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The influence of some second-order effects on the behaviour
of rigid plastic shells at the yield point load

M. K. DUSZEK (WARSZAWA) and F. ALESSANDRINI (UDINE)

THE PAPER deals with the problem of stability of rigid-perfectly plastic shells at the yield point
load. The material incompressibility, observed when plastic deformations take place, is taken
into account and the results are compared with the known solution obtained when the thickness
of the shell is assumed to be constant. The influence of different definitions of a perfectly plastic
material on the post yield behaviour of the shells is also considered. The question is illustrated
by the examples of cylindrical shells subject to axial end forces and uniformly distributed lateral
dead load.

W pracy rozwazany jest problem statecznosci sztywno-idealnie plastycznych powlok w chwili
osiagniecia przez obciaZenie wartosci obcigzenia uplastyczniajacego. W obliczeniach uwzgled-
niono zmiany grubosci powloki wyznaczone na podstawie warunku niescisliwosci, a wyniki
poréwnano ze znanym rozwigzaniem otrzymanym przy zaloZeniu stalej grubosci. Wykazano,
ze wptyw roznych definicji materialu idealnie plastycznego moze by¢ istotny przy rozwazaniu
po-granicznego zachowania sie powloki. Otrzymane rozwiazanie zilustrowano przykladami
powlok cylindrycznych poddanych osiowym silom przytozonym na konicach oraz réwnomiernie
rozlozonemu obciazeniu nominalnemu.

B palore paccmaTpHBaeTcsi IPOGIEMAa YCTOWUMBOCTH >KECTKO-MIEANBHO IUIACTHYECKHX 000-
JIOUeK B MOMEHT JIOCTHYKEHHs HATDY3KOH 3HAUEHMs IUIACTHYECKOH HAarpysku. B pacuerax
YYTEHBI M3MEHEHHUA TOJIIHHBI 0G0JIOUKH, ONpeJie/IeHHbIe Ha OCHOBE YCJIOBHS HEC)KMMAaeMOCTH,
a PeayNbTaThl CPABHEHBI C MCBECTHBIM PELIEHHEM, ITOJYYEHHBIM IIPH IIPEIIIOJIOYKEeHHH MOCTO-
AHHOM ToMmMHEBI. [[0Ka3aHO, UTO BIIMAHHE Pa3HBIX ONPeNeJIeHHH HJeaJIbHO IJIACTHYECKOro
MATEpHaNa MOMKET ObITh CYILECTBEHHBIM IIPH PAacCMOTPEHHH MpeeNbHOro TMoBefeHus o6o-
nouxn. IlonyueHHOe pellieHre HIUIIOCTPHPOBAHO IPHMEPAMH IMIHHADHUYECKHX O00O0JIOUEK,
MOJBEPTHYTHIX OCEBBIM CHJIaM IPUIOYKEHHBIM Ha KOHIIAX, a TAaKyKe PaBHOMEPHO pacrpene-
JICHHON HOPMAaJIBHOI Harpyske.

1. Introduction

IT 1s RATHER obvious that the problem of stability and post yield behaviour of a structure
can be treated properly only within the framework of the geometrically nonlinear theory,
yet the question arises whether the second-order effects, usually neglected when formulating
constitutive relations, play also a substantial role.

Therefore such effects as the influence of various definitions of a perfectly plastic
material (associated with the different objective stress rates) on the post yield behaviour
of the shells is considered in the paper. The material incompressibility, observed when
plastic deformations take place, is also taken into account when formulating geometrical
relations. The results are compared with the known solutions obtained under the assump-
tion of constant shell thickness.

The problem considered is illustrated by examples of cylindrical shells subject to the
end axial forces and uniformly distributed lateral dead load.
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2. Material stability and the definition of a perfectly plastic material

In the recent literature the following two approaches to the definition of the material
stability of time-independent materials are most commonly used.

The first one is concerned with DRUCKER’s concept [1]. The material stability condition
is then derived from the energy criterion of stability of a body or a system when homo-
geneous stress and strain states are assumed.

The other approach consists in generalization of the definition of material stability
under one-dimensional tension to cover an arbitrary stress state. According to this defini-
tion, the material is said to be stable when the stress-strain curve is rising and is said to be
unstable when the curve is falling. This idea can be generalized for the three-dimensional
stress state and expressed analytically as a requirement that the scalar product of conjugate
stress rate and strain rate tensors be nonnegative for a stable material

.1 Sid, = 0,

where g“ denotes an objective time derivative of the Cauchy (true) stress tensor and d;
is the symmetric part of the velocity gradient.

