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Kinetics of void formation in strained metals 

J. KRZEMINSKI (W ARSZA WA) 

AN EXTENDED theory of void formation in strained metals is proposed. The theory takes into 
account the coupling of both homogeneous and heterogeneous mechanisms in the global proc­
ess of vacancy-microvoid nucleation as well as the effect of strain on the free energy of forma­
tion of vacancy clusters. Moreover, numerical estimates of nucleation characteristics for two 
f.c.c. metals (aluminium and copper) and one b.c.c. metal (oc-iron) are presented and discussed. 

Praca zawiera rozszerzon'! teori~ tworzenia pustek w odksztalconych rnetalach. Teoria uwzgl~d­
nia zar6wno sprz~zenie obu mechanizm6w jednorodnego i niejednorod11_ego, w globalnym pro­
cesie zarodkowania wakansyjnych mikropustek, jak i wplyw odksztalcenia na energi~ swobodn~ 
tworzenia agregat6w wakansji. Ponadto przedstawiono ·1 przedyskutowano oszacowania licz­
bowe charakterystyk nukleacyjnych dla dw6ch metali o sieci plasko centrowanej ,(aluminium 
i miedi) oraz dla jednego metalu o sieci przestrzennie centrowanej (i:elazo oc). 

B pa6oTe npe~craaneHa Teopmi o6pa3oBaHHH nycroT B ~e<PopMHpyeMbiX MeTannax. TeopiDI 
yqHTbiBaeT KaK o6paTHyxo CBH3b 060HX MeXaHH3MOB O~HOpO~OrO H HeO~OpO~OrO B rno-
6aJibHOM npo~ecce 3apom~eHHH Bai<aHCHOHHbiX MHKponyCTOT, Tal< H BJIIUIHHe ~e<PopMa~H 
Ha cao6o~Hyxo :meprmo co3~aHHH arperaTOB BaKaHCHH. KpoMe Toro, npe~craaneHbi H pac­
CMOTpeHbi qHcJieHHbie O~eHI<H HYI<Jiea~HOHHbiX xapai<TepHCTHK ~JIH ~Byx MeTaJIJIOB C rpa­
He~eHTpHpOBaHHOH perneTI<OH (amOMHHHH H Me~), a Tai<>Ke ~JIH O~oro MeTaJIJia C 06'he­
MHO~eHTpHpOBaHHOH perneTI<OH ( oc-mene30). 

1. Introduction 

IT IS WELL known that metals and alloys develop an internal porosity in the form of small 
cavities when they are strained in tension at elevated temperatures [1], exposed to high­
energy radiation [2, 3] or subject to diffusion experiments [4, 5]. Such cavities were shown 
to be essentially empty and were therefore called "voids". Although the phenomenon of 
void formation is a topic of immense interest to both theoretical and experimental physi­
cists concerned with fracture, it has been considered only in recent years, and is still 
far from being fully understood. 

In the preceding papers [6-11], a hypothesis of vacancy-microcrack origination in 
strained metals was proposed. The hypothesis was based on the qualitative similarity be­
tween the Griffith theory of brittle fracture and the process of phase transition. This simi­
larity suggested the idea that a microcrack may be initiated in an analogous manner 
as a nucleus of a new phase, composed of a set of vacancies situated at neighbouring 
lattice points, and resembling a bubble in cavitation of liquids. 

The vacancy hyp/othesis has been developed by the present author since 1969. First, 
using the ·discrete analysis of the classical theory of phase transitions, the homogeneous 
nucleation rate of microcracks in a uniaxially strained single crystal was derived [6, 7]. 
Then the theory was extended to polycrystalline materials and the heterogeneous nuclea-
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tion of microcracks at the grain boundaries was described. In the latter problem two 

different analytical treatments of the process were distinguished. The first one permitted 

introduction of macroscopic parameters, and hence a thermodynamic model of the sys­

tem [8]. Oil the other hand, for very small nucleus sizes application of the bulk variables 

was highly questionable and the use of microscopic quantities (and so of an atomistic 

model) was required. In this case the considerations were carried out on the basis of 

statistical mechanics [9]. Next, the continuum approach to the kinetics of the homo­

geneous process of microcrack nucleation in single crystals was presented [10]. The con­

tinuum analysis gave the same nucleation rate equation as that obtained by the discrete 

method, but the unknown non-equilibrium density of vacancy clusters was also found. 

In the theories of phase transitions two basic classes of the processes are usually dis­

tinguished: homogeneous and heterogeneous nucleation. In nearly all hitherto existing 

theories one separate mechanism only, of the new phase nucleus generation, has been 

considered. For the homogeneous nucleatioQ. this is a spatial mechanism (three-dimensional 

diffusion of single structural elements) which allows to form a nucleus of the new phase 

within a mother phase. On the other hand, in the case of heterogeneous nucleation on an 

interface (e.g. condensation of vapours on a solid substrate) surface diffusion is consid­

ered to play the decisive role. In spite of a large number of papers on nucleation theory 

very little attention has been paid to what happens when both the homogeneous and 

heterogeneous mechanisms operate simultaneously [12-16]. However, both of the above 

mentioned mechanisms are really coupled in any process of heterogeneous nucleation 

on a foreign surface, and the total nucleation rate is not a simple sum of the two rates 

calculated for independent mechanisms. The problem of coupling of these two mech­

anisms in the global process of vacancy-microcrack formation in uniaxially strained met­

als was .solved in ref. [11]. The purpose of this paper is to take into consideration not only 

the coupling of the homo- and heterogeneous mechanisms but also the effect of strain 

on the free energy of formation of vacancy clusters. Moreover, some numerical estimates 

are presented and important qualitative and quantitative conclusions are drawn. In the 

considerations macroscopic thermodynamic properties are ascribed to the subcritical 

and critical clusters, the continuum analysis of the process kinetics is employed, and iso­

thermal state of the system is assumed. 

2. Model of the system 

When the gaseous phase of vacancies ("vacancy vapour"), contained within the grain 

space, comes into contact with the grain boundary, a phenomenon of vacancy deposition 

appears on the surface of the boundary._ By analogy to the process of physical adsorption 

of a gas on a solid substrate this phenomenon is called adsorption of vacancies on the 

grain boundary, and the adsorbed vacancies are called advacancies. The reverse process 

is called desorption of vacancies. 
Let us consider an internal region of a polycrystalline sample subject to tension and 

kept in a uniaxial state of strain. The observed region contains at least one grain (with 

its boundary) which together with all separate vacancies (phase I), dispersed inside the 
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grain space or adsorbed on the grain boundary, as well as all types of vacancy aggrega­
tions (phase II) - constitutes our system (Fig. 1 ). Within the grain isotropic clusters 
(microvoids, assumed as spherical) are formed according to the homogeneous mechanism 
and under the classical assumption that particular aggregates can grow or disintegrate 
only by successive associations or separations of single vacancies. At the same time, on 
the grain boundary heterogeneous cap-shaped islands are created by two different simul­
taneously operating mechanisms: by direct addition of individual vacancies from the 
grain space to the already existing clusters, and by successive joining of separate adva­
cancies via surface diffusion along the boundary. 

The smallest clusters of both types with equal probability of growth or disintegration 
are called the critical clusters or microcrack nuclei. 

When the linear strain of the analysed crystal sample is equal to zero the system con­
sidered is in the thermodynamic equilibrium and the two phases can remain in stable 
equilibrium with each other for any length of time. Increasing the strain increases the 
supersaturation and throws the system out of this equilibrium but it is assumed that after 
a negligibly short time delay, for each given temperature T and a fixed strain c;, a new 
metastable equilibrium is recovered. This, in fact unstable, pre-transition state can be 
preserved for a certain time depending on the velocity of the generation and growth of the 
new phase. Thus, any analysis of a system being in such a condition can yield results 
which are valid for a limited lapse of time only. Similarly as in the ordinary thermody­
namic equilibrium quasi-stability of the system is expressed in this case by the steady char­
acter of the distribution of the new phase embryonic elements. As the strain increases. 
further the system becomes considerably supersaturated with vacancies and aggregates 
of perceptible sizes are generated. Finally, when the strain is high enough, and correspond­
ingly the degree of supersaturation, critical aggregates are also nucleated. 

From the above it follows that two of the cluster distributions are of importance. 
The first one is an equilibrium distribution of clusters and holds true from the initial 
stage of the process to the highest supersaturation of the system at which the nucleation 
rate is still negligibly small. For higher supersaturation the new phase begins already to 
form, the first nuclei appear, and the equilibrium concentration of various· classes of clus­
ters redistribute to a new non-equilibrium distribution which after a short time delay 
attains again a steady state.(!) 

In our considerations we limit ourselves to such a time interval of the ,Phenomenon 
observation which lasts from the initial stage of the process (c; = 0) to the time of forma­
tion of the first critical aggregates in the system. 

The homogeneous and heterogeneous mechanisms in the global process of microcrack 
nucleation from dispersed vacancies are schematically illustrated in Fig. 1. 

(1) In agreement with the classical nucleation theory a necessary condition for a steady s'tate of the 
process to establish is that all the vacancy clusters, slightly exceeding the critical size, are removed from 
the system and replaced by an equivalent number of single elements. This artificial condition prevents 
the nuclei from unrestricted growth and gives, for each fixed strain e, the conservation of all vacancies 
participating in the global process of formation of any kind of clusters within the grain. It is of no physical 
importance, however, since it represents only some mechanism which has to be imagined to obtain a meta­
stable equilibrium in a supersaturated system. 
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FIG. 1. S~he~atic model of the considered system. 

Assuming thai within the above mentioned time interval the nucleation process is 
not too rapid, so that the steady state can really be achieved; the ternary system "va­
cancy vapour-advacancies-vacancy aggregates" remains in a metastable equilibrium when 
the phase equilibria are established: vapour ~ homogeneous clusters, vapour+ ad va­
-cancies ~ heterogeneous clusters and an adsorption equilibrium vapour ~ advacancies. 

