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Numerical analysis of heat flow in flash welding
M. KLEIBER (WARSZAWA) and A. Sz. SLUZALEC jr. (CZESTOCHOWA)

IN THE PAPER a finite element method is used for solving the nonlinear transient heat transfer
problem of the axisymmetric flash welding. The variational derivation of the finite element
matrices and the algorithm for solving the resulting system of nonlinear equations are discussed.
Numerical illustrations prove the effectiveness of the approach.

Artykut opisuje zastosowanie metody elementéw skonczonych do rozwiazania problemu nie-
liniowego przeplywu ciepla przy zgrzewaniu elementoéw osiowosymetrycznych. W pracy ana-
lizowano wariacyjna posta¢ réwnania i podano algorytm dla jego rozwiazania. Na zakonczenie
podano przyklady ilustrujace rozpatrywany proces.

CraThl OIHCHIBAET NPUMEHEHHE METOA KOHEUHBIX 3JIEMEHTOB /1A PEIUCHHA 3a[auH HeJIMHeH-
HOIO TEeYeHHs Tervla IpPH CBapKe OCECHMMeTPHUHBLIX 3jleMeHTOB. B paGore amanmmusmpyercs
BapHalMOHHDBIA BH/ YPaBHEHHMs W IPUBeeH aJIFOPHUTM UISI ero pelleHus. B saKimodeHHH
IOAI0TCs NPUMEpPbl WLTIOCTPHPYIOLINE PaccMaTpPUBaeMblIi IIPOLECC.

1. Introduction

FrasH welding of metal rods is a resistance welding process wherein coalescence is pro-
duced, simultaneously over the entire area of abutting surfaces, by the heat resulting from
resistance to the flow of electric current between the two surfaces and by a pressure applied
to the rods after heating is essentially completed. In order to make a good flash weld,
it is necessary that appropriate plastic zones be generated in the rods to be welded. These
are very much dependent on the heat treatment experienced by the metal around the
weld.

The present paper describes a numerical method for the analysis of transient tempera-
ture distribution in the vicinity of the weld for arbitrary axisymmetric rods. A common
assumption in attempting to find an analytical solution to such a problem is the postu-
lated temperature independence of all material properties. No such simplifications have
to be done in the present approach: the finite element method used in its incremental
form makes it possible to account for arbitrary variations of all material characteristics
during the process.

2. Formulation of the heat transfer problem

The conventional (and adopted below) analytical treatment of fully axisymmetric prob-
lems reduces the analysis to the appropriate radial plane of axial .symmetry yielding the
description which is essentially two-dimensional. However, in the present paper the three-
dimensional equations referred to rectangular Cartesian coordinates are discussed only
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as the development is aimed at more general applications. Furthers the way the equations
of heat flow are specified to the axisymmetric case is considered standard and can be found
in any of the available textbooks, [3] for instance.

The spatial problem of the transient heat flow is assumed to be described by the partial
differential equation

0 o0 7, af ) 0 a0 a0
(21) W(kx W)+3—y~(k’ '5"})—)4'—8“2—(](, W)-}_qﬂ = QCW, (x, ¥y, Z) GQ,

where 0(x, y, z, t) is the temperaiure of the body, k., k,, k. are the (possibly tempera-
ture dependent) thermal conductivities corresponding to the x, y, z Cartesian axes, ¢
stands for the time variable, p is the material density, ¢ is the temperature-dependent
material heat capacity and gz is the rate of heat generated per unit volume (with the ma-
terial heat capacity effect excluded, positive if the heat is put into the body).

The initial conditions are defined as

0(x,y,2z,t) = 0o(x,y,2z) for t=t,,
B0 is a given function whereas the boundary conditions can be written as

G(xr Y, 2z, t)laﬂe = é(x: Vs 2z, t)y

a6
Aa—n (X,y, Z, t)lanq = qn(x’ Vs Z, t)s

where 0 is the environmental temperature of the surface area 982, ¢, is the boundary
heat flow input on the area 8£2,, n is the normal to the boundary and 4 is the body thermal
conductivity. Specifically, the convection boundary conditions can be represented as

ao A
)'a_ ('x9 Vs 2, t)la!)c = h(6~03),
n

where £ is the convection coefficient which may be temperature dependent, 6, the boundary
surface temperature and 0 the corresponding environmental temperature. Other boundary
conditions (such as radiation boundary conditions) can easily be specified but are not
needed in the development to follow.

