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Vibration of a bridge beam due to highway traffic
R. IWANKIEWICZ and P. SNIADY (WROCLAW)

DynaMic response of a beam to the passage of a train of concentrated forces with random
amplitudes is considered. Arrivals of forces at the beam are assumed to constitute a random
(Poisson or, more general, correlated) process of events. Thus the excitation process idealizes
the vehicular traffic load on a bridge. Based upon the introduction of two influence functions,
the analytical technique is developed to determine the response of the beam. The explicit express-
ions for the expected value and the variance of the beam deflection are provided. As an example,
the response of the beam to the stationary Poisson stream of forces is determined and discussed
for some practical situations. The extension of the presented approach to the case of multi-axle
vehicles is also outlined.

Rozwazane sa drgania belki pod wplywem przejazdu serii sit skupionych o losowych amplitu-
dach. Przyjeto, ze wjazdy sit na belke stanowig losowy (poissonowski lub ogolniejszy — sko-
relowany) proces zdarzen. Przyjety proces wymuszenia jest zatem modelem obcigzenia mostu
ruchem drogowym. Reakcje belki wyznaczono w sposob analityczny, postugujac si¢ dwiema
wprowadzonymi w pracy funkcjami wptywu. Wyprowadzono wzory na warto$¢ oczekiwana
i wariancje ugiecia belki. Jako przyklad zanalizowano, dla rdznych praktycznych sytuacji, drga-
nia belki pod dzialaniem stacjonarnego poissonowskiego strumienia sit. Omoéwiono takze spo-
sOb rozszerzenia przedstawionej metody rozwiazania na przypadek pojazdow wieloosiowych.

PaccmarpuBaroTcst KosteGanua Ganku MOJ BIHSHHEM Iepee3fia CepH COCPEOTOUCHHBIX CHUI
CO CITyYaHHBLIMH aMIUTHTYAaMu. IIpuHATO, UTO BBE3ABI CUI HAa GaJIKy COCTAaBIIAIOT CJIyYaiHbIHA
(rTyaccoHOBCKMI M Goiee 06IIKIA-KOPPEIMPOBaHHbIit) mpolecc coObiTHit. HTak NpHHATLIHA
MPOLECC BBIHYXKICHHUA ABJIACTCA MOACIBIO HATPY)KECHHUA MOCTa JIOPOMKHBbIM [BHXKEHHEM.
Peaknua GaJky onpejesieHa aHAJIMTHUECKHM 00pas’oM, INOCIY)KHBAsCh OBYMs, BBEIECHHLIMH
B pabore, (GYHKUMAMH BIHAHHA. BbiBelieHBI (OpMYJIBI JJIA MATEMaTH4YECKOIO OXKHAaHMs
M BapHaHLUWH Iporuda Oanku. Kak npuMep aHaIM3UPYIOTCA, OJIA PasHbBIX NPaKTHYECKHX CH-
Tyalui, KosleOaHus OajKku IoJ AeHCTBHEM CTALUMOHAPHOIO IyaCCOHOBCKOro moroka cuia. 06-
CYIKJIEH TaloKe CHOoCOD pacliHpeHHsT NpPe/ICTABIEHHOTO METOAA PEIleHMA Ha CJIyyal MHOToocC-
HbIX TPAaHCIIOPTHBIX CPEJCTB.

1. Introduction

VIBRATIONS of bridge structures produced by- travelling loads constitute one of the most
mportant problems of structural dynamics. The problem has been investigated for many
years and ample literature is listed, for example, in the book by Frysa [l].

In most papers moving loads are treated as deterministic processes. Since, however,
moving forces acting on a highway bridge (wheel pressure) have random magnitudes and
appear at random instants, the traffic loading of a bridge should be treated as a stochastic
process. Such an approach to the problem has been applied by few authors only. FRYBA
[1] considered the vibrations of a beam provoked by a single travelling concentrated force
stochastically variable in time. KnowLEs [3] tackled the problem of vibrations of an
infinitely long beam subject to a travelling concentrated force, its position on the beam
being described by a strictly stationary process, the Gaussian stationary process and the



672 R. IwaNkIEWICZ and P. SNIADY

Wiener process. Vibrations of a beam under the action of travelling continuous loads were
investigated by RopsoN [4], BoLoTIN [5] and FryYBA [1].