3. Assumptions and basic preliminary formulae 

Most of the assumptions concerning the adopted model of the actual body and the 
process considered may be summarized as follows: 

i. The crystal specimen is in a uniaxial state of strain due to tension. 
ii. The crystal has a·simple cubic lattice and dislocation density negligibly small every­

where except at the grain boundaries. 
iii. Grain boundaries are free from preferential adsorption sites. 
iv. The number of all the aggregates is small compared to the total number of atomic 

sites and each aggregate is associated with a single site, irrespectively of its size. This 
concerns the grains as well as the boundaries. 

v. Only single vacancies and ad vacancies are mobile; the latter cannot migrate into 
other grains across the boundary. 

vi. It is assumed that, due to the strain, both the energies of vacancy motion and for­
mation are lowered by the same quantity Ll U(s) (cf. Eqs. (3.1), (3.2), (3.4)). 

vii . The clusters have spherical or hemispherical shape corresponding to the minimum 
of the free energy of the surface for a given volume. 

viii. Introducing formally the notion of the equilibrium contact (wetting) angle it 
is assumed that in the process analysed the Young's formula, joining the contact angle with 
appropriate surface energies, holds goo_d. 

ix. _The clusters increase or decrease in size by adding or losing one vacancy at a time. 
This assumption is true in the case of homogeneous clusters where one mechanism of -
growth is involved only, as well as in the case of heterogeneous clusters where two differ­
ent mechanisms are coupled. 
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x. The decrease of vacancy (and advacancy) concentration around the growing aggre­
gates and the effect of interstitials on the microcrack nucleation rate are not taken into 
account. 

xi. Within the time p~riod of the process observation the strain (and consequently 
the supersaturation of the system) increases sufficiently slowly. Thus, we can assume that 
after each step increase the supersaturations remain constant for times-much longer than 
the time delay for the approach to steady state. 

xii. Bulk parameters are introduced and the considerations are based on the contin-
uum approach. 

xiii. The process is considered to be isothermal (grad T = 0 and 8Tf 8t = 0). 
Below some fundamental formulas are listed. They will be used in the next sections. 
Due to the strain, the activation energy of the spatial vacancy motion in the direction 

of the crystal elongation is reduced. The decrease of this energy (L1 U) was derived from 
simple energy considerations [6]. Subtracting the potential energy of two neighbouring 
lattice elements of an unstrained crystal from that of an elongated one, it was found that 

(3.1) 

where a, m, n are positive material constants, s denotes the linear strain of the crystal, 
and R0 is the lattice constant. 

The average velocity of a vacancy within the grains of the strained crystal can be 
approximately expressed in the form [7] 

(3.2) v ~ ~0 ~ ~R0exp[- (Um;jU) ]. 
where r is the lifetime of a vacancy at a lattice point, v ~ 1013 s- 1 is the atomic vibrational 
frequency, k is Boltzmann's constant, Tis the absolute temperature, and Um is the acti-
vation energy of motion of vacancies. ' 

The average initial (s = 0) volume concentration of vacancies is given by the known 
formula 

(3.3) c0 ~ .¥ exp (- ~~), 
where .;V is the total number of atomic sites per unit volume, and U1 is the activation energy 
of formation of a vacancy. 

As a consequence of the crystal extension, the energy of vacancy formation is also 
reduced. Assuming that this energy decrease is equal to Ll U, the actual volume vacancy 
concentration reads 

(3.4) [ 
( U1 - L1 U) l ( L1 U ) c = .;Vexp - = c0 exp --kT kT . 

It was proposed [17] that the magnitude of the formation energy decrease amounts 
to L1 U1 = (u€)2 ER~, where u is the concentration coefficient, s denotes the mean linear 
strain, and E is Young's modulus. The quantity Ll U1 represents the elastic e~ergy in that 
volume element in which a vacancy is formed. The difference between Ll U and Ll U1 is, 
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in general, rather small. However, the use of Ll U1 requires not only the continuum approach 

but also the assumption of a constitutive equation. For this reason we choose to work 

with Ll U as the reduction quantity of the formation energy. 

From Eq. (3.4) we obtain the ratio of the vacancy concentrations after and before the 

crystal is strained as a measure of the sup~rsaturation of vacancies inside the grains 

(3.5) Sho = ~ = exp( L1 U). 
c0 kT 

From Eqs. (3.1) and (3.5) we see that for c; = 0 we have Ll U(t:) = 0 as well as Sho = 1. 
Within the grain space the mean number of vacancies per unit time condensing on 

a unit area (the incidence, or capture, rate of vacancies) may be written 

(3.6) 

where p 9 is the probability that a vacancy will jump in the desirable direction i.e. towards 

an aggregate. For simple cubic lattice p9 is simply 1/6, so that 

(3.7) 
1 

Pc = 6 cv. 

For isotropic continuum model of the crystal Pc can be evaluated in the form [3] 

R o 

(3.8) P = ~ f 2nR0 (R0 - x) d = _!_ 
c r 4nR6 x 4 cv. 

0 

. Here, 1 /r is the jump frequency of vacancies, and the integrand is the ratio of the surface 

area of a spherical segment to the surface area of the whole sphere; it represents the prob­

ability that a vacancy placed at a distance x from the aggregate surface will jump towards 

the aggregate. The jump distance is equal to the lattice constant R0 , and vacancies lo­

cated farther than R 0 have zero probability to reach the aggregate with one hop. It is 

clear that for continuum model of the crystal p9 = 1/4. 
Substituting Eqs. (3.2) and (3.4) into Eq. (3.6) one obtains for the incidence rate the 

final relation 

(3.9) 

A similar notion is needed to describe the heterogeneous nucleation on the grain 

boundary. This is the rate of impingement of advacancies on a line of unit length on the 

grain boundary surface (called also the capture rate). This quantity can be determined 

from kinetic considerations. When advancies diffuse over the boundary with a mean 

velocity Vsd' N(l) is the number of single advancies per unit area of the boundary, and 

Pb is the probability factor that an advacancy will jump in the right direction, then 

(3.10) 

Assuming a square lattice on the surface of the boundary Pb is simply 1 /4, i.e. 

(3.11) 
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For continuum model of the crystal we may be calculated similarly as for the three-di­

mensional case 

(3.12) 

d d X 
_N(l) J2 arccos([ _ 1 

We- - -
2 

d dx- -N(1)vsd' 
'l'sd 

0 
n n 

where Tsd is the surface diffusion lifetime of an ad vacancy at a lattice site (I/ Tsd is the 

jump frequency of advacancies on the boundary surface), and the integrand is the ratio 

of th~ arc length of a circular segment to the circumference of the whole circle; it repre­

sents the probability that an advacancy located at a distance x from the periphery of the 

base circle of the cap-shaped aggregate will jump toward the aggregate. The jump distance 

is equal to the interatomic spacing d on the boundary surface, and advacancies at dis­

tances larger than d have zero probability to be incorporated into the aggregate with one 

hop. 

The average migration velocity of a single advacancy over the grain boundary surface 

is ~pproximately 

(3.13) v,, = vdexp (-~f). 
In the above formula the vibrational frequency, parallel to the surface, is assumed equal 

to that of regular atoms in the three-dimensional lattice (~ 1013 s- 1
), Usd is the activation 

energy for surface autodiffusion. 

Substituting Eq. (3.13) into Eq. (3.10) we obtain 

(3.14) 

4. Homogeneous nucleation of microcracks within monocrystalline grains 

The process of the new phase nucleation is continuous in ti~e and discrete in the space 

of natural numbers i. However, b~sides a discrete approach which was earlier widely 

used in the problem [18-20], a continuum analysis is also possible [10, 11] and will be 

adopted and reconsidered here. Consequently, all the functions having physical meaning 

only for integral values of i are formally extended onto the whole positive semi-axis. 

Moreover, appropriate class of each function is assumed to ensure the existence of all 

operations involved. 
As was briefly mentioned in Sect. 2 it is always possible to define the equilibrium aggre­

gate distribution function, A 0 (i), when there are still no p:!rceptible traces of the new 

phase nuclei. This function is given, for a temperature T, by the well-known stationary 

Boltzmann distribution for a diluted system [2, 3, 21] 

(4.1) [ 
llFg(i)- kTln A(t) ~ [ llF (i)] . 

A 0 (i) = A0 (l)exp - = .#" exp - - 11
- -kT kT . 
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Here, L1F
9
(i) is the free energy of formation of an aggregate of i vacancies from isolated 

vacancies in an isothermal reversible process ignoring the entropy of mixing; it is the sum 

of two terms, of which the first one is always positive and represents the work spent in 

forming the surface of the aggregate, and the second one is the work gained in forming 

the new volume. In the presence of strain, it is necessary to consider also the strain energy 

as part of the free energy of formation of an aggregate. Therefore, the second term should 

be supplemented by the total elastic potential release accompanying the creation of an 

element of the new phase [22, 23]. If nucleation is thermodynamically admissible (Sho > 1), 

the second term is always negative; otherwise, no phase transition is possible. Taking into 

account the minus sign for the second term, we have for spherical isotropic clusters 

. . . kT c . LlU1 (e) 
(4.2) LlFg(z) = O(z)a- V(z) V(l) In Co- V(z) V(l) 

= 4nr 2 a-!nr3 kT lnSh -~nr3 LlU(e) i ~ 2, 
3 Vv 0 3 Vv ' 

where O(i), V(i) and r = r(i) are surface area, volume and radius of a spherical i-mer, 

respectively, ex is the average surface tension of the crystal, Vv = V(l)_ is the volume of 

a vacancy, L1 U1 (e) is the decrease of the potential energy of the system connected with 

the formation of a unit volume of a cluster; it is assumed that L1 U 1 (e) ~ L1 U( e) ( cf. p. 643). 

The numerator of the exponent in the first part of Eq. (4.1) 

(4.3) 

presents the cluster formation energy completed with the configurational entropy term 

- kTln(% /A 0 (1)) [24], under the assumption that .A' ~ L'A0 (i) i.e. that the number of 

all the aggregates is small compared with the total number of atomic sites. Since no energy 

is needed to form an aggregate of one vacancy from single vacancies the total free energy 

of formation AF9 should by zero for i = 1. Thus 
,..., % 

(4.4) LlFg{l) = LlFg(l)-kTln Ao(l) = 0, 

and we have 

(4.5) 

Because A0 (1) = c0 , this is in accordance with Eq. (3.3). 

From Eqs. (4.3) and (4.5) it follows that 

(4.6) LlFg{i) = LlFg(i)- LlF9 (1). 

