Two existence theorems for a rigid heat conductor

L. SIDZ (WARSZAWA)

Theory of Gårding operators is used to get existence theorems for boundary-value problems of a rigid heat conductor in a weak form.

Zastosowano teorię operatorów Gårdinga do wyprowadzenia w słabej postaci twierdzeń o istnieniu dla zagadnień brzegowych dotyczących sztywnego przewodnika ciepła.

Применена теория операторов Гардинга ддя вывода в слабом виде теорем существования для краевых задач, касающихся жесткого теплопроводника.

We apply two theorems given by Oden [3] to a stationary equation of a rigid heat conductor in a weak form.

Generally Ω is a bounded domain in R^{3} with smooth boundary $\partial \Omega$, and U, V are reflexive separable Banach spaces such that the injection $i: U \rightarrow V$ is dense, continuous and compact. By $u_{n} \rightarrow u$ we denote weak convergence u_{n} to u and by U^{\prime} topological dual of $U .\langle\cdot, \cdot\rangle$ is duality pairing on $U^{\prime} \times U$.

We consider the problem:
For a given $f \in U^{\prime}$ find $\theta \in U$ that for any $v \in U$

$$
\begin{equation*}
\int_{\Omega} Q(X, \theta(X), \nabla \theta(X)) \cdot \nabla v(X) d X+\int_{\Omega} q(X, \theta(X)) v(X) d X=-\int_{\Omega} f(X) v(X) d X \tag{E}
\end{equation*}
$$

Here θ denotes the temperature, f is a density of heat sources, Q represents a vector field of flux of heat, q is a scalar field of density of heat sources depending on the temperature. We assume that we know how Q and q depend on X, θ and $\nabla \theta$. The equation (E) was obtained from the local form of the heat equation

$$
\operatorname{DIV} Q(X, \theta(X), \nabla \theta(X))=q(X, \theta(X))+f(X)
$$

(see, e.g. Marsden-Hughes [4]).
We recall the following definitions from [3]:
Definition 1. $A: U \rightarrow U^{\prime}$ is a Gärding operator if A can be expressed in the form $A(u)=$ $=\bar{A}(u, u)$, where $\bar{A}: U \times U \rightarrow U^{\prime}$ satisfies:

1. $\forall v \in U$ the map $U \ni u \rightarrow \overline{A(} u, v) \in U^{\prime}$ is a radially continuous $\left({ }^{1}\right)$ operator from U into U^{\prime}.
2. There exists a continuous function $H: R^{+} \times R^{+} \rightarrow R^{+}, R^{+}=[0,+\infty)$, with the property

$$
\lim _{t \rightarrow 0^{+}} \frac{1}{t} H(x, t y)=0 \quad \text { for any } \quad x, y \in R^{+}
$$

$\left.{ }^{(}{ }^{1}\right) A$ is radialiy continuous if the function $R \ni t \rightarrow\langle A(u+t v), v\rangle$ is continuous for all $u, v \in U$.
such that for every u and v in the ball $B_{m}(0)=\left\{w \in U:\|w\|_{U}<m\right\}$ the following inequality holds:

$$
\langle\bar{A}(u, u)-\bar{A}(v, u), u-v\rangle \geqslant-H\left(m,\|u-v\|_{v}\right) .
$$

3. If $u_{n} \rightarrow u$ weakly in U, then for any $v, w \in U$

$$
\begin{gathered}
\left.\liminf _{n \rightarrow+\infty}\left\langle\overline{A(v,} u_{n}\right)-\bar{A}(v, u), u_{n}-u\right\rangle \geqslant 0 \\
\quad \liminf _{n \rightarrow+\infty}\left\langle\overline{A(v,} u_{n}\right)-\overline{A(v, u), w\rangle=0}
\end{gathered}
$$

Definition 2. $A: U \rightarrow U^{\prime}$ is a variational Gårding operator if A can be expressed in the form $A(u)=\bar{A}(u, u)$ where $\bar{A}: U \times U \rightarrow U^{\prime}$ satisfies:

1. The condition 1. from Def. 1 holds.
2. The condition 2. from Def. 1. holds.
3. $\forall u \in U$ the map $U \ni v \rightarrow \bar{A}(u, v) \in U^{\prime}$ is a bounded operator.
4. If $u_{n} \rightarrow u$ weakly in U and $\lim _{n \rightarrow \infty}\left\langle\bar{A}\left(u_{n}, u_{n}\right)-\bar{A}\left(u, u_{n}\right), u_{n}-u\right\rangle=0$, then for any $v \in U$

$$
\bar{A}\left(v, u_{n}\right) \rightarrow \bar{A}(v, u) \quad \text { weakly in } \quad U^{\prime} .
$$