A fundamental contribution to the problem of vibration of bridge beams due to ran-
dom travelling loads was made by TUNG [6, 7, 8]. The author assumes each vehicle to be
represented by a single concentrated force, the vehicles move at equal and constant vel-
ocities, have the same weight and appear on the bridge at random instants. The traffic
is thus modelled in this case by a random stream of concentrated forces of equal ampli-
tudes. Application of numerical techniques makes it possible to determine the one-di-
mensional probability density function of response of the system and the expected rate
of threshold crossings. However, in the papers mentioned above, only random streams
of independent arrivals are considered.

The present paper deals with beam vibrations due to the passage of a random series
of concentrated forces having random amplitudes. Variability of the forces in time may
be described by a certain nonrandom function. The time intervals between the instants
of arrivals of the individual forces are treated as random variables (generally correlated).
The series of forces constitutes a model of a random stream of vehicles of random weights
which move at constant velocities; it represents a simplified model of loading of a bridge
by traffic, the effects of inertia of the vertical motion of the vehicles being disregarded. The
beam response is determined analytically. The formulae for the expected value and vari-
ance of the beam deflection are given; the possibility of extending the solution to the
case of multi-axle vehicles is also discussed. The results presented may be useful in the
analysis of dynamics of highway bridges and in estimating the reliability of civil engin-
eering structures.

2. Formulation and general solution of the problem

Let us consider damped vibrations of a beam of length / produced by a series of forces
moving in the same direction at a constant velocity o (Fig. 1). Assume that the forces
arrive at the beam at random instants ¢z, and form the stream of force arrivals; the
stream is assumed to be inhomogeneous and of intensity A(z).
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Let N(t;, t;) and dN(t) denote the number of force arrivals in the time intervals (z;, )
and (¢, +dt), respectively, and the symbols P{} and E[] denote the probability and the
expected value of the magnitude in brackets.

Let us assume the probability of appearing of a force in an infinitesimal time interval
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dt to be proportional to dt, and the probability of appearing of a larger number of forces
to be negligibly small as a higher order vanishing value, so that

(2.1) P{dN@t) = 1} = At)dt+o(dr),
(2.2) P{dN(t) > 1} = o(dt),

(2.3) P{dN(t) = 0} = 1—-A()dt+o(dr),
whence the relations follow:

2.4 E[dN()] = A@t)dt+o(dr),
2.5) - E[dN?(2)] = A(t)dt+o(dr).

Correlation between two arrival instants 7; and ¢, is described by the product density
function of second degree ¢(z,,?,) (cf. SRINIVASAN [9]) defined as

(2.6) E[dN(1,)dNM>)) = (ty, tr)dtydt,
or, equivalently, by the second-order correlation function
(2.7) Sy, 1) = gty )= A(t) A(Ly).

In the case of independent arrivals (uncorrelated), f{(¢,,t,) = 0, the stream is a
nonhomogeneous Poisson stream and the probability of appearing of n forces within the
time interval (#;, ¢;) is given by the formula

9 PN 1) = = 001 ooty

where
Y

A, ) = f A(r)dr.

Ly
In such a case the average number of forces acting on the beam at an arbitrary time
t > l/v equals

(2.9) | E[N(t—é,t)] - fl M) de.

t—~l/v

In the case of the stationary Poisson process of arrivals, i.e. when A(t) = A = const,
we obtain

(2.10) E[N(t—-%,t)] = JJv.

It is evident that the mean number of forces acting on the beam is in this case inversely
proportional to their velocity.

Let the damped vibration of a beam with bending rigidity ET, mass density m and damp-
ing coefficient ¢ be described by the equation

Q.11 EWV(x, t)+cw(x, t)+mib(x, t) = 2 A,‘S(t—--t,c)é[x—'v(t—tk)]
keN(t—- vL't)
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and by the corresponding initial conditions at instant #—//v; here d is Dirac’s delta,
w(x, t) — deflection of the beam, (-) = d/at, ( )V = o*/ox*. Amplitudes A4, are inde-
pendent random variables of identical probabilistic characteristics independent of the
times of arrivals #,; assume the values E[A4,] = E[A] = const and E[4}] = E[4?] =
= const to be known. The deterministic function S(#—#,) describes the time-dependence
of the force. '