Equation (2.1) is a nonlinear partial differential equation which expresses the heat
flow “transient equilibrium” principle: the rate of heat transfer by conduction must be
equal to the rate of heat generation. The solution of Eq. (2.1) comes down to tracing the
temperature distributions at subsequent time instants taken from the time interval
[to, t¥].

3. Incremental finite element equations

As in the incremental finite element stress analysis, [4, 5], it is now assumed that the
considered problem of nonlinear, transient heat flow has been already solved for all the
time steps from the initial time #, to the “current” time ¢, inclusive, and that the solution
(i.e. temperature distribution) for the time ¢+ A4¢ is required next. It is noted that the sol-
ution process for the next “transient equilibrium” position is typical and would be applied
repetitively until the complete solution path has been solved for.
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In order to consistently set up the finite element matrices, the heat flow equilibrium
at the time ¢+ A¢ is formulated as a variational problem of the form

faesrtufrk”me:dg = 6:+ArQ+ f665‘”‘h(’*"‘é—’*"'()s)d(aﬂ),
Q a2

where
9xr=[9_0 KL 3_9]
ox’ oy’ oz |
k. 0 0
k=|0 k 0
0 0 k,

8 t*4t0 is the virtual work of the external heat flow input to the system at the time 7+ A4¢
which in our case reads

’

6:+AtQ = f59(”‘“(;3—”‘“6’”4'6‘)(19, C=cp
Q

and for an arbitrary function of space and time coordinates f(x, y, z, t) the shortened
notation is used f(x, y, z, t) = 'f, with the spatial coordinates x, y, z being omitted for
simplicity. We introduce further the obvious relationships

t+dt0 — 10+A9,

r+me’ - ‘0’+A6’,

vrdey — thy Ah,

z+ArC . 'C+AC,

and assume the following equations to hold approximately:
t+ﬂ1kl‘+dt09 ~ rk(fe’ +A6’)’
l+4lh(l+ﬁlé_t+dlas) ~ 'h('+A’9A—~'Hs—A9,),

t+dtct+dté ~ tC('é—i-Aé).

The above approximations result in the incrementally linearized equation of the form

[ 00T ka0 dg+ [ 80,hA6,d(50) = [ 66 +41gy—r+4rC t+1G)d
Q a0, 2
— [ooTk@d2+ [ 06, h(40-16,)d(60)
o] agc

which yields further the equation

@1 [T RACAD+ [ 80,'hA6,d(52) = [ 60(Agy—tCAG)AQ+ [ 80,"hA0A@R)
o} a9, I 29,

+ [ 80(qs—1C16)d2— [ 0Tk '@d2+ [ 80, 'h(D—'0,)d(o9)
2 2 a0,
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and, finally, denoting by *J the last three integrals on the right-hand side of Eq. (3.1),
the equation

(32 [ 0T kAOdQ+ [ 66,'hA0,d(2Q) = [ 66(dgy—"CAB)dQ
2 a9, Q
+ [ 86, 'hA8d(2)+J.
anR

We note that the term *J expresses nothing more but the heat flow equilibrium at the time ¢
and should theoretically be put equal to zero. However, an important feature of all incre-
mental formulations is that at the beginning of an incremental step the solution obtained
so far is, due ot the approximate nature of the solution algorithm, not exact. It goes
without saying that such residuals arising after each incremental step can accumulate
unless the algorithm is endowed with some appropriate numerical improvements. Thus
the inclusion of the equilibrium imbalance at the beginning of a step may greatly improve
the solution for the next increment.

We further note that the right-hand side of Eq. (3.2) is a function of Af which in or-
der to obtain the unknown function 46(x, y, z) must be approximated using a time in-
tegration scheme. -

Equation (3.2) has been written for a three-dimensional problem; for a two-dimensional
situation only the two appropriate coordinates x, y are employed.

4. Finite element equations

On the basis of Eq. (3.2) the governing equations for heat transfer analysis of a solid
idealized by a system of finite elements can easily be derived. In the analysis to follow
isoparametric finite element discretization is employed, in which we describe the geometry
of an element e shown in Fig. 1 by the expansions, [4],

N
XO(r, 5) = 3 hy(r, 5)x(0,
i=1

(.1) N
YO, s) = D (e, )y,
) i=1
y 4
2 5 1
6 8 r

3 7 A

X

Fig. 1. Numbering of element nodes.



NUMERICAL ANALYSIS OF HEAT FLOW IN FLASH WELDING 691

where the h; are the element interpolation functions given in [4], N is the number of
element nodal points (which can alternatively be taken as 4, 5, 6, 7 or 8), x{®, y{® are
the coordinates of the nodal point i with respect to the global coordinates x, y while r, s
stand for local coordinates of the element considered. Eight nodes per element are con-
sequently assumed in the present investigation.