Utilizing the relations 

(4.7) 
. V(i) 4nr3 

z = V(l) = 3Vv ' 

we can express LlF9 as a function of the variable i 

. '--- .I (36n)
1
1

3 
v;l

3
ai

2
1
3

- i[kTin Sho + L1 U( e)] 

(4.8) . LlFg{z) - kTin % _ 
Co 

for i ~ 2, 

for i = 1. 
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When Sho > 1 the first derivative of L1 Fg(i) equals zero 

(4.9) oL1Fg{i) = ~(36n)1 ' 3 V2 1 3 rJ.i- 1 ' 3 -(kTlnS +L1U) = 0 oi 3 v ho ' 

at a point i = i: 

(4.10) 
32nrJ. 3 V,1-i: = --=-3-:-( k=-T- 1=-n-S,----h-o +-----:.d:-:-:U=)-:::-3 

4nrJ.3 V,1-
3[L1 U(e)]3' 

where the supersaturation Sho is expressed by L1 U(e), according to Eq. (3.5). 
Since the second derivative of L1Fg(i) is negative at that point 

(4.11) [
o2L1Fg(i)] = - ~(36n)tf3V2f3C<i*-4t3 < 0 

oi2 i=i: 9 v g , 

the function 4Fg reaches a maximum at the critical cluster of i: vacancies 

(4.12) L1F ('*) _ L1F* _ 16nrJ.
3

V,1- 4nrJ.
3

V,1-
g 

1
g - g - 3(kTlnSho+L1U)2 - 3[L1U(e)]2 • 

647 

Let us now consider an arbitrary internal subregion of a grain ( cf. Fig. 1) of the crystal 
sample subject to uniaxial strain. When, under the increasing strain, the supersaturation 
of vacancies in the considered system attains a sufficiently high value a certain number 
of critical aggregates (microcrack nuclei) is formed. Let the number of nuclei formed 
per unit volume and unit time, at_ a given temperature T and strain e, be lg(i, t). It is 
called the homogeneous nucleation rate, and results from a flux which flows through 
all the aggregate classes from smaller to larger aggregates. Its intensity is equal to the 
difference between the numbers of aggregates that pass to the next higher class by addi­
tion of single vacancies and those that return to the lower class by separation of single 
vacancies. The nucleation rate Jg(i, t) can, therefore, be written 

(4.13) Jg(i, t) = A(i-1, t)PcO(i-1)-A(i, t)Pe(i)O(i), i ~ 2, 

where A(i, t) is the non-equilibrium density of aggregates of i vacancies at a time t, and 
P e(i) is the emission rate of vacancies per unit area of the surface of an aggregate of size i. 

Under equilibrium conditions there is no phase transition and the net flow of aggre­
gates must vanish. Consequently, A(i, t) = A 0 (i) and we get 

(4.14) Jg{i, t) = A 0 (i-1)PcO(i-1)-A 0 (i)Pe(i)O(i) = 0. 

Since the mechanism of growth and decay of the aggregates ·should not be affected by the 
fact whether or not the system is in equilibrium, the functions Pc and Pe(i) should be of 
the same form under all conditions [21, 25]. Thus, from Eq. (4.14) we can find Pe(i) a~ 
a function of Pc 

(4.15) 
. A0 (i-1)0(i-1) 

Pe(l) = AO(i)O(i) Pc• 

Introduction of Eq. (4.15) into Eq. (4.13) yields 

(4.16) 
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Now, in Eq. (4.16) we:assume that O(i-1) ~ O(i), and we expand the functions A(i-1, t) 
and A 0 (i-1) into Taylor series near the point i, linearizing the expansions. This leads to 

(4.17) 
8A(i, t)] 

oi · 

If one neglects small values of the argument i, all the functions app~aring in Eq. (4.16) 
show only a very slight change as i varies by one unit. Hence, the above approximations 
are acceptable for all but small aggregates, the more so that we are mainly interested in 
variations of the functions near the point i = i:, and that the effect of the values of all 
the functions for small i on the nucleation rate is rather minute [8]. 

Differentiating the function (4.1) 

(4.18) 
_ A 0 (i) 8LlF9(i) 

kT a; 
and substituting the result into Eq. (4.17) we find 

(4.19) J ( . ) = -P O(') [ A(i, t) 8LlF9 (i) oA(i, t)] 
9 z' t c z kT 8i + . 8i . 

The functions A(i, t) and Jg(i, t) must satisfy, for each e, the equation of continuity which 
for the considered sourceless process is reduced to the form 

(4.20) 
aA(i, t) oJg(i, t) _ 

0 dt + 8i - . 

Inserting the flux, Eq. (4.19), into Eq. (4.20) we obtain 

(4.21) 
oA(i, t) 

at 
p !_ {o(') [ A(i, t) 8L1F9 (i) 8A(i, t) ]l = O 

c ai z kT ai + oi f · 

Assuming that the process achieves a stready state (the time delay to attain this steady 
state is usually negligibly short [3, 26, 27]), we put oA(i, t)f8t = 0 in Eq. (4.21), and 
the problem is reduced to the following linear differential equation for the distribution 
function A (i), which now is independent of time. 

(4.22) O(') oA(i) O(i) oilFg(i) A(') = C 
z 8i + kT 8i z ' 

where C is a constant. 
Equation (4.22) can also be obtained by stating that in the steady state the intensity 

of the flux of aggregates is constant i.e. by putting J9 (i, t) = const)n Eq. (4.19). 
The general solution of Eq. (4.22) reads 

(4.23) A(')= [ L1Fg(l)-L1Fg{i) ]{c C [ _ L1Fg{1)] 
z exp kT t + exp kT 

J; 1 [ Ll.Fg{i) ]d·} 
x O(i)- exp kT z , 

0 

http://rcin.org.pl



KINETICS OF VOID FORMATION IN STRAINED METALS 649 

where C1 is a constant, and L1Fg(l) is given by Eq. (4.5). We then set the boundary condi­
tions for the function A (i): 

1. For i = 1, A(1) = c-the actual vacancy concentration, 

2. For i = oo, lim A(i) = 0. 
(4.24) 

i-+00 

Taking into account the following limit 

I
. LlFg(i) 
tm -oo, 

i-->oo kT 

the conditions .(4.24)1, 2 imposed on the function (4.23) alow to specify the consta~ts C 
and C1 and le'!d to the particular solution of Eq. (4.22) for the non-equilibrium stationary 
distribution of aggregates 

. I j O~i) exp[ A[~i)] di , . 
( .) [ LlFg(z)] 1 A z = .¥Sh0 exp - kT 1--

00
------.-- • 

f 1 [ LlFg(z)] d" 
I O(i)exp kT z 

(4.25) 

Substituting Eq. (4.25) into the flux equation (4.19) we determine the steady state 
nucleation rate 

(4.26) ( . ) Pc.AfSbo 
Jg z, t = lg = 

00 
= const. 

/ [O(iW'exp[ A~'i)] di 

To estimate the integral in the denominator of Eqs. (4.25) and (4.26) we follow a sim ... 
plification suggested by FRENKEL [21]. We namely expand the function LlFg(i) into Taylor 
series at the point of its maximum i:, neglecting all the terms above the third one, i.e. 

(4.27) AF.(i)"' AF:+ [ OA~.(i)L (i-i;)+ a az~~(i) L (i-i:)2
• 

Taking advantage of Eqs. (4.9), (4.10) and (4.11) and replacing O(i), given by Eq. {4.7h, 
by its value for i = i:. (in view of a very sharp maximum of the integrand exp[LlFg(i)fkT] 
at this point), we get an integral related to the Gauss probability integral which can be 
simply evaluated to give 

(4.28) foo (" 1 [ LlFg(i)] 1 ~kT- ( LlF:) [0 z )]-· exp di ~ -- ---- exp -- . 
kT 2Vv a kT 

1 

Substituting the integral (4.28) into Eq. (4.26) we obtain the final form of the homo­
geneous steady state nucleation rate of vacancy-microcracks within monocrystalline grains 
of the strained crystal 

(4.29) 

7 Arch. Mecb. Stos. 5-6/83 
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Coming back to the non-equilibrium distribution of vacancy clusters we insert the 
integral (4.28) into (4.25) arriving at the final expression for A(i) 

( 4.30) A (i) ~ .K s •• exp [-- Ll~J) ]{I -2 V, ~~~- exp ( - Ll:n 
. x / o:i) exp[ Ll:~i)] di}. 

1 

Since the entropy of mixing and the release of the strain energy are included in the total 

formation e~ergy of an aggregate LIF9(i), Eqs. (4.29) and (4.30) differ in the preexpo­
nential factor from the analogical equations derived earlier [6, 8, 10]. 

The same approximate procedure can be also applied [28] to the last integral in Eq. 
(4.30), under the condition that its upper integration limit lies close enough to the point 
i:, so that the integral may be determined mainly by the left-sided part of the maximum 
of exp[L1F9(i)/kT]. In particular, for i = i: we get in the same way 

f;: [0(")]- 1 [~Fg(i) ]d· f"V _I , /kT (LIF9*) 1 exp kT 1 
f"V 4V

11 
Jl ex exp kT · 

1 

(4.31) 

and 

(4.32) A(.*)- 1 J/"S - ( . L1Fg*) - 1 .s AO("*) 
lg - 2 "'' ho exp - kT - 2 ho zq • 

It is worth noting that further analysis of the distribution function A(i) shows, in 
contradistinction to A0 (i), that it does not reach a minimum but decreases asympto­
tically to zero with increasing i. This is in accordance with the condition ( 4.24h. 

The appearance of the three-dimensional flux of vacancies in the homogeneous as well 
as in the heterogeneous nucleation kinetics tpakes both the processes coupled rather than 
linearly superposed. However, rough quantitative estimates show that the effect of cou­
pling on the homogeneous nucleation mechanism is .very small, and has been neglected 
here. It is taken into consideration in the heterogeneous nucleation (Sect. 7). 

5. Heterogeneous microcrack nucleation due to the sole addition of vacancies from the 
grain space 

In Sect. 4 the conditions of formation of the homogeneous microcrack nuclei in single 
crystals were investigated. They concerned either artificially grown nearly perfect crystals 
(whiskers) or internal monocrystalline spaces of the grains of a polycrystal. The former 
are free from dislocations and other imperfections of a real crystalline structure, frequently 
to a very high degree, and the theory applies to them fairly well. To the latter, however, 
the classical nucleation theory can be applied only in a more approximate · manner. 

The aim of this, and the following sections, is to extend the theory to polycrystalline 
materials by considering also the effect of intercrystalline boundaries on the process of 
microcrack generation. It is known that the vacancy agglomerations are formed much 

http://rcin.org.pl



KINETICS OF VOID FORMATION IN STRAINED METALS 651 

more easily on the grain boundaries than within the grains. Thus one of the ways which 
can bring us closer to the early stage of real microfracture mechanism consists in ex­
amining the process of nonhomogeneous nucleation of microcracks from dispersed va­
cancies. 