5. If $u_{n} \rightarrow u$ weakly in U and for any $v \in U \bar{A}\left(v, u_{n}\right)$ converges weakly to some element $f \in U^{\prime}$, then

$$
\lim _{n \rightarrow \infty}\left\langle\overline{A(}\left(v, u_{n}\right), u_{n}\right\rangle=\langle f, u\rangle
$$

We recall the two theorems which were given by Oden [3].
Theorem 1. A coercitive $\left(^{2}\right)$ bounded Gärding operator is surjective.
Theorem 2. A coercitive bounded variational Gårding operator is surjective.
These two theorems will be used to prove the existence of a solution to two problems of the equation (E).

We shall denote by C a positive constant which is not necessarily the same at each occurrence. For a positive integer p we denote by p^{\prime} such a number that $1 / p+1 / p^{\prime}=1$. We shall supress the dependence on X in notations.

We denote by $\|\cdot\|_{W_{0}} m, p$ the norm in $W_{o}^{m, p}(\Omega)$ and by $\|\cdot\|_{p}$ the norm in $L^{p}(\Omega)$.
Application 1. Let $p>2, f \in\left(W^{1, p}(\Omega)\right)^{\prime}$. We consider a stationary equation

$$
A(\theta)=f,
$$

where

$$
A: W^{1, p}(\Omega) \rightarrow\left(W^{1, p}(\Omega)\right)^{\prime}, \quad A(\theta)=\operatorname{DIV} Q(X, \theta(X), \nabla \theta(X))
$$

with the boundary condition

$$
\theta_{\mid \partial \Omega}=\theta_{0}\left(\theta_{\mid \partial \Omega}-\text { trace of } \theta\right), \quad \theta_{0} \in W^{1-\frac{1}{p}, p}(\partial \Omega)
$$

(${ }^{2}$) A is a coercitive operator if $\lim _{\|u\|_{U} \rightarrow+\infty} \frac{\langle A(u), u\rangle}{\|u\|_{\boldsymbol{U}}}=\infty$.

There exists $\bar{\theta} \in W^{1, p}(\Omega)$ such that $\bar{\theta}_{\partial \Omega}=\theta_{0}$ (see e.g. [5, s. VII], [6 s. VI]). If a solution θ exists, then $\bar{\theta}-\theta \in W_{0}^{1, p}(\Omega)$, so we can formulate our problem in the following form:

For a given $f \in\left(W^{1, p}(\Omega)\right)^{\prime}$ find $\theta \in W_{0}^{1, p}(\Omega)$ such that for any $v \in W_{0}^{1, p}(\Omega)$

$$
\begin{equation*}
\langle A(\bar{\theta}+\theta), v\rangle=\langle f, v\rangle . \tag{1.1}
\end{equation*}
$$

We show that if Q is suitably restricted, there exists at least one solution of the problem (1.1). We assume
I. $Q(X, \theta, \nabla \theta)=Q_{0}(\nabla \theta, X)+Q_{1}(\nabla \theta, \theta, X)$, where $Q_{0}(w, X)$ is Gateaux differentiable in $w \in R^{3}$ and continuous in $X \in \Omega$ and $Q_{1}(w, d, X)$ is Gateaux differentiable in $w \in R^{3}$ and $d \in R$ and continuous in $X \in \Omega$.
II. For any $u, v \in W^{1, p}(\Omega)$ such that $u-\bar{\theta}, v-\bar{\theta} \in W_{0}^{1, p}(\Omega)$ the following inequalities hold
a.

$$
\int_{0}^{1} \frac{d Q_{0}(\nabla u+t \nabla v, X)}{d t} d t \cdot \nabla v \geqslant a_{1}|\nabla v|^{p} \quad \text { for } \quad X \in \Omega,
$$

b.

$$
\left|Q_{0}(w, X)\right| \leqslant b_{1}\left(|w|^{p-1}+1\right) \quad \text { for } \quad w \in R^{3}, \quad X \in \Omega .
$$

III. For any $w \in R^{3}, \theta \in W^{1, p}(\Omega), X \in \Omega$
a.

$$
\left|Q_{1}(w, \theta, X)\right| \leqslant a_{2}\left(1+|\theta|^{q}+|w|^{q}\right),
$$

b.

$$
\left|\frac{\partial Q_{1}}{\partial \theta}(w, \theta, X)\right| \leqslant b_{2}\left(1+|\theta|^{q-1}+|w|^{q-1}\right),
$$

c.

$$
\forall a \in R^{3}, \quad \frac{\partial Q_{1}}{\partial w}(w, \theta, X) \cdot a \cdot a \leqslant 0 .\left(^{3}\right)
$$

In these conditions $a_{1}, b_{1}, a_{2}, b_{2}$ are positive constants and $0<q<p-1$.
Theorem 1.1. Suppose the assumptions I, II, III are fulfilled. Then there exists at least one solution of the problem (1.1).