This definition does not, however, describe the material properties in a unique way
since the material stability depends here upon the choice of the objective stress rate
measure.

In the literature, the Jaumann stress derivative (denoted here by %’if) is usually chosen
to be used in the constitutive relations, The Jaumann stress rate is associated with axes
rotating with a material element but not deforming with it. The relation (2.1) can then
be rewritten in the form

@.2) iidy > 0
and is called the material stability condition in the Jaumann sense [2]. Using, however,

g i v : ; . 3 :
the Oldroyd stress derivative oij (associated with the axes rotating and deforming with
the material element) the relation (2.1) takes the form

(2.3) iidy, > 0

and is called the material stability condition in the Oldroyd sense [2].
Making use of the known relation between the Jaumann and the Oldroyd stress deriva-
tives

V. 0 : 5 o
(2.4) Gii = Gii+ il + oMid]

the material stability condition (2.2) can be transformed to become
Vo -
(2.5 oiid;;+ 20700, = 0.

The theory of finite deformation of plastic shells is usually formulated in the total Lagran-
gian description. Then the constitutive relations are required to be established using
variables of this description, that is the Kirchhoff stress tensor SX% and the Green strain
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tensor Eg;. It may be shown that for the incompressible material the following relation
takes place [2]:

Vo . -;‘
(2.6) dijdij = SKLEKL:

where the dot denotes the material time derivative.

Substituting Eq. (2.6) into Eq. (2.3), we obtain the material stability condition in the
Oldroyd sense in the form

@.7 SKLEy, > 0.

Similarly, in view of the relation

(2.8) Giidy,y = SK'Eyy + 25X Ep EM,

the material stability condition in the Jaumann sense may be written as
(2.9) SKLE ., +2SKLE EM > 0.

Since the perfectly plastic material is defined as a plastic solid for which the neutral
material stability condition is satisfied, in view of the above considerations the following
definitions of the perfectly plastic material can be introduced.

We say that a material is perfectly plastic in the Jaumann sense if

(2.10) “Giidy; = 0

or in view of (2.8) if

2.11) SEEE G + 28 e B = 0.

Similarly, we say that a material is perfectly plastic in the Oldroyd sense if
(2.12) Giidy, = 0

or in view of Eq. (2.6) if

(2.13) SKLE, =0

if the Lagrangian description is applied.

3. Geometrical stability

A question of geometrical stability depends on the material stability, boundary condi-
tions and the geometry of the body.

The geometrical instability arises when the instability associated with changes
in geometry is great enough to overcome the stability of the material.

The criterion for geometrical stability may be formulated in terms of the dead load
intensity rate [3]; so let us consider a structure subject to a system of dead loads P of mono-
tonically increasing intensity :

(.1) P(X, 1) = u())P(X),

where w(t) indicates the load intensity and P(X) specifies the load distribution.
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The rate of loading is therefore
(2 P(X, 1) = a()P(X).

Geometrical stability is associated with & > 0, and this means that a quasi-static
motion of a structure takes place only for increasing dead loads; if i < 0, the structure
is said to be geometrically unstable and it means that a structure continues to deform
plastically also if decreasing dead loads are applied.

Making use of the Principle of Virtual Energy and the nonlinear strain-displacement
relations, the following expression can be derived:

(3.3) [ PRUgds = [ (S5 Eqy+S¥Up Ul aV,
s v
where U is a displacement vector; the vertical stroke denotes covariant differentiation;
S and ¥ are the surface and the volume of the body respectively, in the original configura-
tion.

Substituting Eq. (3.2) into Eq. (3.3), the rate of load intensity may be determined
from the formula

Vf (S Bt 5%l U AV

S #e) = J P*Uxds

For positive ‘,u(t) the following inequality is always satisfied:
(3.5) [ BxUgds > o.

S
From Eq. (3.4) and (3.5) it follows that g > 0 if

(3.6) [ (S5 + SKEU 0 UMYV > 0.
Vv

‘Therefore the relation (3.6) can be considered as the geometrical stability condition.
For a rigid-perfectly plastic material in the Oldroyd sense, in view of Eq. (2.13) the
geometrical stability criterion (3.6) reduces to

X)) [ s5:0x Ul av > 0,
v

whereas for a rigid-perfectly plastic material in the Jaumann sense, in view of Eq. (2.11),
it becomes [4]

(3.3) — [ $*Uy Uav > 0.
v

4. Application of the geometrical stability conditions to cylindrical shells

Let us consider a thin-walled, cylindrical shell subject to rotationally symmetric defor-
mation under the action of a uniformly distributed dead load P and the axial end load T,
Fig. 1.
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Assuming that the components of the displacement vector UX are analytic functions
of the coordinate Z normal to the shell middle surface, they can be expanded into a power
series:

U? = W(X)+Zy*(X)+ ...,
4.1) U* = V(X)+Zy* (0 + ...,
U® = UX)+Zy°(X)+ ...