Beside the homogeneous clusters formed within the grains of the strained crystal, 
heterogeneous vacancy aggregations in the shape of spherical segments are originated 
at the grain boundaries. Two mechanisms are involved in the formation of each hetero­
geneous cluster: direct impingement of single vacancies from the grain on the surface of 
the cluster, and joining of separat~ advacancies to the periphery of the cluster due to the 
surface diffsion. Both mechanisms are coupled. However, in this section and the next 
one we will treat them formally as uncoupled assuming, in the first place, that the process 
involving addition of vacancies from the grain space is the only active mechanism. 

Let us fix our attention on a segment of the grain boundary transverse to the direc­
tion of the crystal elongation. We assume that the cap-shaped vacancy islands lie on 
a two-dimensional square lattice of lattice parameter d, and that the equilibrium distribu­
tion of aggregate sizes N°(i) is determined, for a given temperature T, by the formula 

(5.1) f 
L1Fb9(i)- kTln _!!j-] l .. ] 

N O(')= NO(l) - N (1) = N. ,_ L1Fbg{t) 
1 exp kT oexp kT . 

Here, N 0 it is the density of discrete adsorption sites per unit area of the grain boundary 
(N0 ~ 1fd2 ~ 1015 cm- 2), the . mixing entropy term -kTln(N0 fN°(1)) [29] is included 
and it is assumed that N 0 ~ N°(1) ~ .EN°(i), which means that the fraction of the unit 
area of the grain boundary surface covered by the aggregates of various classes is negli­
gibly small; L1Fb9 (i) is the free energy of formation of a single cluster of i vacancies in 
an isolated reversible process involving ~olely the growth of the cluster by acquisition of 
vacancies from the grain space (the curvature effect), and with the configurational entropy 
disregarded. L1Fb9 (i) is postulated in the form 

(5.2) LIF.,(i) ~ W(i)- ~:) [kTln :. + Ll U(e) ]. i ;;, 2, 

where W(i) is the work spent in forming the surface of the cluster, and the second term 
represents the work gained in forming the new volume in the presence of strain [22]; 
V(i) is the volume of an i-mer of the shape of a spherical segment. 

The total free energy of formation, appearing in the exponent of the first part of Eq. 
(5.1), 

(5.3) L1Fb9 (i) = L1Fbg(i)-kT1n :to, 
should vanish for i = 1. Consequently, it follows that 

(5.4) 

and 

(5.5) 

7* 
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Taking advantage of the geometry of the aggregate and introducing formally the notion 
of the equilibrium contact angle (), which makes the aggregate with the grain boundary 
(Fig. 1), we can evaluate the first term in Eq. (5.2). To this end we accept the Young's 
formula in which () is determined by the relevant specific interfacial free energies at adjac­
ent surfaces 

(5.6) CXbg = CXba + CXCOS (), 

where the subscripts b, g, and a refer to the grain boundary, grain space and the aggregate, 
respectively, and a is the surface free energy of the crystal. 

If S(i) and S' (i) denote the surface area of the cap of the aggregate and the area of 
its base, and r is the radius of curvature of the aggregate, we can write, using Eq. (5.6) 

(5.7) 

where 

(5.8) 

is the ratio of the volume of a spherical segment to the volume of the entire sphere. 
Making use of the relation 

(5.9) 

in Eqs. 

(5.10) 

. = V(i) = 4nr
3 

l/J(()) 
l Vv 3Vv" ' 

(5.7) and (5.2), we obtain iJFbg as a function of i 

. -1 (36n)113 V;I
3
l/J

1
'

3
cxi 2

'
3

- i[kTln Sho + iJ U(e)] 

LJFbg{t) - kTI ~ 
n No(l) 

for i;:; 2, 

for i = 1. 

It is worth noting that for i;:; 2, LlFbg(i) differs from L1Fg(i) in the first term only (cf. 
Eq. (4.8) 1), in view of the change of the cluster shap~. 

For supersaturation Sho > 1 we have 

(5.11) 

at a point 

(5.12) •* 
lbg = 

32ncx3 V; 4ncx 3 V; 
3(kTlnSho+iJV)3 l/J = 3[LJU(e)P l/1. 

Since 

(5.13) 

LlFbg(i) exhibits a maximum at the critical aggregate consisting of ib~ vacancies 

(5.14) LJ (. *) LJ * 16ncx3 v; 4ncx 3 V? 
Fbg 1bu = Fbu = 3(kTinSho+iJV)2 l/J = 3[LJU(e)F l/1. 

The range of the contact angle function l/J(()) is the interval (0, 1) when () varies from 
_0 to n (cf. Eq. (5.8)). For () = O,<J>(()) = 0 and LJFb~ = 0, and nucleation will be most 
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rapid (complete condensation). For() = n, C/>(()) = 1 and L1Fb: = iJF9* so that the nucleus 
will have the spherical shape and homogeneous nucleation takes place. This is the lim­
iting case in which the grain boundary has no catalytic effect on the nucleation process, 
and the nuclei are formed with the same rate within the grain as well as on the grain bound­
ary. 

Moreover, we note that 

(5.15) 

so that 

(5.16) i69 ~ i9* and iJFb~; ~ L1F9* 
for the same s and T. Since in this case the energy barrier to nucleation LJF~ is lower 
than L1 F9*, heterogeneous nucleation due to the surface addition of vacancies from the 
grain space proceeds always faster than the homogeneous one (cf. Tables 2, 3 and 4 in 
Sect. 10). 

Similarly as in the homogeneous case we consider now the net flow of heterogeneous 
void embryos, denoting it by Jbg{i, t). Since the growth process is limited to the sole addi­
tion .of vacancies from the grain space, the nucleation rate equation reads 

(5.17) Jbg(i, t) = N(i-1, t)PcS(i-1)-N(i, t)Pc(i)S(i), i ~ 2, 

where N(i, t) is the non-equlibrium surface density of heterogeneous clusters of size i 

at a time t, Pc and Pe(i) retain their previous meanings, and S(i) being the surface area 
of the cluster cap is, according to Eq. (5.9), given by the relation 

(5.18) . ( 9n )If3 . 
S(z) = 2nr2 (I-cos0) = T VJPct>- 213(1- cosO)z 213

• 

If the. system is in a state of equilibrium there is no nuc~eation so that Jbg(i, t) = 0 
and N(i, t) = N°(i) in Eq. (5.17). This enables us to eliminate Pe(i) from Eq. (5.17). 
Next, the functions N(i-1, t) and N°{i-l) are expanded into Taylor series in the neigh­
bourhood of the point i, and all the terms above the second one are disregarded. Moreover, 
we put S{i-1) ~ S(i), and after differentiating the function (5.1) we substitute the deriv­
ative oN°(i)j oi into the transformed flux equation, getting 

(5.19) J, (" ) = -P S(") [ N(i, t) oiJFbg(i) oN(i, t) ] 
bg '' t · . c ' kT a; + a; · 

By substituting Eq. (5.19) into the equation of continuity (oNfot+ oJb9 /oi = 0), and 
assuming that a steady state is attained i.e. oN(i, t)fot = 0 (or Jb9(i, t) = const), we ob­
tain a linear differential equation for the cluster distribution function N(i) 

(5.20) S(i) oN(i2_ + S{i) o~Fb!1_<_!2 N(i) = C 
a; . kT a; ' 

where C is a constant. 
Setting the boundary conditions: N(l) = constant, N( oo) = 0 we finally obtain the 

particular solution of Eq. (5.20) in the form 
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(5.21) 

where 

(5.22) 

I 
f

1 

1 [L1Fbg(i) ] .

1 
. S(i) exp kT dz 

. L1Fbg(z) 1 
N(z) = N0 s •• , exp [- kT J 1- ., . . , 

f 1 [L1Fbg(z)] . 
1 S(i) exp kT dz 

N(1) 
Shet = NO(l) 

J. KRzEMINSKI 

is defined as the supersaturation of advacancies at the grain boundaries (Shet is calculated 
in Sect. 6, cf. Eq. (6.5)). 

By inserting Eq. (5.21) into Eq. (5.19) we arrive at the steady state nucleation rate 

(5.23) Jbg(i, t) = lbg = oo NoShetPc = const. 

J [S(i)]- 1 exp [L1Fbg(i)] di 
1 

kT 

In Eq. (5.23) we now replace S(i), given by Eq. (5.18), by s(i:g) and we expand the func­
tion L1Fbg(i) into power series about i:g keeping terms to the second order and making 
use of Eqs. (5.11), (5.12) and (5.13). Performing these approximations in the same manner 
as in Sect. 4, the integral in Eq. (5.23) can be easily calculated to yield 

00 

(5.24) J [S(.)]-1 [L1Fbg(i)] d. I"V _1 ... I kT C/>
1
1

2 
( L1F~ ) 1 exp kT 1 

"' V, Jl ac 1-cosO exp kT ' 
1 

so that after coming back to Eq. (5.23) the isolated heterogeneous cap surface-growth-con­
trolled nucleation rate of microcracks on the grain boundaries reads 

(5.25) 

Introduction of the integra~ (5.24) into Eq. (5.21) delivers the final expression for 
the non-equilibrium distribution function N(i) 

(5.26) N(i) = N0 S ... exp [-d~~i) ]{ 1-v. V k;tl> (!-cosO) 

( L1Fb~ ) J1 

1 [L1Fbg(i) ] d·} x exp - kT S(i) exp - -~ z • 
1 

A similar approximate procedure may also be applied to the integral in Eq. (5.26). 

6. Heterogeneous nucleation by the isolated surface diffusion mechanism 

Consider again a segment of the grain boundary perpendicular to the direction of the 
crystal elongation. We assume now that the problerv of heterogeneous nucleation of 
vacancy microcracks at the boundary is uncoupled and depends only on the surface diffu-
sion mechanism. -
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Under the conditions of adsorption equilibrium at the grain boundary surface the 
incidence flux of vacancies will equal the desorption flux. This can be written approximate­
ly 

(6.1) 

where fb = N(l)/N0 so that (1-fb) is the fraction of a unit area of the boundary surface 
not occupied by ad vacancies, /g = c /.K is the fractional concentration of vacancies within 
the grain, 

(6.2) 1 ( Udes- LJ U) 
Tdes = v exp ----rt-

is the mean lifetime of an advacancy on the grain boundary before desorption, and Udes 

is the activation energy for desorjltion of an advacancy from the grain boundary surface 
which is also reduced by Ll U(e), similarly as in the case of the activation energy of va­
cancy motion. 