Proof. We shall show that $A_{1}(v)=A(\bar{\theta}+v)$ is a bounded coercitive Gårding operator from $W_{0}^{1, p}(\Omega)$ into $\left(W_{0}^{1, p}(\Omega)\right)^{\prime}$. We have $W_{0}^{1, p} \subset L^{p}(\Omega)$ and the imbedding is dense continuous and compact, so the assumptions about spaces U, V, are fulfilled.

Step 1. A_{1} is bounded.
For $u, v \in W_{0}^{1, p}(\Omega)$ we have

$$
\langle A(\bar{\theta}+u), v\rangle=\int_{\Omega} Q_{0}(\nabla \bar{\theta}+\nabla u, X) \cdot \nabla v d X+\int_{\Omega} Q_{1}(\nabla \bar{\theta}+U, \bar{\theta}+u, X) \cdot \nabla v d X .
$$

From the Hölder's inequality and the assumption IIb we have

$$
\begin{aligned}
& \left|\int_{\Omega} Q_{0}(\nabla \bar{\theta}+\nabla u, X) \cdot \nabla v d X\right| \leqslant\left\|Q_{0}(\nabla \vec{\theta}+\nabla u, X)\right\|_{p^{\prime}}\|\nabla v\|_{p} \leqslant C\left(\left\||\nabla \bar{\theta}+\nabla u|^{p-1}\right\|_{p^{\prime}}\right. \\
& \left.+\|1\|_{p^{\prime}}\right)\|v\|_{W_{0}^{1, p}} \leqslant C\left(\|\bar{\theta}+u\|_{W^{1, p}}^{p / p}+C\right)\|v\|_{W_{0}^{1, p}} \leqslant C\left(\|u\|_{W_{0}^{1, p}}^{p, p^{\prime}}+C\right)\|v\|_{W_{0}^{1, p}}
\end{aligned}
$$

${ }^{(3)}$ i.e. $\sum_{i, j=1}^{3} \frac{\partial Q_{1 j}}{\partial w_{i}}(w, \theta, X) \cdot a_{t} \cdot a_{j} \leqslant 0$.

By similar calculations we get

$$
\left|\int_{\Omega} Q_{1}(\nabla \bar{\theta}+\nabla u, \bar{\theta}+u, X) \cdot \nabla v d X\right| \leqslant C\left(\left\||\bar{\theta}+u|^{q}\right\|_{p^{\prime}}+\left\|\left||\bar{\theta}+\nabla u|^{q} \|_{p^{\prime}}+C\right) \cdot\right\| \nabla v \|_{p}\right.
$$

Since $q<p-1$, then $p^{\prime} \cdot q<p$ and we have

$$
\begin{aligned}
&\left|\int_{\Omega} Q_{1}(\nabla \bar{\theta}+\nabla u, \bar{\theta}+u, X) \cdot \nabla v d X\right| \leqslant C\left(\|\bar{\theta}+u\|_{W^{1, p}}^{q}+C\right)\|v\|_{W_{0}^{1, p}} \\
& \leqslant C\left(\|u\|_{W_{0}^{1, p}}^{q}+C\right)\|v\|_{W_{0}^{1, p}} .
\end{aligned}
$$

Taking together these two estimates we have

$$
\|A(\bar{\theta}+u)\|_{\left(W_{0}^{1, p}(\Omega)\right)^{\prime}}=\sup _{\|v\|_{W_{0}^{1, p}}}|\langle A(\bar{\theta}+u), v\rangle| \leqslant C\left(\|u\|_{W_{0}^{1, p}}^{p / p}+\|u\|_{W_{0}^{1, p}}^{q}+C\right)
$$

so A is bounded.

Step 2. A is a Gårding operator.
Let $\overline{A(} u, v)=A(u)+0 \cdot v$. Then $\bar{A}(u, u)=A(u)$ and the conditions 1 and 3 in Def. 1 hold because of the assumption I. We must prove the condition 2. For $u, v \in W_{0}^{1, p}(\Omega)$ we have

$$
\langle\overline{A(} \bar{\theta}+u, \bar{\theta}+u)-\bar{A}(\bar{\theta}+v, \bar{\theta}+u), u-v\rangle=J_{0}(\bar{\theta}+u, \bar{\theta}+v)+J_{1}(\bar{\theta}+u, \bar{\theta}+v),
$$