In view of the assumption that the considered shells are thin, the nonlinear terms
with respect to Z can be neglected.

E
oy L1
T%‘ll"¥l';%#
7 X
ZA

From the assumption of rotationally symmetric deformation it follows that the circum-
ferential component U® of the displacement vector is equal to zero.

Next we assume that the transverse shearing is negligibly small and that no volume
changes take place during plastic deformations. These assumptions allow us to express
the functions U? and U* in terms of W and V.

Finally the displacement field is found to have the form

U? = W—Z(V,X+2f—),

(4.2 ¥ = V=ZW zs
U® =0.
This means that the straight normals to the middle surface remain straight but the

normality is satisfied only for Z = 0; moreover, their length (thickness of shells) can
change during the deformation process.

The above kinematic assumptions are less restrictive than the assumptions of the
classical Kirchhoff-Love theory of shells which say that the straight normals remain

straight and normal and do not change their length. The displacement field has then
the form

U = w,
“.3) UX = V=2ZW y,
U° = 0.
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Making use of Egs. (2.13) and (4.2) in Eq. (3.4) the expression defining the rate of load
intensity for a perfectly plastic material in the Oldroyd sense may now be written as

; A%\, . 1 ; v : s
f {nﬂ W2 +nx [(F)sz +7)fx] = E I:mx(w.zx'l'v,xxw,x +'U,xw,xx) +
“4) == — SO ——
f(pw+tv,x=1)dS
S

+ My QW 0+ ﬁ/,xv'v)]} ds

|

where the dimensionless quantities are defined as follows:

W 4 X L2

(4.5) ‘ w= 7, v = T, X = T’ o6 = TH’

i +H ; +H '1 +H

e o T2 X = @ S X
(46 ne=5 p f S}z, m=5 o f S§4Z,  me= J S¥Zdz,
-H -H -H
PA T

4. = —— = —_——
“7) P=5gH’ T dme 4l

Assuming the “limited interaction” yield condition, the limit solution for the cylindrical
shell with the boundary conditions considered in the paper was obtained by P. G. HODGE
(5.

The curve ABCDEF in Fig. 2 shows the yield-point loading curve for the particular
case of @ = co and the curve A'B'C'D’'E'F' for o« = 2.

The yield-point loading curves for 2 < o < o0 have a similar shape and are placed
between the curves for « = 2 and « = 0. In Fig. 2 are marked also the curves for « = 3
and « = 5.

Now, making use of the stress and velocity fields given by the limit load solution,
we shall supplement this solution by informing about stability and the slope of the load-
deflection curve at the yield-point load.

For the range of loads represented by the line CD or C'D’ in Fig. 2, the limit load
solution [5] gives

2
0<t<1, p,=]_t+;,

(4.8) my=1-2x% ng= —1+t, n,=1,

x2
w=wo(l=x), o=, (x——z—);

in this case the expression (4.4) becomes

2
=AW, (3t _4__2 +2t—1— g)
(4.9 U= 0
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Hence

(4.10)

@.11)
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For the range of loads represented by the line BC or B’C’ in Fig. 2 the limit load solution

[5] gives

(4.12)

2
-1 0 - 1+=
<t<0, p +oc’
me=1=2x2, n,=—1, n.=1t,
w=we(l—x), ©=0.

The rate of load intensity (4.4) reduces to the form

4.13)

2

- 3(x+2)

3

.

2aw0(3z———
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Since the numerator is always negative and the denominator is always positive, we
have

4.14) @ <0,

hence the shell is unstable for any ¢ from the range (-1, 0).
- For the range of loads represented by the line 4B or A’B’ in Fig. 2, the limit load
solution [5] gives

= -1,
(415) My = k(l_zxz)’ ny = _15 Hy = _P‘f‘%c:
W=0, 'i) = —'z'iox,

where —1 < k< 1.
The load intensity calculated from Eq. (4.4) gives

(4.16) ji= —14 <0

and therefore the shell is unstable.

Analogous calculations can be performed for negative values of the load p.

The stability in the case considered depends on the ratio of the surface tractions as
well as on the geometry of the shell described by the ratio A/L and the parameter «. The
yield-point loading curves can be divided by the lines H— H’, I—-1', K— K’ into two parts
(Fig. 2). One of them (denoted by the sign @) corresponds to a stable and the other (de-
noted by the sign ©) to an unstable limit state solutions. The results presented in Fig. 2
are calculated for L/4 = 1,2, o0.

