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Anisotropic damage modelling for brittle elastic materials 

F. SUPARTONO and F. SIDOROFF (LYON) 

A GENERAL mechanical and thermodynamical framework for the description of anisotropic 
damage in elastic brittle materials is developed. A second order symmetric damage tensor is 
introduced and the damage elastic law resulting from an energetic identification is briefly re­
called. Evolution laws for the damage tensor are then derived within the framework of gener­
alized standard materials and starting from a damage criterion. Identification of the model 
from a tensile test is described and the resulting behaviour is exemplified in some plane stress 
situations. As a conclusion dissymmetrization of the behaviour between tension and compression 
is discussed-. 

Przedstawiono og6lne mechaniczne i termodynamiczne podstaWY opisu zniszczenia anizotro­
powego w materialach spr~zysto-kruchych. Wprowadzono symetryczny tensor zniszczenia 
drugiego rz~du i om6wiono kr6tko prawo zniszczenia WYnikaj(lce z identyfikacji energetycznej. 
Prawa ewolucji tensora zniszczenia WYProwadzono dla uog6lnionego materialu standardowego 
WYChodZ(lc z kryterium zniszczenia. Opisano identyfikacj~ modelu na podstawie pr6by rozci(l­
gania ilustruj(lc WYniki przykladami plaskiego stanu napr~:lenia. Przedyskutowano problem 
utraty symetrii mi~dzy sciskaniem i rozci(lganiem. 

IIpegcraBneHbi o6~e MexaHHtieCI<He H TepMogHHaMWieci<He oCHoBhi oiiHcamm aHH3o-rpon­
uoro paspymeHWI B yrrpyro-xpyni<HX MaTepHanax. BBegeH CHMMC'fPINHhiH TeHsop paspy­
weHWI BToporo nopHg~<a H I<parno o6cymgeH sai<oH paspymeHHH, BhiTei<aro~ H3 :mepre­
mqeci<oif HgeHTH<Pm<ai.nm. 3ai<oH 3BomoQHH TeHaopa paspymeBHH BhmegeH gJIH o6o6~eH­
Horo cra~~gapmoro MarepHana, HCXogH H3 I<pHTepHH paspymeHHH. OIIHcaua HgeHTH<Pm<ai.UUI 
MOgeJIH Ha OCHOBe HCllbiTaHHH paCTH>I<eHHH, HJimoCTpHpyH pe3yJILTaTbl npHMepaMH nJIOC­
I<oro uanpH>«eHHoro coCToHBHH. 06cymgeua npo6neMa noTepH CHMMeTpHH Me>«gy e»<aTHeM 
H paCTH>I<eHHeM. 

1. Introduction 

THE BEHAVIOUR of concrete in tension and compression shows some typical features which 
are summarized (and idealized) in Fig. 1. 

Essentially, the behaviour in tension can be described as brittle elastic while compres­
sion induces more complex coupling between elasticity, plasticity and brittle fracture. 
In any case, the elastic range in tension is much smaller than in compression. Starting 
from these features, there are two good reasons for modelling concrete within the frame­
work of damage mechanics: 

1. Failure of concrete in tension is clearly identified as resulting from the creation 
and propagation of microcracks. Damage variables, therefore, rely in this case on a strong 
physical basis. They can even be characterized experimentally [1]. 

2. Since the behavtour can, at least in a first approximation, be described as brittle 
elastic, the difficult problems arising from coupling damage with plasticity and hardening 
can be avoided. 

The purpose of the present work is to lay down the basis for the description of elastic 
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FIG. 1. a) TERRIEN, 1980, b) BENOUNICHE, 1979. 

brittle materials with anisotropic damage and within the framework of generalized stan­
dard materials. A lot of models for concrete and rock mechanics have been proposed 
in the last few years [1-5], more or less explicitly related to damage concepts, but our 
objective is somewhat different and more restricted: of course these materials are the 
natural application of the model developed here but their behaviour will be used more 
as a guideline than as a final wished result. Indeed, it will be seen in the following that 
there remains some fundamental problems to be solved before starting with the precise mo­
delling and identification of a specific material. It is precisely these problems that are inves­
tigated here. In particular, with respect to J. MAZARs's model [4] which was the starting 
point of our analysis, the essential points which will be investigated are: 

a) taking into accunt anisotropic damage which is an essential feature about concrete 
[1]. 

b) postulating the damage evolution law as resulting from nonlinear irreversible ther-
modynamics. 