where J_{0} and J_{1} correspond to Q_{0} and Q_{1}, respectively. Let us denote $z=u-v \in W_{0}^{1, p}(\Omega)$. Using the assumption IIa we get

$$
\begin{aligned}
J_{0}(\bar{\theta}+u, \bar{\theta}+v)=\int_{\Omega}\left[Q_{0}(\nabla \bar{\theta}+\nabla v+\nabla z)-Q_{0}(\nabla \bar{\theta}+\nabla v)\right] \cdot \nabla z d X & \\
& \geqslant a_{1} \int_{\Omega}|\nabla z|^{p} d X \geqslant C\|z\|_{W_{0}^{1, p}}^{p}
\end{aligned}
$$

and similarly using the assumption IIIc we obtain $(w=\bar{\theta}+v+t z)$

$$
\begin{aligned}
J_{1}(\bar{\theta}+u, \bar{\theta}+v)= & \int_{\Omega}\left[Q_{1}(\nabla \bar{\theta}+\nabla u, \bar{\theta}+u, X)-Q_{1}(\nabla \bar{\theta}+\nabla v, \bar{\theta}+v, X)\right] \nabla z d X \\
= & \int_{\Omega} \int_{0}^{1}\left[\frac{\partial Q_{1}(\nabla w, w, X)}{\partial(\nabla w)} \cdot \nabla z \cdot \nabla z+\frac{\partial Q_{1}\left(\nabla w_{0}, w, X\right)}{\partial w} z \cdot \nabla z\right] d t d X \\
& \leqslant \int_{\Omega} \int_{0}^{1} \frac{-\frac{Q_{1} w, w, X}{w} z \cdot \nabla z d t d X}{}
\end{aligned}
$$

Therefore by the assumption IIIb

$$
\begin{array}{r}
J_{1}(\bar{\theta}+u, \bar{\theta}+v) \leqslant \int_{\Omega} \int_{0}^{1}\left|\frac{\partial Q_{1}}{\partial w}(\nabla w, w, X) \cdot z \cdot \nabla z\right| d t d X \leqslant \int_{\Omega} \int_{0}^{1} b_{2}\left(1+|w|^{q-1}+|\nabla w|^{q-1}\right) \\
\times|z||\nabla z| d t d X
\end{array}
$$

We shall estimate all parts of this sum. Let s denote $h=|\nabla w|^{q-1}$ and

$$
I=\int_{\Omega} \int_{0}^{1}|\nabla w|^{q-1}|z||\nabla z| d t d X
$$

Since for any $\varepsilon>0$ and any function g

$$
\int_{\Omega}|\nabla z||g| d X \leqslant\|z\|_{W_{0}^{1, p}}^{p} \cdot \frac{\varepsilon^{p}}{p}+\frac{1}{p^{\prime} \varepsilon^{p^{\prime}}}\|g\|_{p^{\prime}}^{p^{\prime}}
$$

we get, taking $g=h z$,

$$
I \leqslant \int_{0}^{1} \frac{\varepsilon^{p}}{p}\|z\|_{W_{0}^{1, p}}^{p} d t+\int_{0}^{1}\|h z\|_{p^{\prime}}^{p^{\prime}} \cdot \frac{1}{p^{\prime} \varepsilon^{p^{\prime}}} d t
$$

We have also

$$
\|h z\|_{p^{\prime}}^{p^{\prime}(p-1)} \leqslant\|z\|_{p}^{p}\|h\|_{p /(p-2)}^{p} \quad \text { and } \quad\|h\|_{p /(p-2)}^{p /(p-1)}=\|\nabla w\|_{\frac{p(q-1)}{p-2}}^{\frac{p(q-1)}{p-1}} .
$$

Because $\frac{p(q-1)}{p-2}<p$, then $\|\nabla w\|_{\frac{p(q-1)}{p-2}} \leqslant C\|\nabla w\|_{p}$ and therefore for $u, v \in B_{m}(0)$ in $W_{0}^{1, p}(\Omega)$

$$
\begin{equation*}
I \leqslant \frac{\varepsilon^{p}}{p}\|z\|_{W_{0}^{1, p}}^{p}+\frac{1}{p^{\prime} \varepsilon^{p^{\prime}}}\|z\|_{p}^{p /(p-1)} \cdot C m^{(q-1) p^{\prime}} \tag{1.2}
\end{equation*}
$$