Udes is connected with the activation energy for adsorption, Uad = Um, through the 
heat of adsorption Ea (Fig. 2) 

(6.3) 

FIG. 2. Variation of potential energy accompanying adsorption and desorption, and the interrelation be­
tween Etl, Uad and Udea. 

Solving Eq. (6.1) for N(l) we obtain 

N(l) = Pc 

_I (t--~)+~ 
Tdes .K No 

(6.4) 

It should be mentioned that in Eq. (6.4) the consumption of advacancies for heterot 
geneous nucleation is disregarded ( cf. assumption x, in Sea. 3). This r'ather small effec­
is taken into consideration in ref . . [16]. 

The surface supersaturation of advacancies for the heterogeneous process was defined 
in Sect. 5 (Eq. (5.22)) as the ratio Shet = N(l)/N°(1). Consequently, writing Eq. (6.4) 
for the actual state (e > 0) and for the initial one (e = 0), and using Eqs. (3.5), (3.9), 
(6.2) an~ (6.3), we find 

(6.5) 
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where 

( 
Ea )( ) p9 JV Ro exp - --- .;V -c0 + c0 

H(e) = kT N0 

( 
Ea )< .1/' ) Pu.!V Ro exp - - - ..;r --c + c 
kT No 

(6.6) 

We notice that H(e) is within the interval (0,1) and that fore = 0, L1 U(e) = 0 and c = c0 

so that H(e) = 1 and Shct = Sho = 1. 
In order to determine' the final form of the impingement rate of advacancies on a line 

of unit length on the boundary surface (we), we substitute N(l) from Eq. (6.4) into 

Eq. (3.14) getting 

(6.7) We= [ · PbPgVRo .!Vc0 d ]exp(LlUk-;.U,,)· 
exp (- :r )(% -c)+ p,~Ro c 

The equilibrium distribution of vacancy clusters N°(i) is now assumed in the form 

(6.8) [ 
L1Fbs(i)-kTln ':

0
) J [ L1 (.)] 

N O(·) _ N0(1) N (1 _ 11.r Fbs l 
z - exp - -1Y 0 exp - ---

. kT kT ' 

where the sum Jpbs(i) = L1Fbs(i)-kT1n(N0 /N°(1)) is the total energy of formation of a 

cluster composed of i advacancies in a process involving only the surface diffusion mech­

anism; L1Fbs(i) is a size-dependent term, and -kTin(N0 /N°(1)) [29] is the correction 

for the free energy of distributing the clusters on the N 0 available adsorption sites (config-

urational entropy term). Since iFbs(l) must be zero, L1Fbs0) = kTln(N0 /N°(1)), and 

for cap-shaped clusters the size-dependent term L1Fbs(i) in the presence of strain can be 

postulated in the form 

for i ~ 2 

(6.9) 
for i = 1. 

Because the growth of clusters is governed now by the surface supersaturation Shet we 

see that for i ~ 2, L1Fbs(i) differs from L1Fb9 (i) in the second term (cf. Eq. (5.10)1). 

Similarly as L1F9 and L1Fb9 the function L1Fbs has a maximum 

L1F. (·*) L1 * 16ncx
3 V; f/> = 16ncx

3 V; f/> 
(6.10) bs lbs = Fbs = 3(kTlnShct+L1U)2 3[2L1U(e)+kT1nH(e)]2 

at the critical cluster size 

.* 32mx3 V.2 32ncx3 V; 
lbs = - ,------ -.,----,---- (/> = (/>. 

3(kTlnShct +L1 U)3 3[2.1 U(e)+kTlnH(e)]l 
(6.11) 

Comparing Eqs. (5.12) and (6.11) as well as Eqs. (5.14) and (6.10) we notice that 

(6.12) ·* _ ·*(2L1U+kTlnH)
3 

lbg - lbs 2,1 U and A * = L1F.* ( 2L1 U +kTlnH)
2 

LJ Fbg bs 2L1 U 
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Since . 0 < H ~ 1 and i~ must be non-negative, - 2L1 U ~ kTln H ~ 0 so that (2L1 U + 
+ kTlnH)/2L1 U E (0,1) and we have 

(6.13) ib: ~ ib~ and L1Fb: ~ LlFb~ 

for the same c and T. Although in this case the energy barrier to nucleation LlFb~ is higher 
than LlFb:, heterogeneous nucleation by the isolated surface diffusion mechanism, Jbs, 
proceeds in general faster than the heterogeneous nu.cleation process Jbg ( cf. Table 6 
in Sect. 10). The reason for this is that, on the one hand, the differences between LlFb: 
and LlFb~ are rather small (the coefficient (2L1 U + kTln H)/2L1 U is, in general, close to unity) 
and, on the other hand, the remaining factors app~aring in Jbs significantly increase this 
rate in comparison with Jbg (cf. Eqs. (5.25) and (6.18)). 

Passing now to the kinetics we denote here the isolated flux of clusters by Jbs(i, t). Since 
in this case the growth mechanism is controlled only by the surface diffusion of adva­
cancies, the nucleation rate equation reads 

(6.14) Jbs(i, t) = N(i-1, t)wcl(i-1)-N(i, t)we(i)/(i), i ~ 2, 

where we(i) is the emission rate of advacancies from the unit length of the pheriphery of 
the base of a cap-shaped i-mer, and /{i) is the length of this pheriphery which, by using 
the relation (5.9), can be expressed as 

(6.15) l(i) = 2nrsin() = (6n2) 1 1 3 V~/ 3<[>- 1 / 3sin() i 113 • 

We now follow again the lines of Sect. 5, bearing in mind that here instead of S{i), 
Pc, and L1Fbg(i) we have to use the quantities /{i), we and LlFbs(i), respectively. Conse­
quently, we first eliminate we(i) from Eq. (6~ 14) by putting Jbs =-o (equilibrium condi­
tion), and next using the linearized expansions of the functions N(i-1, t) and N°{i-1) 
and the approximation /{i-1) ~ l(i), as well as the derivative oN°(i)/oi (from Eq. (6.8)), 
we are led to the flux equation in the form 

(6.16) J, (" ) = _ /(") [ N(i, t) oL1Fbs(i) oN(i, t) j 
bs l' t We l kT oi + oi . 

Substituting Jbs to the continuity equation and solving the resulting differential equation' 
under the conditions oN(i, ·t) 1 ot = 0 and N( oo) = 0, we arrive at the non-equilibrium 
surface density of the clusters on the grain boundary 

(6.17) N(i) = N0 S • .,exp [- A~:i) ]{I-~ (<XkT.P)- 112 (2Ll U +kTlnH)sinO 

( 
LlFb~) J; 1 [ L1Fbs(i) d·l 

x exp - kT l(i) exp kT l • 
1 

Insertion of Eq. (6.17) into Eq. (6.14) delivers finally the separated heterogeneous 
peripheral-growth-determined nucleation rate of microcracks in a steady state 

(6 18) 1 ( A k 1 ( k 'd-. - J 2 • . () ( L1 Fb~ ) . Jbs = 2N0 Shet 2LJ U + T nH)wc (X T~V) I sm exp - kT. . 

These results (Eqs. (6.17) and (6.18)) are different from those obtained in ref. [11] since 
the release of the strain energy is now inclu~ed in the total formation energy of a cluster 

Jpbs(i). 
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7. Coupling of the two mechanisms in the heterogeneous nucleation 

We are now in a position to find the total coupled flux of heterogeneous clusters on 

the grain boundary. However, in the presence of both the surface and peripheral-growth 
mechanisms we do not know the coupled formation energy of clusters and can not postu­

late the equilibrium distribution function N°(i). Therefore, we start at once from the ki­
netics· and the flux equation, basing our considerations on ref. [16]. 

Denoting the coupled heterogeneous nucleation rate on the grain boundary by 

Jgs(i, t) we can write the net flow of cap-shaped vacancy clusters in the form 

(7.1) lgs(i, t) = Jbg{i, t)+Jbs(i, t) = N(i-1, t)PeS(i-1)-N(i, t)Pe(i)S(i) 

+N(i-1, t)wel(i-1)-N(i, t)we(i)/(i), i ~ 2, 

In both acting fluxes the growth mechanisms are entirely different. The flux Jbg is due'to 

the surface addition of single elements from the vacancies dispersed inside the grain and, 

similarly as in the homogeneous process, is governed mainly by the supersaturation Sho 

and by that part of the surface area of individual clusters S(i) which is in contact with 

the grain space. On the other hand, the flux Jbs being controlled by the peripheral growth 
through the surface transport of advacancies along the boundary depends chiefly on the 

corresponding surface supersaturation Shet and on the circumference of the base of an 
i-mer l(i). These two different mechanisms, treated separately in Sects. 5 and 6, are now 

coupled under the classical assumption that the clusters increase or decrease only by cap­
turing or losing one vacancy at a time inqependently of the mechanism by which it is 

accomplished. Simultaneous addin·g or losing two or more vacancies has a very small 
probability and is neglected. 

Using the equilibrium conditions in which both the component fluxes Jbg and Jbs 

disappear, and putting in the first flux N(i, t) = N°(i, LlFbg) and in the second one 

N(i, t) = N°(i, LIFbs), we are able to eliminate Pe(i) and we(i) from Eq. (7.1). Further 
treatment follows the same procedure as in the last two sections so that we can take ad­

vantage of Eqs. (5.19) and (6.16). _Thus 

(7 2) J ( . ) = -{[P s(·) /(.)] aN(i, tl_ [ PeS(i) 
. . gs z' t e z +we z a; + kT 

aLlFbg(i) 
a; 

We l(i) aLl Fbs(i) l N' (. )} 
+ kT , a; z, 1 • 

Next, the equation of continuity which for the case considered is of the shape 

(7.3) aN(i,t) a [ c· ) c· )l 0 at +a; Jbg l, t +lbs l, t = ' 

must be solved under the steady state condition aN(i, t)jat = 0. This yields the differ­

ential equation for the stationary non-equilibrium distribution function N(i) 

with a constant C. 
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The general solution of this nonhomogen·eous equation has the form 

. ( ; p S oLlFbg I oL1Fbs ) 
1 j' e 0. +we 0. 