The state of displacement of the beam acted on by a series of travelling forces is the
sum of the displacements produced by individual forces. At an arbitrary instant ¢ > /v
the beam performs the vibrations provoked by the forces which are actually present on
the beam (their times of arrivals # € (t—I/v, t), and free vibrations provoked by forces
which have already left the beam (i.e. f, € (0, £—I/). It is advantageous to introduce two
influence functions H,(x, t—t) and H,(x, t—t,—1/v), the first of which represents the
beam deflection at time ¢ produced by force S(t—1) present on the beam (# € (t—!/v,
t)), and the second one describes the free vibration due to the force which has already
left the beam (#, € (0, t—I/v)). The functions satisfy the equations

(2.12) EIHY(x, t—tk)+cHL(x, t—tk)+mH1(x, t—t) = St—t)d0[x—v(t—1)],
. i .
(2.13) EIH;"(x, t—t,‘—%) +cH2(x, t—t,— ;) +mH2(x, t—t, — —i—) =0,

together with the corresponding boundary and initial conditions (for ¢ = #, and ¢ =
= t,+1/v)

2.19) H,(x,0) =0, Hl(x, 0) =0,
@15) Hi(x,0) = H, (x, o) Ao =g (x, i)

Deflection of the beam w(x, ?) at an arbitrary time ¢ > /fov is the sum of two effects,
i.e. of forced and free vibrations,

B
(2.16) wx, t) = wi(x, 1) +wy(x, 1) = 2 A H, (x, t—1,)

keN(r— i,:)
v

+ 2 AkHz(x, t—tk—'—:)").
keN(O.r— %)
This formula may also be written in an integral form (Stieltjes integral of the N () process)

as
t=ljv

Q.17 w(x, 1) = wi(x, D+wy(x,t) = fA(r)H,(x, t—1)dN(7)+ f A7)

t—Tv 0
!
x H, (x, t—‘t—;—) dN(7).

Equation (2.17) will be used to determine the expected value and the variance of the
deflection of the beam.
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Performing the expected value operation on the formula (2.17) and taking into account
Eq. (2.4), we obtain
t
(2.18)  E[w(x, )] = E[w]+E[w,] = E[A] le(x, t—1)M(7)dr
t—llv
t—ljv
+ E[A] f H, ((x, t—7— ;I}—) A(T)dx.
- .

The formula for the variance of the deflection
(2.19) ou(x, 1) = E[w*(x, t)]—E*[w(x, 1)]
is derived on the basis of Eq. (2.17) and Egs. (2.5)-(2.7) to yield
—ljv

'3
220)  o2(x, ) = E[47] [ Hix,t—D)Ax)dv+E[4%) | H3(x,t—7—If0) (r)dr
t—ljv 0
t t
+EA] [ [ Hix, 1=r) Hix, 1= o)f(z,, 1,)dv, dr,
t—ljv t—llv
1 1=llv
+2E2[4] [ [ Hi(x, 1) Hy(x, 1= 12— o) f(ry, T2)dr v
t—1lv 0

t=lve=lv

+ E?[A] f f H,(x,t—1,—l/[0)H,(x, t—1,—1/0)f(1,, 1,)dt,dT,.
0 0

In the particular case of an uncorrelated stream of arrivals (i.e. f(7,, 72) = 0), Eq. (2.20)
is reduced to the form

t
@21)  E(x,t) = o3, +03, = E[4%] [ Hi(x, (-1 A(r)de
t—Ijv
t—Ilv

+E[47 [ Hix, t—t—1[0) A(z)dv.
(1]

Let us expand the influence functions H,(x, —#) and H,(x, t—1t,—!/v) into the series
of eigenfunctions W,(x)

222) Hy(x, 1=1) = ) galt—tdW,(),
n=1

(2.23) Hy(x, t—t,—10) = D filt—t,—1/0) Wo().
n=1

Substitution of expresions (2.22) and (2.23) into the respective formulae (2.12) and (2.13)
and application of the orthogonality properties of eigenfunctions yields

(2.24) Gt — 1) +20,(t — ) +0n gt — 1) = ylz S(t— 1) Wylo(t— 1],

(2.25) Falt—te— 1) +20fi(t— t,— ) + @2 fo(t—t,—1[0) = 0,
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i
where 2x = ¢/m, y2 = [ mW2(x)dx, and w, is the free vibration frequency. From Egs.
0 .