Observing that for $u, v \in B_{m}(0) \subset W_{0}^{1, p}(\Omega)$

$$
\int_{0}^{1}\left(\|\bar{\theta}+v+t z\|_{p}\right)^{k} d t \leqslant C \int_{0}^{1} m^{k}(1+2 t)^{k} d t<\bar{C}(m)
$$

where $\bar{C}(m)$ is a constant depending only on m, and doing similar calculations we get

$$
\begin{equation*}
\int_{\Omega} \int_{0}^{1}|\bar{\theta}+v+t z|^{q-1}|z||\nabla z| d t d X \leqslant C \frac{\varepsilon^{p}}{p}\|z\|_{p}^{p}+\bar{C}(m) \frac{1}{p^{\prime} \varepsilon^{p^{\prime}}}\|z\|_{p^{\prime},(p-1)}^{p} \tag{1.3}
\end{equation*}
$$

Next we have

$$
\begin{equation*}
\int_{0}^{1} \int_{\Omega}|z||\nabla z| d X d t \leqslant \frac{\varepsilon^{p}}{p}\|z\|_{W_{0}^{1_{0}^{1, p}}}^{p}+\frac{1}{p^{\prime} \varepsilon^{p^{\prime}}}\|z\|_{p^{\prime}}^{p^{\prime}} \tag{1.4}
\end{equation*}
$$

Since $p>2$, therefore

$$
\|z\|_{p^{\prime}}^{p^{\prime}}=\int_{\Omega}|z|^{p^{\prime}} d X \leqslant C\left\||z|^{p}\right\|_{p-1} \leqslant C\|z\|_{p}^{p /(p-1)}
$$

Putting this estimate into Eq. (1.4) and taking into account Eqs. (1.2) and (1.3) we have

$$
J_{1}(\bar{\theta}+u, \bar{\theta}+v) \leqslant \frac{3 \varepsilon^{p}}{p}\|z\|_{W_{0}^{1, p}}^{p}+\bar{C}(m)\|z\|_{p}^{p /(p-1)}
$$

Combining thus with the estimate of J_{0} we get

$$
J_{0}(\bar{\theta}+u, \bar{\theta}+v)+J_{1}(\bar{\theta}+u, \bar{\theta}+v) \geqslant\left(C-\frac{3 \varepsilon^{p}}{p}\right)\|z\|_{W_{0}^{1, p}}^{p}-\bar{C}(m)\|z\|_{p}^{p /(p-1)} .
$$

If we choose ε such as to have $C-\frac{3 \varepsilon^{p}}{p}>0$ for $u, v \in B_{m}(0)$ we have

$$
\langle A(\bar{\theta}+u)-A(\bar{\theta}+v), u-v\rangle \geqslant-\bar{C}(m)\|u-v\|_{p}^{p /(p-1)} .
$$

Let us define

$$
H: R^{+} \times R^{+} \rightarrow R^{+}, H(x, y)=\bar{C}(x) y^{p /(p-1)} .
$$

H is continuous and $\lim _{t \rightarrow 0^{+}} \frac{1}{t} H(x, t y)=0$ because $p /(p-1)>1$ for $p>2$.
Furthermore we have for $u, v \in B_{m}(0)$

$$
\langle A(\bar{\theta}+u)-A(\bar{\theta}+v), u-v\rangle \geqslant-H\left(m,\|u-v\|_{p}\right),
$$

which means that the condition 2 of Def. 1 is satisfied.

Step 3. A is coercitive.

We have for $u \in W_{0}^{1, p}(\Omega)$:

$$
\begin{aligned}
& \langle A(\bar{\theta}+u), u\rangle=\langle A(\bar{\theta}), u\rangle+J_{0}(u+\bar{\theta}, \bar{\theta})+J_{1}(u+\bar{\theta}, \bar{\theta}) \\
& \quad \geqslant\langle A(\bar{\theta}), u\rangle+C\|u\|_{W_{0}^{1, p}}^{p}+J_{1}(u+\bar{\theta}, \bar{\theta}) .
\end{aligned}
$$

Using

$$
\left\||\nabla \bar{\theta}+\nabla u|^{q+1}\right\|_{-\frac{p}{q+1}}^{\frac{p}{q+1}} \leqslant\|\bar{\theta}+u\|_{W^{1, p}}^{p} \quad \text { and } \quad\left\||\bar{\theta}+u|^{q}\right\|_{p^{\prime}}^{p^{\prime}} \leqslant C\|\bar{\theta}+u\|_{p}^{q p^{\prime}},
$$