Attention is restricted to infinitesimal deformations and standard notations will be 
used. In particular, the stress and strain tensors will be denoted by a and £. The devia­
toric part of a tensor a is denoted by aD and the scalar product of second-order tensors 
by a:b = trabT. Though we are interested in thermodynamics, thermomechanical coupling 
will be neglected and a purely mechanical theory is considered. 

2. Elasticity coupled with damage 

The damaged behaviour of brittle elastic material remains elastic. If d denotes the 
damage variable and A(d) and A(d) the damaged stiffness and compliance tensors, the 
energy W and the enthalpy V are 

1 1 
(2.1) W(£,d) = 2 £:A(d):£, V(a,d) = 2 a:A(d):a. 
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There are many possible choices for the damage variable d and for the damaged elasticity 
[6]. We shall use the approach previously developed in [7] and [8]: following Kachanov's 
ideas the damaged enthalpy is obtained by substitution of an effective stress tensor in the 
undamaged enthalpy: 

(2.2) V(a,d) = ~ a:A0 :a, a= M(d):a, 

where M(d) is the fourth-order tensor giving the effective stress tensor a. 
In order to describe anisotropic damage, the damage variable will be taken as a sym­

metric second-order tensor D. For the sake of simplicity and to avoid unessential com­
plications, we shall restrict ourselves to the triaxial case in which the principal axes of the 
stress and strain tensors are fixed so that D also has the same principal axes. It follows 
that the three special forms discussed in [7] for the effective stress tensor coincide and 
reduce to the simple form 

(2.3) - (]i 

Gt= 1-D~ - · 

More generally we are interested in the framework which in [6] was called "uncoupled 
anisotropic damage". Substituting the form (2.3) in the undamaged enthalpy of an iso­
tropic elastic material gives 

(2.4) 

where E and v, respectively, are Young's modulus and Poisson's ratio for the undamaged 
material. Constitutive equation( give £ and the thermodynamic force G associated to 
damage by 

dV = £:da+G:dD, 

(2.5) £ = l;v a(1-D)- 2 - ~ [tra(l-D)- 1](1-D)-t, 

G = l;v a 2(1-D)- 3 - ~ [tra(1-D)-1]a(1-D)-2 • 

As shown in [7] an alternative formulation could be developed starting from substitution 
of an effective strain in the undamaged energy: 

W(£, D)= W 0 (£), e = £(1-D), 

dW = a:d£-G:dD = a:di., 

while a and£ are related by the undamaged elastic law. In particular, the following ex­
pression of a and G follows as a function of £ and D: 

a= I !v {E(l-0)2 + I~ 2v [tr£(1-D)](l-D)}, 

G = I!. {£2(1-D)+ I ~2v [trE(l-D)]+ 

(2.6) 

17* 
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For the uniaxial tension case, these relations reduce to 

[ (] l 1_D
1 

0 0 £ 1 0 0 

a = O O O , E = [ 0 e2 0 J , 
0 0 0 

0 0 e3 

(2.7) ____ , 
(] 

3. Perfect damage 

The damage evolution law will be obtained according to the general scheme of gener­

alized standard material [9]: the damage rate D will be taken as derivable from a dissi­
pation potential w depending on the thermodynamic force G. Assuming rate independence, 
this potential w will be the indicator function of an elastic domain defined from a 
damage threshold function: 

(3.1) 
w = 0 for p(G) ~ 0, 

w = oo for p(G) > 0, 

which plays the same role as the yield function in plasticity. Since this threshold function 
does not change, this model will be called perfect damage, in analogy with perfect plas­
ticity. 

The evolution law gives D as an element of the subdifferential of w(G) which can be 
written as 

if p(G) < 0, 

(3.2) . op 
D = ft oG , ft > 0 if p(G) = 0, 

where the scalar quantity ft is determined by the condition that a damaging process must 
occur on the threshold surface: 

(3.3) 

in which G is taken as a function of D and E. 

The simplest form is obtained by assuming this elastic domain to be a sphere in the 
G space 

(3.4) p(G) = Gu-Go ~ 0, 
. G 

D = p--, 
GII 

where G0 is a material constant. This results in a brittle elastic model depending on three 
material constants E, v and G0 • 
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For a uniaxial tension test, it follows from the relations (2.7) and (3.4) that 

(3.5) 

which shows that the uniaxial tension curve a, e is given by 

a= Ee, D = 0 for e ~ e0 = y G0 /E 

(3.6) 
0' ~ EEo ( ': r D ~ 1- ( ': r for E > Eo, 

which is represented in Fig. 2. 

a 

1---------------

+-------~--------------------.. a e0 t 1 

b 

~~-----+--------------~-----~ a Eo e1 

Flo. 2. 