(2.24) and (2.25) we obtain

(2.26) q.(t—1) = 7’% ’;f‘ h(t—7)S(r— 1) W,[v(z—t)]dr.
!k-i:’fU
2.27) Fl—t=1i) = - [ hlt=0)S(e—1) Wle(r— 1),

n tk

Here h,(t—7) denotes the impulse response function
(2.28) h(t—7) = Q7le " 5inQ,(t— 1),
where Q2 = w2 —a2.

Using the eigenfunction expansions (2.22) and (2.23), the formulae (2.18) and (2.20)
are written in the form

(2.29) EDw(x, 0] = Elw,]+EDw,] = E[4] Y [0 +/i(O] W, (),
n=1

where

t

w0 = [ a0-i@dr,

(2.30) "_‘I’/’:
1) = | flt—r—l)A(n)dr
and '
(2.31) a2(x, ) = S’ S’ [0V 4, (1) + OV, 1, (1) +COVy, 1 ()] Wi(x) W)(x).
Here o

COVgq (1) = E[47] fqi(t—'c)q,(t—r)l(t)dr

t—ljv
t t
+E2A] [ [ ae—1)at— ) f(ry, o) drdr,,
t=llv t=ljv

t=1Ijv

232 covy,., (1) = E[47] [ filt—T—1jo)f(t—v—1[v) A(x)dv
V]

t—lvit—Ifv

+EXA] [ [ filt—v— o)== o) (s, T2)dr, drs,
0 0

tt-ljv

covey, () = B[4l | [ at=r)ft— 2= o) f(xy, 75)dr, dr,.

t—Iljv 0
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When the stream of forces is uncorrelated (f(#;, ;) = 0), Eq. (2.31) is reduced to the
form

(233) oi(x,t) = o +on, = 2 u; COVyg (1) Wi(x) Wy(x)
i=1 j=1
+ 7 D covy,, () W) W(x).

—

i=] j=

Here the expressions cov,, (f) and covy, s (f) are expressed solely in terms of single inte-
grals given in Eq. (2.32).

3. Simply supported beam under stationary Poisson force stream

On the basis of the general solution given in Sect. 2, let us determine the probabilistic
characteristics of vibrations of a simply supported beam subject to a series of constant
forces (S(1—1) = 1) under the assumption that the stream of arrivals is uncorrelated
and stationary, i.e. f(¢;, 1) =0 and A(z) = 2 = const. Hence W,(x) = sinnzx/l, and
the generalized (normal) coordinates g,(t—1t) and f,(#,—t¢—I/v) are derived from the
formulae (2.26) and (2.27),

2 .
G g.t-1) = M, [@;nsin fa(t— i)+ @2,c08 Ba(t — 1)
+a3,e” "GN, (1 — 1) — azpe”*Ccos 2,(1—1,)],

[ 2 alege il [
(3.2) j;,(t—tk—‘rv') = f;‘l—lM" e ( ¥ ”)lblnsmﬂ,,(t—t,‘—;)

/
+b2,.cos!2,,(t— t,— @)] .

Here
(mz )2,I/Ef
w, = |+ ===
I m
nmv
ﬁn - "T:
M, = (wf —p2)* +4a?pz,
(33) Ain = LU,?— 3’ drp = —ZKX‘B,,,
a3y = P2 22— (w22
n Q" n n >
b —-(_—l)"—( +a,,0)+ ] s [—+a eﬁai’isinﬂ !
n="g a, fu+as,a)+as,e easddn = 2n ny

g / —al /
by, = (—1)ay,+as,e a”sin!?,,;az,,e aﬂcos!),,;.
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Substitution of Egs. (3.1) and (3.2) into Eq. (2.30) yields

G4 Ebn(x, 0] = ”E[A]Z i {”‘" [1-(-1y]+ wn[v.n—'(asinrz.,g

I —5] a ! £ o
+Qnco882,—e "]— —2}[oc+ (.Q,,sin!?,,— —occos!),,)e_“E]},
v @ v K4

n

nmwx

*_sin——
(5 Ebwr,0) = oL 2w e BunDi (0 @)+ baa D, 2]