we have from the assumptions IIb and IIIa

$$
\begin{array}{r}
\langle A(\bar{\theta}), u\rangle+J_{1}(u+\bar{\theta}, \bar{\theta})= \\
\int_{\Omega}\left[Q_{0}(\nabla \bar{\theta}, X)+Q_{1}(\nabla u+\nabla \bar{\theta}, u+\bar{\theta}, X)\right] \cdot \nabla u d X \\
\leqslant \int_{\Omega}\left[b_{1}\left(|\nabla \bar{\theta}|^{p-1}+1\right)+a_{2}\left(1+|u+\bar{\theta}|^{q-1}+|\nabla u+\nabla \bar{\theta}|^{q-1}\right)\right]|\nabla u| d X \\
\leqslant \int_{\Omega}\left[C+C\left(1+|u|^{q}+|\nabla u|^{q}\right)\right]|\nabla u| d X \leqslant \int_{\Omega}\left(C|\nabla u|+C|u|^{q}|\nabla u|+C|\nabla u|^{q+1}\right) d X \\
\leqslant C\left[\frac{\varepsilon^{p}}{p}\|u\|_{W_{0}^{1, p}}^{p}+\frac{1}{p^{\prime} \varepsilon^{p^{\prime}}}(\operatorname{means}(\Omega))^{p^{\prime}}\right]+C \frac{q+1}{p} \varepsilon^{\frac{p}{q+1}}\|u\|_{W_{0}^{1, p}}^{p} \\
\\
\quad+\frac{1}{p^{\prime \prime} \varepsilon^{p^{\prime \prime}}}(\operatorname{means}(\Omega))^{p^{\prime \prime}}+C \frac{\varepsilon^{p}}{p}\|u\|_{W_{0}^{1, p}}^{p} \\
\\
\quad+C \frac{1}{p^{\prime} \varepsilon^{p^{\prime}}}\|u\|_{W_{0^{1}, p}^{p}} \quad \text { where } \quad p^{\prime \prime}=\frac{p}{p-q-1}, \quad \hat{p}=p^{\prime} q .
\end{array}
$$

Therefore

$$
\langle A(\bar{\theta}+u), u\rangle \geqslant C\left[\left(1-\frac{\varepsilon^{p}}{p}-\varepsilon^{\frac{p}{q+1}}\right)\|u\|_{W_{0}^{1}, p}^{p}-\|u\|_{W_{0}^{1}, p}^{\hat{p}_{p}}-1\right] .
$$

If we choose ε such as to have $1-\frac{\varepsilon^{p}}{p}-\varepsilon^{\frac{p}{q+1}}>0$ we obtain

$$
\lim _{\|u\|_{W_{0}^{1, p \rightarrow+\infty}}} \frac{\langle A(\bar{\theta}+u), u\rangle}{\|u\|_{W_{0}^{1, p}}}=\infty
$$

because $p-1>\hat{p}-1$.
So A_{1} is a coercitive bounded Gårding operator and we conclude from Theorem 1 that A_{1} is surjective, so there exists $u \in W_{0}^{1, p}(\Omega)$ that for any

$$
v \in W_{0}^{1, p}(\Omega), \quad\langle A(\bar{\theta}+u), v\rangle=\langle f, v\rangle
$$

and $\theta=\bar{\theta}+u \in W^{1, p}(\Omega)$ satisfies $\langle A(\theta), v\rangle=\langle f, v\rangle$ for any $v \in W_{0}^{1, p}(\Omega)$ and $\left.\theta\right|_{\partial \Omega}=\theta_{0}$. Theorem 1.1 is proved.

Application 2. Let us consider the map

$$
A: W_{0}^{1 \cdot p}(\Omega) \rightarrow W^{-1 \cdot p^{\prime}}(\Omega)
$$

where $1<p<\infty$, and formulate the problem:
For a given $f \in W^{-1, p^{\prime}}(\Omega)$ find $\theta \in W_{0}^{1, p}(\Omega)$ such as to have for any $v \in W_{0}^{1, p}(\Omega)$

$$
\langle A(\theta), v\rangle=\int_{\Omega} Q(X, \theta(X), \nabla \theta(X)) \cdot \nabla v d X+\int_{\Omega} q(X, \theta(X)) \cdot v d X=-\int_{\Omega} f(X) v d X
$$

where
I. $\quad Q(X, u, v): \Omega \times R \times R^{3} \rightarrow R^{3}, \quad q(X, u): \Omega \times R \rightarrow R$
are continuous in $u \in R, v \in R^{3}$ for almost every $X \in \Omega$ and measurable in $X \in \Omega$ for every $u \in R, v \in R^{3}$.
II. There exists $k \in L^{p^{\prime}}(\Omega)$ such that for $X \in \Omega$

$$
\begin{aligned}
|Q(X, u, v)| & \leqslant C\left(|u|^{p-1}+|v|^{p-1}+|k(X)|\right) \\
|q(X, u)| & \leqslant C\left(|u|^{p-1}+|k(X)|\right) .
\end{aligned}
$$

If these assumptions hold, then we can easily verify that

$$
A: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega)=\left(W_{0}^{1, p}(\Omega)\right)^{\prime}
$$

We give now two lemmata which are simple consequences from the theorem 2.1 in Krasnosielskij [1].