The temperature interpolation involves the same functions 4, , /,, ..., hg and is given
in terms of nodal temperatures 0, 6$9..., 652 as

8
(4.2) C 09,5, 1) = D (e, 8.
The last relation written in matrix notation reads
4.3) 0 (r, s, 1) = bi%(r, 5)062,(2),
where the row interpolation vector is given by
(4.4) b9 = [hy, hy, ..., hg)
while the column vector of the nodal temperatures is defined as
4.5) 0, = {69, 0%, ..., 0(}.
It is seen that
8
d ' 0
46 9 geo _ Z O hr, )0
(46) K050 = 2 g hie, D00,
. =
@7 i(;?(‘?’(r s, 1) = Z_a,h (r, $)02(r)
8.5' 9./ 8 — 85' i\ i ’

hence

af®

——
(4'8) 86(e> = BZxB(rs S)eg?l(t):

o5 |

where B(r, s) is the 2x 8 matrix of derivatives of the interpolation functions. The chain
rule relating x, y to r, s derivatives is written as

00 @ b 1@®
or ox
4.9) o6 =J 0
o5 ay
in which
ox o
or or
4.10) ox oy

os Os
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Inverting the Jacobian operator J, we obtain

b 1@ oy dy o6 1@

“ox 1 s o || or
L) o0 | Tdets| ox  ax||ao]|

oy Tes o || es

where the Jacobian determinant is

_0x dy o0x 0dy

Note that Egs. (4.2) + (4.12) hold also for temperature increments.
The finite element incremental heat flow equations are derived by substituting the
interpolations (4.1), (4.2) into Eq. (3.2). We obtain

(4.13) (‘K*+'K) A0 = AQ(ABM) + AQF +J*,
where

E
(4.14) Kk = {:(,,f B” 'kBd02),

b

@15 ko= Y ( [ hHTHA(0)),

a9,

®
-

: E
(4.16) AQ(/JG‘”’):Z( [T 4g,d0—( [HTH Cag) Aé("))
e=1"'Q, 2,
E
= N [H 2gya0 - 4ca6),

e=1 Q,

bﬂm

@17 4Q¢ = N ( [HTH hA§™a0),

2

e

m o
I

(4.18) 1J* = (HT 'qdQ— JC ™ —tKx 9™ o [HTH® 'hd(002) (6 —0m))).
(e)
20,

e=10,

Vectors H and H* and the matrix B define the temperatures and temperature gradients
within the element or on its boundary as a function of the nodal 'point temperatures,

0(x, y, t) = H(x, y)'0™M,
Oy(x, y, t) = H(x, )"0,
0’(x, y,t) = B(x, »)'0M™,
E
which can easily be determined from Eq. (4.2). The symbol Y implies the summation
e=1
over all finite elements and the column vector

9N = L0, 16, ..., ‘09
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stands for the nodal point temperatures at all nodal points in the discretized region. The
volume and surface integrations in Egs. (4.15) + (4.18) are effectively carried out for the
axisymmetric finite elements by using the Gauss integration formula. We have for a
one-radian part of the specimen, for instance,

I +1 +1

f f f BT (r, s)'k(r, s)B(r, s)detJ(r, s) R(r, s)dOdrds
0

-1 2

1 1
= [ B¢, 9k, 9B, s)detI(r, )R(r, s)drds
=1 -1

= Z o BT (ry, 5,) 'k(ri, 5,)B(ri, s;)detJ(ri, 5,) R(ry, 85),

i
where the summations extend over all i/ and j specified in the given Gauss formula and the
matrices are evaluated at the sampling points.

Equation (4.13) is the fundamental matrix equation describing the axisymmetric heat
flow problem in the incremental form. We note that for a given temperature distribution
at time ¢ the incremental nodal temperatures can still not be found unless we use some

approximation for the temperature rate in the vector AQ, Eq. (4.16). We transform Eq.
(4.13) to the form

(‘K"—F‘K")AG(N’ = _iC r+Jré(N)+tF_rKk te(N)’

where
£
tf = 2:( fHT t+drquQ+ stTHs lh(l+d:6(N)_t9(N))d(aQ))
d=1 92, a0,

or, further, to the form
(4_19) rK x+dre(N)+rC t+Axé(N) = t+AlQ,
where

tK — th+rKc’
t+ArQ — é; (Q’! HT quBdQ+ane HSTHS t+At6(N))

is the vector of thermal nodal loads while C is the global heat capacity matrix,

E
C= Z(e)cv
e=1

Equation (4.19) is the system of nonlinear ordinary differential equations which must
be solved for the subsequent values of the incremental nodal temperatures.
Using the Euler backward method we obtain, from Eqgs. (4.19),

tcﬁ (r+dte(N)_re(N))+rKz+A:e(N) - t+AtQ’
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which yields
(4_20) fK*Ae(N) = t+d!Q*
with the effective system matrix

