Suppose to the contrary that
lim ||u,|l = +o0.

Let
U, ”
S, = L Sl = 1.
Tl > 1Sl
Then
5 1 1
(35) <S",‘ZJ>ﬁ/—w (S,,,‘Z))W——*(S,,, ‘U)W = '—T(g(X, ll,,),‘U)W.
n [tdnl |4

Since W is a reflexive space, the unit ball is weakly compact and s, — s in W.
The left hand side of Eq. (3.5) is a linear continuous functional on W. Therefore by

assumptions on g we have from Eq. (3.5)

(3.6) <s, v)w—wz(s V)w = lim [{(s,, VD% —w*(sy, V)w] = 0

n—ow

for all v e W.
Hence s = c(a; w+ ... +a,w™), where aj+ ... +a5 =1 and ¢ > 0. By (3.5)
and (3.6) we have

(37) <.§',,—S, S,,—S),';,—mz(s,,—-s, Sn—S)W = <S,,, Sn_s‘>¥°’?—w2(sn’ Sn —S)W

= ( S)W+ (g(x: Iln),S,,—'S)W—) 0

I ..II

1
n
as n — oo.
Further, by the inequality (2.4) of [3]
(Su=3, Sa— D% = c3llsy—sll3,
So we have
(3.8) ez llsa—sll% < @2(s,—5, Sy— )+ [(5a—5, Sa—DF — 0> (53— 5, 5,— 5wl

Using Eq. (3.7) and Rellich’s Theorem ([1] p. 30), the last relation yields s, — s in W.
Furthermore, by ||s,||% = 1 we have ¢ > 0. The relation (3.6) implies

(39) <s, Sn>ﬁ’—w2(ss Sn)W = {Sn, s>ﬁ’ _wz(sna S)W =0 for all n.
Moreover, (s,, s)w — |Is||# > 0. Setting » = s in Eq. (3.5) and applying Eq. (3.9), we

obtain

(g(x un) S)W

1
- 7 (Sna S)W

lualli ,.ll
i.e. for sufficiently large n

3
(3.10) [ X gx, usidx < 0,
D

i=1
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By the definition of s,:u, = |[uyl|5 Sn, 1.6, (Un)i = ||ta]|5(sn):. Moreover, s, » s in W, i.e.
(5,);i = s; in L*(D) and, accordingly, (s»); = s; a.e. in D for some subsequeace. By vir-
tue of the Lebesgue Convergence Theorem applied to Eq. (3.10), we have from

3
lim sup IZ gi(x, u,)s,dx < 0,
D i=1

n— 0

the following inequality:

3
2[ f lim g,(x, ||t |5 5a)5:dx + f lim g,(x, Hu,,H,E,s,,)s,dx] <0.
+ n—00 n—o

i=1 D

LN CTRN-) (ACTHNNS
Hence
3
@G.11) 1[ f H,(x)c|z;|dx— f hi(x)cfz(|dx] <0,
=1 Dla..,e) Di (ay, ...,x,)
where
$i (

= = Wi+ .. o, wiP,

But ¢ > 0 and the latter contradicts the assumption (3.1).

Thus ||4,||§ < const for all n and u, — u in W as n — co. Passing to the limit in Eq.
(3.4) as n — oo we obtain ’

¢.12) (u, vy =0, v)y = (g(x, u), v)y

for every v e W. This means that u is a weak solution to the problem (1.1), (1.2).
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