Lemma 1. Let $u_{n} \rightarrow u$ strongly in $L^{p}(\Omega)$ and $v, w \in W^{1, p}(\Omega)$. Then

$$
\begin{array}{clll}
Q\left(X, u_{n}, \nabla v\right) & \rightarrow Q(X, u, \nabla v) & \text { strongly in } & \left(L^{p^{\prime}}(\Omega)\right)^{3}, \\
q\left(X, u_{n}\right) \rightarrow q(X, u) & \text { strongly in } & L^{p^{\prime}}(\Omega) .
\end{array}
$$

Lemma 2. Let $u_{n} \rightarrow u$ strongly in $W^{1, p}(\Omega), v \in L^{p}(\Omega)$. Then

$$
Q\left(X, v, \nabla u_{n}\right) \rightarrow Q(X, v, \nabla u) \quad \text { strongly in } \quad\left(L^{p^{\prime}}(\Omega)\right)^{3} .
$$

Now we can formulate an existence theorem.
Theorem 2.1. Let the assumptions I, II hold and
3. A is a coercitive operator.
4. There exists $H: R^{+} \times R^{+} \rightarrow R^{+}$continuous and such that for any $x, y \in R^{+}$

$$
\lim _{t \rightarrow 0^{+}} \frac{1}{t} H(x, t y)=0
$$

and for

$$
\begin{gathered}
u, v \in B_{m}(0)=\left\{w \in W_{0}^{1, p}(\Omega):\| \|_{W_{0}^{1, p}}<m\right\} \\
{[Q(X, u, \nabla u)-Q(X, v, \nabla u)] \cdot(\nabla u-\nabla v) \geqslant-H\left(m,\|u-v\|_{p}\right) .}
\end{gathered}
$$

Then A is surjective from $W_{0}^{1, p}(\Omega)$ onto $W^{-1, p^{\prime}}(\Omega)$
Proof.

Step 1. We show that A is a variational Gårding operator.
Let us put $W_{0}^{1, p}(\Omega)$ as U and $L^{p}(\Omega)$ as V in Def. 2. We denote for $u, v, w \in W_{0}^{1, p}(\Omega)$

$$
\begin{aligned}
a_{1}(u, v, w) & =\int_{\Omega} Q(X, u, \nabla v) \cdot \nabla w d X \\
a_{0}(u, w) & =\int_{\Omega} q(X, u) w(X) d X
\end{aligned}
$$

The map $w \rightarrow a(u, v, w)=a_{1}(u, v, w)+a_{0}(u, w)$ is continuous from $W_{0}^{1, p}(\Omega)$ in R for any $u, v \in W_{0}^{1, p}(\Omega)$. We define

$$
\left.\overline{A:} W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p}(\Omega) \quad \text { by } \quad\langle\overline{A(} v, u), w\right\rangle=a(u, v, w) .
$$

Then $\bar{A}(u, u)=A(u)$. Other conditions from Def. 2 are proved in the following way.

1. Because of Lemma $2 \lim _{t \rightarrow 0} Q\left(X, u, \nabla v_{1}+t \nabla v_{2}\right) \rightarrow Q\left(X, u, \nabla v_{1}\right)$ strongly in $\left(L^{p^{\prime}}(\Omega)\right)^{3}$, therefore for any $u \in W_{0}^{1, p}(\Omega)$ the map $v \rightarrow \bar{A}(v, u)$ is radially continuous from $W_{0}^{1 \cdot p}(\Omega)$ into $W^{-1, p^{\prime}}(\Omega)$.
2. We can check this condition easily using the assumption 4.
3. We can verify similarly to the next step of the proof that the operator $u \rightarrow A(v, u)$ is bounded for any $v \in W_{0}^{1, p}(\Omega)$.
4. Let $u, v, w, u_{n} \in W_{0}^{1, p}(\Omega), u_{n} \rightarrow u$ weakly in $W_{0}^{1, p}(\Omega)$. Then

$$
\left\langle\bar{A}\left(v, u_{n}\right), w\right\rangle=\int_{\Omega} Q\left(X, u_{n}, \nabla w\right) \cdot \nabla w d X+\int_{\Omega} q\left(X, u_{n}\right) w(X) d X .
$$