N(i) = exp - kT P:S +wei z di 
1 

(7.5) 

where the integral in the exponent can be evaluated to give 

; p 8oL1Fbg I oL1Fbs · 

J 
e ~· +we ' ~· 

jpgs(i) = ul ul di 
PeS+wel 

1 

(7.6) 

Here, 

(7.7) D = PeS(i) i-1{3 = (_2-)lf3_Pe (~)lf3 1-cos!!_ 
Wel(i) 4n We (_/) . sinO ' 

and L1Fbg(i), L1F119(1), and H(s) are given by Eqs. (5.10) 1 , 2 and (6.6), respectively. 

In equilibrium J95 (i, t) = 0, N(i) = N°(i) and Eq. (7.4) becomes a homogeneous 
equation ( C} = 0) solution of which yields the equilibrium distribution of clusters 

(7.8) 

"' 
where L1F95 , given by Eq. (7.6), constitutes the total combined energy of formation of an 

i-mer in the coupled heterogeneous process involving both the surface and peripheral 

mechanisms of growth. L1 F95 is clearly a sum of two terms 

(7.9) 

where the first term is a size-dependent part of the formation energy 

(7 .10) LlF.,(i) = LlF.,(i)- Jk~~H [ ~
2 

i 213 - Di 113 + In(Di 113 + I)]. 
and the second one 

3kTlnH [D
2 

] (7.11) L1Fgs(l) = L1Fbg(l)- D 3 T -D+ln(D+ 1) , 

is the mixing entropy contribution ( -L1Fb9(l) = -kTln(N0 /N°(1)), and the effect of 

coupling. Similarly as in Sects. 4, 5 and 6, the total combined free energy of formation of 
"" the monomer itself is evidently zero, L1F95 (1) = 0. 
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In view of Eqs. (7.8), (7.6) and (7.10) the equilibrium surface density of vacancy clus­
ters finally reads 

(7.12) 0 (.) { 3lnH [ D
2 

D I ( )]} [ L1F0s(i)] N z = N0 exp - \ D3 --2 - + n D+ 1 exp - kT . 

Since 

(7.13) 
[ 

8L1F05(i) ] = [ 8L1Fb0 (i)] _ kTlnH = O 
oi . .• oi . .• Di9~1 ' 3 + 1 ' 

I= lgs l=lgs 

and 

(7.14) - ---'o'--s-C-
1

.. = __ (36n)lf3V.2f3(,/)lf3a.i *-4J3 + 0 
[

o2L1F (")] 2 kTD1nHi9*s- 2J'3 

oi2 i=ig~ 3 " us 3(Di;'s113 + 1)2 . < ' 

the function L1Fgs(i) has a maximum 

(7.15) L1F (i*) = AF* = (36n) 113V. 213<P113a.i* 213-2L1Ui* gs gs gs v gs gs 

- 3kT1nH [ D2 ·*2J3 -D·*tf3 I (D"*tf3 1)] D3 2 1911 1911 + n z9s + 

at the critical cluster composed of i9~ vacancies 

(7.16) i* = (8i*)- 1D- 3i* {i* 113D-1 + [(i* 113D-1)2+4i*- 1 / 3i* 213D]112 }3 gs bs bg bs b11 bg bs . · 

It should be mentioned that, in general, D turns out to be a very small number, and 
since 

(7.17) 

L1F95 (i) and ig~ assume asymptotic values 

(7.18) 1imL1F0s(i) = L1Fbs(i), 
n~o 

and 

Coming back to the non-equilibrium distribution of clusters (Eq. (7.5)) we can write 
it now, in view of the integral (7.6) and Eq. (7.9), in the form 

i 

(7.20) N(i) = exp[- LIF.,(i)k-;..LIF.,(I) ]{N(I)+ C ! PcS~wcl 
[ 

L1F0s(i)-L1F0s(l) ] d·} 
x exp kT z . 

Addition of the boundary condition N( oo) = 0 enables us to determine the constant C 
and gives the particular solution for the function N(i) 

(7.21) N(i) = N0 S • .,exr{- 31~~ [ ~2 
-D+ln(D+ !)] - Lf;~i)} K(i), 

(2) cf. Tables 2, 3 and 4 in Sect. 10. 
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where 

(7.22) 
ri 1 . ( L1Fgs(i)] d. 
i PeS +wei exp kT 1 

K(i) = 1 - _oo _______________ _ 

J 1 exp( L1Fgs(i)] di 
1 PeS+wel kT 

• 

It is evident that 0 ~ K(i) ~ 1. 
Combination of Eq. (7.21) with Eq. (7.12) gives the relation between N(i) and N°(i) 

(7.23) N(i) = K(i)ShetN°(i). 

Eq. (7.21) is then substituted into Eq. (7.2), delivering the total steady state nucleation 
rate 

. N0 Sh,.exp {-
3~~ ( ~

2 

-D+In(D+ I)]} 
Jgs(l, t) = lgs = 

00 
= const. 

J 1 [ L1Fg5{i)] d. 

1 
PeS +wei exp kT 1 

(7.24) 

Expanding iJF95(i) into Taylor series around i9~ and replacing S(i) and l(i) by S(i9~) and 
l(i9~), the integral appearing in the denominator of Eqs. (7.22) and (7.24) can be approxi­
mated by the method shown in Sect. 4. This leads us to the final form of the coupled 
heterogeneous nucleation rate of microcracks on the grain boundaries 

J 3InH I D 2 
] iJF:S} xexpl-~ -2- -D+ln(D+1) -kT. 

Similarly we can evaluate the coefficient K(i), appearing in Eqs. (7.21) and (7.22), so 
that the final shape of the distribution function · N(i) reads 

( ( .) J 3lnH [ D
2 

l ( )] L1Fgs(i)} 7.26) N z = N0 Shetexp \----w- 2 -D+ n D+1 -~T-

x {I - ( ~ r· w,(kT)-'''( ; r3 

sin 0(2i,~ 1/
3 i,~- 2

/
3 .d u (Di,~ 1/

3 + I )2
- kTDlnH] 112 

( L1 F9~ ) Ji 1 [ iJ Fgs(i)] d·} 
X exp - kT · PcS+wel exp kT 1 

• 
1 

If in Eq. (6.1) we putf, ~ / 9 ~ 0 then Shet = Sho and H(e) = 1. In this case it is easy 
to see that iJF9s = L1Fb9 = L1Fbs, i9~ = it~ = ib~, and the heterogeneous process is not 
coupled. Consequently, the flux J9s presents the simple sum 

(7.27) J;s = lgs(H = 1) = Jbg{H = 1) +lbs(H = 1) = No Sho(rxkTf/>)- 112 

x [P, V,(I-cosO)ac +w,Ll UsinO]exp (- Ll:;~), 
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and the number of vacancies in the critical aggregate is 

(7.28) 
• 

8. Global steady state nucleation rate 

Consider finally the entire grain of our observed internal region of the strained poly­
crystal. When all the fluxes are active in the formation of various classes of both homo and 
heterogeneous clusters we can write a balance equation for the steady state global nuclea­
tion rate 10 

(8.1) 

where .V9 and Sg are volume and surface area of the grain , respectively, the homogeneous 
flux J9 is given by Eq. (4.29) and the coupled heterogeneous one J95 by Eq. (7.25). 

In Eq. (8.1) the product J0 V9 means the sum of all the microcracks formed in the 
grain per unit time irrespectively of their shape or type. Consequently, it includes the 
homogeneous clusters generated within the · grain space as well as the heterogeneous ones 
nucleated on the grain boundary. 

From Eq. (8.1) J 0 can be easily found 

(8.2) 

9. Conventional micro fracture criterion 

In the analysis of the course of fracture three main stages of the process can be distin­
guished. The first one is the microfracture stage in which stable micro~racks of the size 
of atomic order are formed. In the second stage their further growth (or perhaps joining) 
to macroscopic dimensions of the order of a Griffith crack ( ~ 1 fl) takes place. Finally, 
the third one is the macrofracture stage in which the macrocracks (called simply cracks) 
propagate further leading immediately to the actual fracture. While for the first stage the 
present hypothesis can be applied, for the second one another theory should be intro­
duced. The last cracking process (third stage) can follow the existing continuum hypoth­
eses in which, however, the pre-existence of the crack is assumed a priori. One of such 
theories is the Griffith theory of brittle fracture in which the dependence of the potential 
energy of the sample with a crack on the initial length of the crack l is very similar to the 
relation between the energy of formation of a new phase i-mer in a supersaturated system 
and the size of the i-mer. Consequently, from the energy point of view there is a close 
analogy between the micro and macrofracture mechanisms. Moreover, in both cases there 
exists an instability of the equilibrium (thermodynamic or mechanical) since the corre­
sponding energies instead of minimum values, as in the case of ordinary stable equilibrium, 
attain some maximum values. 

From the above it follows that individual stages of the fracture process are separated 
by two energy thresholds, each corresponding to suitable fracture mechanism. They may 
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be called the microfracture and the macrofracture thresholds, respectively. The former 
is determined by the critical size i* of a microcrack (or by the corresponding strain e*), 
and the latter by the critical crack length lcr (or by the corresponding critical strain ecr). 

Now, a formal convention concerning a critical value of the global nucleation rate, 
Jri' should be introduced to get a conc~ivably invariant measure of approaching the strain 
after which a crack of Griffith length can be originated. This means that the microfracture 
threshold is reached and the microfracture stage is terminated. At this strain stable micro­
voids, ready for further spontaneous growth, are generated. However, in most of the 
known phase transformation processes the period of time during which the actual number 
of the new phase nuclei is formed is short and difficult to determine precisely by either 
measurement or calculation [26]. Consequently, the nucleation frequency can be estab­
lished only theoretically. Fortunately, the nucleation rate is so sensitive to the supersat­
uration that one may specify a critical supersaturation, S*, below which nucleation rate 
is negligible (J ~ 0) and above which it is very high (J ~ oo ). For these reasons the crit­
ical supersaturation should correspond to the rate of nucleation having only some per­
ceptible value, and it is generally agreed that meaningful data on homogeneous as well 
as heterogeneous nucleation in vapours and liquids are reported as supersaturations S* 
corresponding to J ~ 1 nucleus per sec and cm3 or cm2

• For metals such an agreement 
cannot be accepted. To establish a possibly invariant microfracture criterion for metals 
it seems that it should be connected with the dimensions of the grains. If we now assume 
that the supersaturation increases sufficiently slowly so that the induction period to estab­
lish a steady state of the system(3) T 1 ~ 1 s [22, 26, 27], the following conventional 
microfracture criterion for uniaxially strained metals may be proposed: The global nu­
cleation rate Jri yielding one arbitrary microcrack nucleus per second in the smallest 
grain is critical. 