Let us now compare the results obtained above at the assumption of material incom-
pressibility, with those presented in the paper [6] calculated for the same example of the
shell but under the assumption of a constant shell thickness (and the displacement field
in the form (4.3)). Figure 3 shows the comparison of results for L/4 = 1, 2, co.

The results presented show that such phenomena as material incompressibility may
play an important role when the stability of a plastic shell is considered. The differences
are greater for thicker shells (« small) whereas both solutions coincide for infinitely thin
shells (x = o0). The lined zone in Fig. 4 indicates the ratio of the loads p/t for which the
answer to the question whether the shell at the yield point load is stable or unstable, changes
if the incompressibility condition is taken into account.

We now proceed to investigate the stability problem for the same example of a cylin-
drical shell as considered above but made of a rigid perfectly plastic material in the Jaumann
sense. Making use of Eq. (2.11) in Eq. (3.4), the expression defining the rate of load intensity
for a perfectly plastic material in the Jaumann sense may be written as

— [ SK U UM dV
417 7 N -
¢ # J PXULdS
5
Next, analogously as before, for the displacement field (4.2) and the dimensionles:
quantities (4.5)-(4.7), the Eq. (4.17) can be rewritten in the form
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. A? 1 . G . S . 1 e
f [—nx (v.i—FW?x) ~ (W2 ey +WE—20 W 1) —Hpw? + - Py, W x w] ds

s S B S
2 T (piv-+16,5-,)dS
§
(4.18) 7
Substituting the limit load solution (4.8) for 0 € ¢ < 1 into Eq. (4.18), we obtain
2
zwoa(3ti2—21+l —3)
419) i = : ’
) 3(x+2)
Hence the shell is stable, i« > 0
2—u . A? 2
for < —14'2— if fzﬁ < —3~
o 3 ”ﬁ"‘z
. A2
and for any tiffz— > ER
Whereas the shell is unstable, i < 0
2—a , A 2
for > T if 72 <73

Similarly, substitution of Eq. (4.12) into Eq. (4.18) leads for —1 < ¢ < 0 to

: A? 3
2W0a(3t ££+ 1 +7)

. 20
(4.20) #= 3(a+2)
hence the shell is stable
@.21) >0 for ¢> ;3‘731

60 EZ

and the shell is unstable

) - —=3=2

Finally, for ¢ = —1, substitution of Eq. (4.15) into Eq. (4.18) furnishes

(4.23) H=12>0

what indicates that the shell is stable. Foregoing results, for the cylindrical shells made
of an incompressible, perfectly plastic material in the Jaumann sense, are presented in
Fig. 5 for « = 2+00, L/A = 1 and in Fig. 6 for &« = 2+00, L[4 = 2.

For the same definition of a perfectly plastic material (in the Jaumann sense) but
for the displacement field (4.3) (at the Kirchhoff-Love assumption of the constant thick-
ness), the stability problem at the yield point load has the following solution:
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for
(4.24)

for

(4.25)

for

(4.26)
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Figures 5 and 6 illustrate these results for « = 2+ 0 and L/A = 1, 2. The presented
pictures illustrate two typical situations. For L/4 > 2 the distribution of stable and un-
stable zones are similar to the case of L/4 = 2. The lined zones marked in Figs. 5 and 6
indicate the ratio of p/f for which the answer whether the shell is stable or unstable changes
when the incompressibility condition is taken into account in considerations.

3 Arch. Mech. Stos. nr 4/83
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5. Conclusions

Presented results indicate that the influence of material incompressibility on the post
yield behaviour of cylindrical shells can be essential in both situations, if a perfectly
plastic material in the Oldroyd sense or in the Jaumann sense is assumed. The different
answer on the question of stability at the yield point load if incompressibility condition
is taken into account, is obtained for the large zone in #—p space when the shell is rather
thick or short (« — small), whereas the both solutions coincide for the infinitely thin or
long shell (@ = o0).For perfectly plastic material in the Jaumann sense the post yield beha-
viour is more complex than in the case of perfectly plastic material in the Oldroyd sense.
The inflrence of incompressibility depends both on the ratio of loads ¢/p and on the
shape of the shell given by parameters L/4 and a.

There is no evident proof which definition of plastic material is more suitable for
description of the behaviour of shells made of mild steel, however available experimental
data [7] are in agreement with solutions obtained for the shells made of perfectly plastic
material in the Oldroyd sense.
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