Here D; and D, are integrals given in the Appendix.
The mutual covariance functions of generalized coordinates appearing in Eqgs. (2.32)
assume the form
(3.6) cov,,(t) =a2(t) = B {i LM +ai, I;(2u, 2)+a3,1,(2a, 2,)
Anln qn (ml)zM,f 2.0 n 3n’t3 s WEp 2n'4 > WE€p,

~a2na3nll(a) 2'er)-"2alr1l‘l'3h115(‘-'X, ,an "Qn)_za]_naZnIG(ay ﬂn: 'Q

+202,,£13,,16(CZ, ﬁna Qn)_2a5n17(a’ ﬁns Qn)} »

m {ayias;ls(a, i, QJ)_athZJjG(a’ B> 2))
+azaylo(a, 85, B))—ayay; I(a, By, 2)+aya,,l5(x, Bi, f))
+ayax;ls(a, 21, ) +asas;lsQa, 2, £2)
—a3,0,,16Qa, Q;, Q) —ayals(a, f;, )
— a0 (0, 2y, ) —aznasle(a, 2, 2)) +aya,;1,(2e, 2,, 2))},
41
(ml)’M?

(3.7)  cove,, =

(3.8)  covp s (1) = 0} (1) = {61, D;(2x, 2,)

+2b1nb2nD4(2as 'Qn) +b§nD5(2a5 Qn)}:
42

(39) COVf'fj(t) = W

{b1ibyyDeRa, 2, 2))+by,b5;D7 2, 2;, 82)

+by;by1 D720, 2, 2))+b21b5;Ds(202, 2,,02)},
(3.10) ; covg, (1) =0,

where D, and I, are expressed in terms of the integrals given in the Appendix.

The solutions derived indicate that the expected value and the variance of the deflec-
tion w,(x, #) are time-independent. As far as the function w,(x, ) is concerned, it proves
to be sufficient to know its asymptotic behaviour for 7 — co, what takes place in the
case when the effect of the transient process (initial perturbation) becomes negligible at
the time of observation. From Egs. (3.5), (3.8) and (3.9) for ¢ — co, it follows that

_ 2AE[A] N\ Qubitaby, . nax
3.1 Elw,(x, )] = il M w? sin——,

n=1
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(3.12) 5 0'}"((1)) = "(_WAW[b%ngf+2blnb2na9n+b%n(2a2+93)]’
43 af2,2;
G139 0w (0) = Guyens, ag, P00 [aa+ (@~ 2)7] e + @i+ )]
Ll [ Q,-8 B Q,+9,
27MTH 40+ (Q,— Q) 402+ (Q,+0)?
+_l_b b QJ_QI _ 'Qf_+gj ]
27N 4021 (0,- Q) 402+ (2,+9)?

+byb - + - }
HU 42+ (2,-02)* T 42+ (2,4 2)* )T

In order to perform the quantitative analysis, a numerical example has been prepared by
assuming that 2 = 0.5 s~!, what corresponds to the traffic capacity of 1800 vehicles/hour,
a = 0.0lw,;, @, = 10 s71, The solution is found for the first eigenfunction W,(x) =
= sinzzx/l. The dimensionless magnitudes are evaluated: E[w]mlw?/E[A], oim?l?w}t/
|E[A?%] and o, E[A]/E[w] VW which correspond to the expected value E[w], variance o2
and the variability coefficient o,,/E[w] of deflection of the beam. The results are shown
in Fig. 2,3 and 4 as functions of the travel velocity. The dashed line denotes the solution
for w;, and the thin solid line — for w = w,+w,. It is easily seen (Fig. 2) that the
average deflection decreases with increasing force travel velocity in spite of the fact that,
as it is known, response of the beam to a single passage of a travelling force increases with
increasing travel velocity. This is only an apparent contradiction since, in the case of
a random series of forces, the average number of forces acting on the beam (mean load)
decreases with the velocity, see Eq. (2.10).

4 Elwimlw, /E(A]

40 60 80 100 120 160 200 240
Fic. 2.