If we choose a subsequence $u_{n_{k}}, u_{n_{k}} \rightarrow u$ strongly in $L^{p}(\Omega)$, then from Lemma 1 we have $Q\left(X, u_{n_{k}}, \nabla v\right) \rightarrow Q(X, u, \nabla v)$ strongly in $\left(L^{p^{\prime}}(\Omega)\right)^{3}$ and $q\left(X, u_{n_{k}}\right) \rightarrow q(X, u)$ strongly in $L^{p^{\prime}}(\Omega)$. Thus we conclude that $\bar{A}\left(v, u_{n_{k}}\right) \rightarrow \bar{A}(v, u)$ weakly in $W^{-1, p}(\Omega)$ for any $v \in W_{0}^{1, p}(\Omega)$. Because this convergence holds for any subsequence which converges strongly in $L^{p}(\Omega)$, then we have it for the sequence u_{n}.
5. Let $u_{n} \rightarrow u$ weakly in $W_{0}^{1, p}(\Omega), \bar{A}\left(v, u_{n}\right) \rightharpoonup f$ weakly in $W^{-1, p^{\prime}}(\Omega)$ for $v \in W_{0}^{1, p}(\Omega)$. From Lemma 1 we have

$$
\begin{gathered}
Q\left(X, u_{n}, \nabla v\right) \rightarrow Q(X, u, \nabla v) \quad \text { strongly in } \quad\left(L^{p^{\prime}}(\Omega)\right)^{3}, \\
q\left(X, u_{n}\right) \rightarrow q(X, u) \quad \text { strongly in } \quad L^{p^{\prime}}(\Omega) .
\end{gathered}
$$

Hence

$$
a_{1}\left(u, v, u_{n}\right) \rightarrow a_{1}(u, v, u) .
$$

Using the Hölder's inequality we get from the Assumption II

$$
\left|a_{2}\left(u_{n}, u_{n}-u\right)\right| \leqslant C \mid\left\|u_{n}-u\right\|_{p} .
$$

Choosing a subsequence $u_{n_{k}} \rightarrow u$ strongly in $L^{p}(\Omega)$ we have

$$
a_{2}\left(u_{n_{k}}, u\right) \rightarrow\langle f, u\rangle-a_{1}(u, v, u)
$$

As a result we get for the sequence u_{n}

$$
\left\langle\bar{A}\left(v, u_{n}\right), u_{n}\right\rangle=a_{1}\left(u_{n}, v, u_{n}\right)+a_{2}\left(u_{n}, u_{n}\right) \rightarrow\langle f, u\rangle .
$$

Step 2. We must show that A is a bounded operator. From the Assumption II we have

$$
\begin{aligned}
& |\langle A(u), w\rangle| \leqslant \int_{\Omega}|Q(X, u, \nabla u)| \cdot|\nabla w| d X+\int_{\Omega}|q(X, u)| \cdot|w(X)| d X \\
& \leqslant \int_{\Omega} C\left(|\nabla u|^{p-1}+|u|^{p-1}+|k|\right) \cdot|\nabla w| d X+C \int_{\Omega}\left(|u|^{p-1}+|k|\right) \cdot|w| d X \\
& \quad \leqslant C\left(\left\|\left.| | u\right|^{p-1}+|\nabla u|^{p-1}+|k|\right\|_{p^{\prime}}+\left\|\left||u|^{p-1}+|k| \|\right|_{p^{\prime}}\right)\|w\|_{w_{0}^{1, p}} .\right.
\end{aligned}
$$

Hence

$$
\|A(u)\|_{W^{-1, p^{\prime}}}=\sup _{\|w\|^{W 1, p}=}|\langle A(u), w\rangle| \leqslant C\left(\|u\|_{W_{0}^{1}, p}+\|k\|_{p, p}\right) .
$$

So A is bounded from $W_{0}^{1, p}(\Omega)$ into $W^{-1 \cdot p^{\prime}}(\Omega)$. Therefore all assumptions of Theorem 2 l:old and we conclude that A is surjective from $W_{0}^{1, p}(\Omega)$ onto $W^{-1 \cdot p^{\prime}}(\Omega)$.

References

1. M. A. Krasnosielskij, Topologičeskije metody v teorii nielinejnych integralnych uravnenij, Gostechizdat, Moskva 1956.
2. J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris 1969.
3. J. T. Oden, Existence theorems for a class of problems in nonlinear elasticity, J. Math. Anal. and Apps., 69, 1, 51-83, 1979.
4. J. Marsden, T. Hughes, Topics in the mathematical foundations of elasticity, in: R. J. Knops, Nonlinear analysis and mechanics, Heriot-Watt Symposium, vol. II, London 1978.
5. R. A. Adams, Sobolev spaces, Academic Press, New York, San Francisco, London 1975.
6. A. Kufner, O. John, S. Fučik, Function spaces, Academia, Prague 1977.

UNIVERSITY OF WARSAW.

Received December 9, 1982.