1

At

'C+'K

and the effective load vector
r+AtQ* = t+AzQ_1K 1Ny

Equation (4.20) can be used for the step-by-step evaluation of 46®™. The accumulation
formula for temperatures at the step (¢, t+4¢) follows as

1A — 19N L AN

and then, after appropriate updating of the material parameters, the next step calculations
are carried out similarly. In this way the solution for temperatures can be advanced in
time resulting in the whole history of the process.

We note that the Euler backward algorithms is unconditionally stable which assures
that any errors at time ¢, which may be due to round-off in the computer, do not grow
in the subsequent integration. This does not eliminate the accuracy problems which
clearly depend on At so that in general some iterative procedure is needed. This has not
been attempted in the present paper, though, and it is believed to be justified by “mild”
nonlinearities in the analyses performed.

5. Sample solutions

5.1. Flash welding of two metal rods

The two semi-infinite rods shown in Fig. 2 are subjected to the flash welding. At the

place of abutment the heat source is given by the following equation:

Q=J>-R-1t,
where J is the current intensity and R resistance at the place of contact. It is noted that R
depends on the diameter of the rods, compressive force applied, properties of the material
and time.

Steel rods of the diameter ¢ 12 mm and density 7800 kg/m? are considered. The heat
flux at the place of contact of the rods is assumed to be equal to 24 - 10° W/m?, which
approximately amounts to 600 cal/cm?s. The material properties are given in Table 1
for steel and Table 2 for the surrounding air (with air density taken as 1.29 kg/m?). The
surface film conductance is taken as 0.25 W/m?2.

Two kinds of the analysis are carried out with different inclusion of the surrounding
air effects, Figs. 2 and 3. The discretization meshes in the corresponding steel and air
areas are shown in Fig. 3. Due to the existing symmetries, one quarter of the area is con-
sidered only for each case. The results obtained for both the coarse and fine meshes and
both the boundary conditions were almost coincident and are 'shown in Figs. 4 and 5.
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F1G. 2. Heat boundary conditions in flash welding of two rods; A — surrounding air included, B — sur-
rounding air excluded.

Table 1.
Temperature [°C] 0 500 800 900 1600
Thermal [ J ]
conductivity] m-K-s 50 50 50 50 50
Specific heat[ ] 510 1030 1300 680 680

kg-K

Table 2

Temperature [°C] 0 1600

Thermal J ]

conductivity L s* m*K 0.23 0.23

J
Specific heat[ ] 1005 1100
kg- K

1695]
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DISCRETIZATION
AIR Ne 1
RODS
AR
RODS WITH CONVECTION
BOUNDARY  CONDITION
AIR
RODS
AR DISCRETIZATION
N 2.

F1c. 3. Types of discretization.

The results given in Fig. 4 refer to the time instants of 1 =15, 1 =25, t =3 s while
those shown in Fig. 5 are-for t = 3 s.

5.2. Flash welding of two metal pipes

The second example concerns the flash welding problem of two steel pipes with the
same material properties as before, Fig. 6. On the basis of the previous results one discre-
tization mesh and the convection-type boundary conditions are assumed to yield suffi-
ciently accurate results in the present case. The temperature distribution along the pipe
axis is shown for three time instants of 1, 2 and 3 seconds.
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Fic. 5. Temperature distribution along the cross-section diameter (time 3 s);
A—A at the place of contact,
B—B at the distance of 4 mm from A—A,
C—C at the disthnce of 10 mm from A—A.
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Conclusions

1. The finite element method proves once more to be an effective tool in analysing
complex problems of nonlinear thermal conductivity. The results obtained clearly indi-
cate that the program can be used for further studies on more advanced problems of heat
transfer.

2. The calculations performed confirm the known experimental results [1, 2], concern-
ing the temperature distribution in rods subjected to flash welding. As expected, the
cross-sectional temperature variations are small. At the distance of approximately two
diameters from the place of contact, the steel temperature equals that of the surround-
ing air.

3. The method used makes it possible to analyse effectively more complex problems
of the flash welding such as welding of different materials and elements of different shapes.
Such analysis will be undertaken by the authors in subsequent publications.
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