The effect of free vibrations, that is the difference E[w,] = E[w;+w;]—E[w,], is
negligibly small for velocities less than 130 km/h. E[w,] assumes negative values, what
follows form the fact that at the instant when the force leaves the beam, the process of
exponentially decaying free vibrations begins (starting from the negative value of deflec-
tion). The variance of the function w, (Fig. 3) decreases with the velocity. Contribution
of the component w, in the total deflection variance cannot be disregarded, in particular
when the velocity exceeds 120 km/h. Both the variance and the variability coefficient
(Fig. 4) increase rapidly starting with the velocity 120 km/h.
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The assumption that the average arrival rate of forces A is independent of the
travel velocity is not accurate if the moving forces are asumed to model the traffic loads.
In traffic engineering [10] it is known that the mean velocity of travel depends on the mean
arrival rate. This relation is illustrated by Fig. 5.

The dimensionless magnitudes corresponding to E[w], o2 and o, /E[w] are found by
means of the relation
(3.14) @) = 44, ;” (1_ ”)

m Um
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Am being the maximum mean arrival rate, and v,, — the maximum velocity; they are shown
by heavy solid lines in Figs. 2,3 and 4. It has been assumed that A, = 0.5 s~! and
= 240 km/h.

In Figs. 6.7 and 8 the dimensionless quantities E[w], 62 and ¢,,/E[w] are plotted against
the mean arrival rate A; dotted lines refer to the solution for w,, solid lines —to the
solution for w = w, +w,. In this case the analysis is confined to the range of velocities
represented by the portion BC of the diagram in Fig. 5, and so the velocity is expressed
by the formula

(.15) v(d) = _;_v,,,(u ]/1— ;)

} Ewimiw?/ELA]
10
08l
06
04
02

01 02 03 04 05 Als-1)

FIG. 6.

4ol milw! fEl4)

9 Arch. Mech. Stos. 5-6/83
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Here the values v,, = 160 km/h and 4,, = 0.5 s~! have been assumed. The observation
is confirmed that the contribution of w, to the expected value is small, contrary to the
case of the variance and response variability coefficient where the contribution is consider-
able.

4. Discussion

The solutions and results presented here may be utilized in the analysis of vibrations
of bridges induced by traffic. It follows from the investigations on the traffic [11, 12]
that the Poisson process describes fairly well the motion of vehicles in the range of small
and moderate arrival rate and traffic density. In such a case the relation between the mean
velocity and arrival rate is illustrated by the curve BC in Fig. 5. In the case when the traffic
arrival rate or the density are small (curve AC), the stream of vehicles should be treated as
correlated. In [13] the effect of correlation of the excitation procéss on the system response
is analysed in the case of loading by a random series of impulses. It may be expected that
the effect of correlation for a moving series of forces has a similar character. Assumption
of nonstationarity in the arrival process makes it possible to account for the periodic
changes in the traffic density occuring during the day and night or following from the
light signalling.

The solution obtained under the asumption that each vehicle is represented by a single
concentrated force may be extended to the case of multi-axle vehicles represented by sev-
eral forces. The influence functions H, and H, must then be modified. Let us illustrate
this on the example of a biaxle vehicle represented by two concentrated forces of random
amplitudes A4, B, and distance 4 between them. The influence H,(x, ), H,(x, t) have
the form

Hl(x9 t_tk) = H;k(x, t_tk)-[-Hl**(x, t_tk_ _A'v_),
4.1) '

Hz(x, t_tﬁ_‘:,_) = H* (X, t—tk—%) +H§‘*(x, t—t,— _l:A )’

where the functions Hf and H{* satisfy Eq. (2.12), while the functions H5 and H; — Eq.
(2.13) (with suitably shifted arguments).
By analogy with Eq. (2.17) we obtain

==

42 wix,t)= fA(r)Hf(x, t—1)dN(7)+ f B(r)H’f*(x, t—7— %) dN(7)

' L
v
x-% :_"‘T"
" ! . I+4
+ A(?)H} x,t—r—? dN(7)+ B(x) HY*|x,t—1— = dN(7).
0 0

The expected value and variance of the random function w(x, t) defined by this formula are
obtained similarly to Egs. (2.18) and (2.20).
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Deflection of the beam w(x, t) given by Eq. (2.16) is, in the case of a Poisson process,
the sum of independent random variables of identical distributions. In such case it may
be shown, in similar manner like in the case of a series of impulses [14, 15], that when
the arrival rate tends to infinity (4 — o) and the amplitudes fulfil the relations
/\ E[A*] = const, the distribution of the function of deflection w(x, ¢) tends to normal

k>1
distribution with the expected value m,, = E[w] and the variance ¢2.