Thus, assuming the grain as a sphere with the diameter dm1n and volume Vgmin• we 
have 

(9.1) 

For this number of microcrack nuclei we should find a critical strain e~ . 

(3) Non-steady state nucleation theories consider the time period required to build up a steady state 
distribution of clusters immediately after a given supersaturation is imposed upon the system. During 
this induction time interval (called also time-lag, incubation time or delay time) the nucleation rate is 
time dependent, and no nucleation may take place before this period expires, whereas afterwards ,steady 
state is rapidly attained. In this way the induction time is separated from time to grow to observable size. 
The transient nucleation rate, J(t), was approximately found in the form [30--32] 

J(t) = Jexp(- ~1 ), 
where J is the steady state nucleation rate, t 1 is the induction time, and t is the observation time in a nu­
cleation experiment. 

For almost all cases of interest -r 1 is so small compared to the observation time t that J(t) ~ J. More­
over, it is reported in most papers that -r 1 ~ 1 s [22, 26, 27, 32]. It is worth noting, however, that be­
cause of comparatively slow rates of diffusion in condensed systems the induction period in solids may in 
some cases be considerably longer than in vapours and liquids [33], particularly when a system is suddenly 
~ade supersaturated. 
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Similar procedure can be ·formally applied also to isolated homogeneous and heter­

ogeneous nucleations to find the corresponding critical strains e;, etg, ets and e:s. For each 

separated heterogeneous nucleation on the grain boundary we have to use 1 I Sg min instead 

of 1/Vgmln in Eq. (9.1). 

10. Numerical estimates 

In order to get an idea on quantitative results of the theory some numerical estimates 

for three metals: aluminium, copper, and ~X-iron were computed. It should be stressed, 

however, that because of very sparse and uncertain data the calculations can only furnish 

very rough quantitative estimations. 
Using the conventional criterion (9.1) with the grain diameter t5min = 2.245 x 10- 3 em 

(ASTM No 8), and corresponding nucleation rates, Eqs. (8.2), (4.29), (7.25), critical 

strains were found for several temperatures. To calculate the quantity L1 U(e) it was assumed 

in Eq. (3.1) that m = 1, n = 10, a ~ 8.5 x 10-19 erg em. The contact angle ()was eval­

uated from the formula cosO = Eal [~Xn(3 Vvf4n) 213
] -1 [34], and the probability factors 

Table 1. Material constants used in the calculations 

Constant Aluminium Copper 
- - ---

R0 (cm) 4.0496 x w- s 3.6149 X 10-s 

o:(erg/cm 2
) 900 1200 

1.0400 x w-u 
Ur(erg) 1.4400 x w- 12 

Um(erg) 9.9200 x w- 13 1.6640x w- 12 

Usd(erg) 5.7600x w- 13 8.3200x w- 13 

Ea(erg) 6.0000x w- 13 6.0000x w- 13 

ex-Iron 

2.8665x w-s 
1400 

1.4400 x w- 12 

1.0560x w- 12 

6.8800x 10-13 

7.6ooo x w- 13 

Ref. 

[35] 
estimated 
from [l6] 

[37] 
[38] 
[39] 
[37] 
[40] 

estimated 
estimated 

Table 2. Values of e:, ;: , e~ ~ e:s, i:g, i:s ~ its for aluminium (J: = J~ = 1.688 x 108 nuclei/cm3 s). 

Minimal grain, 6mtn = 2.245 X w-3 em 

AI 
I Global nucleation ~ 

Homogeneous nucleation Heterogeneous nucleation 
-----

T°K e* ;: e~ ~ e:s 
.. i:s ~ i:s g lbg 

300 0.0972 4.08 0.0914 3.38 4.31 

400 0.0901 5.92 0.0827 . 5.56 6.23 

500 0.0846 8.12 0.0774 7.75 8.46 

600 0.0801 10.65 0.0735 10.08 10.98 

800 0..0734 16.63 0.0679 . 15.15 16.77 

900 0.0708 20.02 0.0658 17.86 20.01 
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~ Table 3. Values of e:, ;; , e~ ~ e:., ;:g, ig~ ~ ib~ for copper. 

Cu I 

r~ ~ ~ 
0'1 
~ 

I 
300 
400 
500 

. 600 
800 
900 

1000 
1300 

(J; = J~ = 1.688 x 108 nuclei/em3 s for Omtn = 2.245 x 10- 3 em, and 
Jri = 1.910 x 103 nuclei/em3 s for Oav = 0.1 em). 

Minimal grain, Om1n = 2.245 x 10- 3 em 

Global nucleation ~ 

Average grain, Oav = 0.1 em 

Global nucleation ~ 
Homogeneous nucleation Heterogeneous nucleation Heterogeneous nucleation 

E* ;: e~ ~ e:S .. ig*s ~ ib~ e~ ~ t 11*, ib*g ;:. ~ ib*s II lbg 

0.1045 2.44 0.0929 2.81 2.81 0.0893 3.41 3.41 
0.0958 3.73 0.0854 4.26 4.26 0.0819 5.25 5.25 
0.0889 5.37 0.0798 6.01 6.01 0.0764 7.48 7.48 
0.0835 7.35 0.0753 8.02 8.03 0.0721 10.04 10.05 
0.0755 12.22 0.0688 12.77 12.82 0.0656 16.03 16.08 
0.0725 15.06 0.0663 15.42 15.53 0.0635 19.39 19.49 
0.0699 18.14 0.0642 18.28 18.44 0.0615 22.95 23.14 
0.0640 28.71 0.0593 27.64 28.23 0.0568 34.69 35.33 
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in Eqs (3.9), (6.7) were set to be p9 = 1/6 andpb = 1/4. Further, we put N 0 ~ 1/d2 cm- 2 , 

d = R 0 em, and v = 1013 s- 1 • The remaining material constants are listed in Table 1. 
They are taken from references, shown in Table 1, or assumed, recognising that this is 
only a rough approximation. Critical strains and numbers of vacancies in critical aggre­
gates for different nucleation processes and various temperatures are shown in Tables 2, 
3, and 4. 

It is to be noted that the resulting e* and i* depend on the grain size. The convention­
al criterion (9.1) gives the highest critical strains e* and the smallest critical sizes i* of 
a microcrack. To estimate the effect of the grain size on these two important quantities 
the calculations were additionally carried o~t for copper with the average grain of the 
diameter ~av = 0.1 em [41]. The results for both grains are given in Table 3. 

Table 4. Values of e;, ;: , e~ ~ e;s. ;:g. i:s ~ i:s for IX-iron (J: = J~ = 1.688 x 108 nuclei/cm3 s~ 

- Minimal grain, Omtn = 2.245 x 10- 3 em 

Fe-cx Global nucleation ~ 
Homogeneous nucleation Heterogeneous nucleation 

T°K e* .• e~ ~ e!s · .. .. "' ·• g lg lbg lgs "' lbs 

300 0.0940 3.23 0.0853 3.13 3.20 
400 0.0879 4.51 0.0794 4.50 4.55 
500 0.0829 6.05 0.0748 6.07 6.12 
600 0.0787 7.82 0.0712 7.85 7.92 
800 0.0724 12.01 0.0656 11.92 12.07 
900 0.0699 14.40 0.0635 14.19 14.41 

1000 0.0677 16.98 0.0616 16.58 16.90 
1700 I 0.0576 39.35 0.0530 36.68 38.37 

For comparison the computations were also repeated for the global nucleation rate 
Jri = 1 /V9 = 1 nucleusfcm3 s. V9 = EV9 min = 1 cm3 denotes the total volume of all 
the grains contained within 1 cm3 , under the assumption that all of them are minimal 
grains (~min = 2.245 X 10- 3 em) so that Sg/Vg = ESgmlnfEVgmln = 2672.6 cm- 1

• The 
corresponding strains are presented below in Table 5. 

Table 5. Values of e~ ~ e;" for J~ = 1 nucleus/cm3 s. 

AI Cu Fe-cx 
T°K 

f.~~ e;, e~ ~ e;, e~ ~ e;s 

300 0.0815 0.0848 0.0788 
400 0.0749 0.0775 0.0729 
500 0.0702 0.0722 0.0685 
600 0.0667 0.0681 0.0650 
800 0.0617 0.0623 0.0598 
900 0.0597 0.0600 0.0579 

1000 0.0581 0.0561 

1300 0.0538 
1700 0.0484 
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To estimate the effect of coupling in the heterogeneous nucleation the simple sum 
J~s = Jb9+Jbs (Eq. 7.27) was also used to calculate the corresponding critical strains e~; 
and numbers of vacancies in critical clusters i:s' for all three metals and the minimal 
grain (Table 6). The distributions of separate fluxes Jb9 and Jbs are also given in Table 6. 

Table 6. Values of e:;, ;:: , Jb,. Jb& for aluminium, copper, and £X-iron. 

(J:&' = 1 /S, mtn = 6.315 x 104 nuclei/cm2 s for <5mtn = 2.245 x 10-3 em). 

Metal T°K F..:: .. , Jb(J lbs 
lfls 

nuclei/cm2s nuclei/cm2 s 

300 0.0876 4.18 4.4 63152.8 

E 400 0.0811 6.15 17.2 63130.1 
=' 500 0.0762 8.39 68.1 63091.5 ·a ·a 600 0.0724 10.91 208.8 62948.3 
=' < 800 0.0667 16.68 1069.0 62080.3 

900 y 0.0645 19.91 1953.3 61202.8 

300 0.0929 2.81 7.8 x w- 4 63147.6 

400 0.0854 4.26 0.03 63150.7 

500 0.0797 6.01 0.4 63150.9 
"'"' 600 0.0753 8.03 2.4 63147.6 11) 

0.. 
0.. 800 0.0687 12.81 33.0 63118.1 0 u 900 0.0662 15.52 85.3 63067.1 

1000 0.0641 18.43 188.4 62963.6 

1300 0.0591 28.21 1077.5 62069.8 

300 0.0850 3.19 7.3 63142.4 

400 0.0792 4.54 28.9 63-131.5 

500 0.0747 6.12 94.4 63052.4 
!:= 600 0.0711 7.91 247.9 62905.9 0 

"'"' - 800 0.0655 12.06 1057.9 62102.9 
~ 

900 0.0633 14.39 1837.9 61308.4 

1000 0.0614 16.89 2932.8 60218.0 

1700 0.0526 38.32 18204.8 44945.7 

Although the numerical results of the theory are very · approximate ones, some essen­
tial quantitative conclusions can be derived. In the first place it turns out that the effect 
of the homogeneous flux J9 on the global nucleation rate J0 is negligibly small and can 
be disregarded. Consequently, the global · nucleation rate depends almost exclusively on 
the coupled heterogeneous mechanism and e~ ~ e:s, which is shown in the above tables. 
This result supports earlier statements that the vacancy clusters observed are nucleated 
heterogeneously [4, 5, 27]. In the second place it comes out that the ~imple sum J~s = 
= Jbg + Jbs can be a good approximation for the coupled heterogeneous nucleation rate 19s. 