Appendix
' b asinb;l +bcosb% ;
Il(a, b) = fte_a(r-r)sinb(t_-,)dr = P — pEy e v,
fris
¢ bsinb—zl, —acosb—éf ;
L@ b) = [ e =Doosb(t=n)dr = it ——— g ©
=
! 2b*
I5(a, b) = , _[ e Dsin?b(1— 1)dr = “a(a® +4b%)

1 —al]1 1 [ ; /
_?C‘ U[—a‘~+m(—acoszb—; +2bSln2b?)],

t
La,b) = [ e=*Dcos?b(t1—v)dr =
i

| b=

a?+2b*
a(a®+4b%)

1 -2t 1 1 l . !
+7e [— - +az—+,4b2(—-acos2b? +2bsm2bv)] ,
i 4
La,b,0) = [ e **=9sinb(t—)sinc(t—1)dr
l

frmsins
v

2abc
[a®+ (b—0)?][a*+ (b +¢)?]

1 1
== *—2—'1‘2((1, b—C)—‘z— Iz(a, b+c) =

1
—alk
1 e v

! . !
+y Prh—oF [~acos(b—c); +(b—c)sin(b—c) ;]

1

—_——

1 e v

1 . !
T FT G [—acos(b+c)? + (b+c)sin(b+c) ;],

9*
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t t
Is(a, b, c) = fe'““")sinb(t—r)cosc(tur)dt
1 1 1 b—c b+c
= ?I 1@, b=+~ Il(a b+e) = [atz—|~(b—c)2 + az+(b+c)2]
1
1 v ! !
e m [asm(b c)? +(b-—c)cos(b—c)-tv—]
1
1 % in(40) + bro !
= TGO asin(b+c ;—F( +c)cos(b+c - |
t
L(a,b,c) = fe"'(“”cosb(t— T)cosc(t—t)dr
2 b2 2
_ %Iz(a,b—c)+%12(a,b+c) - alo” +b 4+ )

[@2+ (B —c)?*][a® + (b + )]

g
1 e v

+-2—m l-—acos(b-—c) % + (b—c)sin(b—c)?[]

1
—a—

1 e v 2 1 3 l
+g pr g [-acos(b+c); +(b+c)sm(b+c)v],

!
D,(a,b) = f e'“("’—?)sinb(t—‘t-— %)dt

b asmb(t——)+bcosb(:-—i) ( )
J i
T @bt a’+bh?

Dz(a,b)zf e—a('_r_g)cosb(t—r—%)dr

bsinbd (t-i)—acosb(t— i) :
. a v v —a(l— _)
t— e v

b a’+b? ’

ot k] . I 2b?
Dj(a, b) = f e ( v)smzb(t—r—?)dr =W

_a(t- ) {_ m I -a'coszb(t— %) +2bsin2b(t— ;)]} ,
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Q| ~

=
]
D,(a,b) = f e_a(t"— ?)sinb(t~r— %)cosb(t—r— ?l)dr
0

i b —;—asian(t—— %)+bcost(t—7I)~) ( ,)
—alt—- —
7D1(0’2b) IR CEV I , a®+4b? ¢ o

]

t— =

v
SR Y A VR = L
Ds(a, b) —Of e cos?b(t—7 . dr @140
-,,(,_.L)
e v 1 1 ) ; l
+—2—-{—7+az—HbT[—a0052b(t—;)+2b81n2b(t——v—)j|},

L
v

t—
1
Dg(a,b,c) = f e_a(t_t_ v)sinb(t—t—%)sinc(t—r——:}—)dr
b

= %]Dz(a, b—~C)—D2(U, b+C)],

1
e

v
= [ s sl ip et
D,(a,b,c) = { e sinb|t—7 v cosclt—t o dt

0

- %[Dl(a, b—c)—D,(a, b+c)],

!
Dg(a, b, c) = I e_a(t—t_ﬂcosb(t—r—%)cosc(!—r—%)d:

= %[Dz(a, b—c)+D,(a, b+c)).
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