The approximation is better for copper and a-iron than for aluminium (cf. Tables 2, 3, 
4 and 6). Moreover, in the sum J~s, the calculations show the predominant effect of Jbs 
for lower temperatures and rising influence of Jbg for higher temperatures, which for 
a-Iron at T = 1700°K reaches 29% (Table 6). This indicates that the distribution of 

8* 
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both fluxes Jbg and Jbs is not that. simple as was stated in ref. [12]. In coupled heter­
ogeneous nucleation the contribution of the surface-controlled mechanism (Jb9) is even 
greater. 

11. Conclusions and final remarks 

The vacancy hypothesis of microfracture of strained metals has been further extended 
by taking into account the strain energy as part of the free energy of formation of va­
cancy clusters. Moreover, quantitative estimates provide an idea of the numerical values 
resulting from the theory and deliver important inferences. 

In view of the idealized model of the metal, disregarding the effect of other kinds of 
defects, some formally introduced physical quantities, and many unknown or uncertain 
data, the vacancy mechanism of microfracture of strained metals has mainly theoretical 
character .. Moreover, it is not quite clear whether the actual supersaturations caused by 
the strain in real metals are not too low to nucleate a vacancy-microcrack. In the present 
theory the critical global nucleation rate requires supersaturations ranging from a rather 
impossibly high value of 108 to around 3.5. These are dropping very rapidly with rising 
temperature so that beginning from 800°K they do not exceed 50. On the other hand, 
it was reported [4, 5, 42, 43] that the highest supersaturation at which voids are produced 
amounts to merely 1.01. Such a Jow supersaturation was estimated from diffusion experi­
ments without any external tension applied. It is of interest to note here that in the pa­
per [44] a critical vacancy supersaturation for pore formation during the interdiffusion 
of copper and zinc was found to be about 1.5, which is contrary to the above statements. 
Much higher supersaturations at which voids are generated appear also in irradiated 
metals [2, 3] where, however, the presence of interstitials cannot be neglected because 
of the competing effects of interstitials and vacancies on the void formation. It should 
be added that high-energy radiation frequently induces high supersilturations not only 
of vacancies and interstitials but also of dissolved inert gas atoms which may co-pre­
cipitate into voids. The internal gas pressure in the gas-containing void embryos lowers 
the formation energy of the embryos, decreasing thereby the supersaturation needed to 
nucle~te a critical void. Under such circumstances internal pressure, aided by the strain 
due to tension, facilitates the origination of microvoids and should be incorporated in 
the free energy of void formation [23]. 

In spite of the doubts about the sufficiency of vacancy supersaturation, a number of 
papers [1, 5, 45] is in agreement with the suggestion that stable void nuclei are induced 
by the tensile stress. Moreover, the vacancy hypothesis gives a theoretical explanation of 
the beginning of the microfracture process and the nature of origination of submicroscopic 
cracks which can initiate the formation of a Griffith crack. It should be stressed here that 
the strain e, which appears in the equations of the theory, denotes not the average linear 
strain of the crystal but rather the highly increased local strain occuring at the bound­
aries of each vacancy cluster. This increased strain reduces the activation energy of vacancy 
motion and accelerates the nucleation process. Thus, despite the small value of the mean 
strain, large local strains appearing inside the crystal favour the growth of a microcrack 
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nucleus and vacancy collections which are still unstable. Unfortunately, the strain con­

centration coefficients are not sufficiently known, and the value of the average strain 

of the crystal corresponding to the critical strain .s* can be either determined by an experi­

ment or estimated only approximately. 

The formation of a microcrack nucleus results here from the application of an elastic 

strain to the metal and in the first microscopic stage is a reversible process. On unloading 

the vacancy supersaturation decreases, the nuclei ctase to be stable and disintegrate, and 

the metal returns to the original state. When the unloading process is very rapid the healing 

of microcracks may proceed slower than their growth. On the other hand, once the grow­

ing nucleus has reached a macroscopic size, its further growth is irreversible; otherwise, 

no crack could exist in free of loaded bodies. 

Acknowl~dgements 

The author expresses his thanks to Professor A. ZIABICKI for valuable discussions and 

to Dr. M. Kosc for performing the numerical computations. 

References 

1. J. N. GREENWOOD, D. R . MILLER, J. W. SuiTER, Acta Met., 2, 250, 1954. 

2. K. C. RussELL, Acta Met., 19, 753, 1971. 
3. J. L. KATZ, H. WIEDERSICH, J. Chern. Phys., SS, 1414, 1971. 

4. R. W. BALLUFFI, Acta Met., 2, 194, 1954. 
5. R . W. BALLUFFI, L. L. SEIGLE, Acta Met., 3, 170, 1955. 

6. J. KRZEMINSKI, Arch. Mech_., Stos., 21, 3, 215, 1969. 

7. J. KRZEMINSKI, Arch. Mech. Stos., 21, 4, 429, 1969. 

8. J. KRZEMINSKI, IFTR Reports [in Polish], 44, 1974. 

9. J. KRZEMINSKI, Arch. Mech., 25, 6, 903, 1973. 

10. J. KRZEMINSKI, ZAMM, 56, T 122, 1976. 
11. J. KRZEMINSKI, Proc. of Second Int. Symp. on Defects, Fracture and Fatigue, Mont Gabriel, Quebec, 

Canada, June 1982. Ed. by Martinus Nijhoff Publishers, The Hague 1983. 

12. G. M. PouND, M. T. SIMNAD, L. YANG, J. Chern. Phys., 22, 1215, 1954. 

13. B. K. CHAKRAVERTY, J. Phys. Chern. Solids., 28, 2413, 1967. 

14. R. D. GRETZ, Surface Sci., 6, 468, 1967. 

15. R. A. SIGSBEE, J. Crystal Growth, 13/14, 135, 1972. 

16. A. ZIABICKI, IFTR Reports, 4, 1977. 
17. B. 51. IlHHEC, )KypHaJI TeXHWiecKoH: <l>H3HKH, 25, 8, 1399, 1955. 

18. R. BECKER, W. DoRING, Annalen der Physik, 24, 5, 719, 1935. 

19. W. DoRING, Z. Physik. Chern. (B), 36, 371, 1937. 

20. M. VOL\-fER, Kinetik der Phasenbildung, Steinkopff, Dresden und Leipzig 1939. 

21. J. FRENKEL, Kinetic theory of liquids, Dover Publications, Inc., New York 1955. 

22. J. H. HoLLOMON, D. TuRNBULL, Progress in metal physirs, Vol. 4, p. 333. Ed. by B. Chalmers and 

R. King, Pergamon Press, London 1953. 

23. K. C. RussELL, Acta Met., 20, 899, 1972. 
24. J. WEERTMAN, J. R. WEERTMAN, Elementary dislocation theory, Macmillan, London 1967. 

25. V. HALPERN, Brit. J. Appl. Phys., 18, 163, 1967. 
26. J.P. HIRTH, G. M. PouND~ Condensation and evaporation, Pergamon Press, Oxford 1963. 

http://rcin.org.pl



670 J. KRzEMINSKI 

27. T. L. DAVIS, J.P. HIRTH, J. Appl. Phys., 37, 2112, 1966. 
28. A. ZIABICKI, J. Chern. Phys., 48, 4368, 1968. 
29. J. LoTHE, G. M. PouND, J. Chern. Phys., 36, 2080, 1962. 
30. J. B. ZELDOVICH, Acta Physicochimica, USSR, 18, 1, 1, 1943. 
31. K. C. RussELL, Acta Met., 17, 1123, 1969. 
32. J. FEDER, K. C. RussELL, J. LoTHE, G. M. PoUND, Advan. Phys. (Phil. Mag. Suppl.), 15, 57, 111, 

1966. 
33. D. TURNBULL, Trans. AIME, 175, 774, 1948. 
34. B. LEWIS, Thin Solid Films, 1, 85, 1967. 
35. R. W. G. WYCKOFF, Crystal structure, Vol. 1, Second Ed., John Wiley, New York 1963. 
36. A. KocHENDORFER, Arch. fUr das Eisenhiittenwesen, 25, 351, 1954. 
37. A. SEEGER, H. MEHRER, Vacancies and interstitials in metals, Proc. Int. Conf., Jiilich, Germany, 1968. 

Ed. by A. Seeger, D. Schumacher, W. Schiling, J. Diehl, North-Holland, Amsterdam 1970. 
38. F. G. FUMI, Phil. Mag., 46, 1007, 1955. 
39. E. c. DOKIIITEHH, c. 3. DOKIIITEHH, A. A. )l(yxoBH~HH, TepMOOU1laMUKa u KU1lemuKa ourfiifiy3UU 

6 mBepoblx meAax, MeTa.rmypi'IDI, MocKaa, 1974. 
40. ,R. A. JOHNSON, Phys. Rev., 134, A 1329, 1964. 
41. L. H. VAN VLACK, Elements of materials science, Addison-Wesley, Massachusetts, London 1959. 
42. J. A. BRINKMAN, Acta Met., 3, 140, 1955. 
43. E. S. MACHLIN, Trans. AIME, J. of Met., 206, 106, 1956. 
44. R. RESNICK, L. SEIGLE, Trans. AIME, 209, 87, 1957. 
45. D. HuLL, D. E. RIMMER, Phil. Mag., 4, 673, 1959. 

POLISH ACADEMY OF SCIENCES 
INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH. 

Received January 26, 1983. 

http://rcin.org.pl