The material constant G0 = Ee~ can then be obtained from the elastic limit e0 in 
uniaxial tension. 

4. Evoluting damage criterion 

In the preceding model, the uniaxial tension curve (a, e) is given by the relations (3.6) 
and, except for the limit elastic strain e0 , cannot be fitted to experimental data. This is 
obviously related to the fact that the damage criterion p ~ 0 remains fixed in the G space 
(perfect damage). A more general case will be obtained by assuming that this damage 
criterion also depends on a degradation variable {J, which is analogous to the isotropic 
hardening variable in plasticity [8]. According to the general formalism of generalized 

http://rcin.org.pl



526 F. SUPARTONO AND F. SIDOROFF 

standard materials, a "degradation" energy cf>({J) is introduced in the energy or enthalpy. 
Therefore Eq. (2.4) is replaced by 

(4.1) V(a, D, {J) = Ve(a, D)-cf>({J). 

where ve(a, D) is the elastic enthalpy as given by Eq. (2.4). Introducing the thermody­
namic force B associated to {J, the dissipation can be written as 

(4.2) G:D-B/J ~ 0, 

and the damage criterion and evolution laws are postulated as 

(4.3) p(G, B)= Gu-B ~ 0, 

(4.4) 

. op G 
n = ~t aG = ~t G II • 

. op .. ;-. -. 
{3 = - ft oB = ft = v D: D. 

The damage limit B now depends on a scalar variable which, from the relations ( 4.4), 
can be interpreted as a scalar cumulated equivalent damage. The scalar quantity p, can 
be written in a form similar to Eq. (3.3): 

(4.5) 

Identification of the function B({J) or cf>({J) can be realized from a uniaxial test: in this 
case substituting the relations (2.7) in the evolution equation (4.4) and damage criterion 
( 4.3), the following equations are obtained: 

D 1 = D, D 2 = D 3 = 0, {3 = D, 

Ee2(1- D) = B(D), 

which gives the parametric equation of the (0', e) curve by 

(4.6) ,. I B(D) 
0' = E(l-D)

2
e, e = Jl E(l-D) 

For example, if B({J) is taken as 

the (0', e) relation can be written as 

0' = Ee, D = 0 for e ~ e0 = y' G0 /E , 

( 
e0 ) t:IX 

D=­
e 

for 

and {3 can be obtained from a power law identification of the (0', e) -curve. More gener­
ally, the function B(f3) can be identified from the uniaxial tension curve. 
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5. Damage positiveness 

It is well known that in the one-dimensional model the thermodynamic force G can 
be interpreted as an elastic energy release rate [7] and that 

G = Ee(l-D)'? 0, (~~), = -2Ee(l-D).;;; 0, 

which ensures the positiveness of the denominator in Eq. (3.3) and an always increasing 
damage according to the relations (3.2). Unfortunately, this is not so obviously true in 
the three-dimensional case. From the relations (2.6) the G1 component of G is given by 

1 +v G _ 1-v 2 v 
(5.1) E 1- 1_ 2, VJ1e1+ 1_ 2, (VJ2e2e1+VJ3e3e1), 

where 1p1 = 1 - Di > 0. In most cases this will be positive and the predominant terms 
in G will be positive (for instance, it is easily shown that tr G > 0). But it may occur 
for some values of e1 and D1 that one and perhaps two components of G are negative. 
According to the relations (3.4) or (4.4) this would result in a decreasing value of the 
corresponding components of damage, which is not admissible. 

In order to get rid of this difficulty, we replace in the damage criterion (3.4) the tensor 
G by its positive part, that is the tensor (G) which has the same principal axes of G 
and the principal values of which are the positive parts of those of G, (G)1 = (G1). We 
therefore replace for instance the relations (3.4) by: 

p(G) = Gu-G0 , G11 = y(G):(G), 
(5.2) D _ aGu _ (G) 

- 1-l aG - 1-l Gu . 
In most cases, where all the components of G are positive, this results in no change for 
the model but in the other case this ensures an always increasing damage. 

Extension of the second inequality ( 4.6) to the three-dimensional case is straightfor­
ward. Indeed; the differentiation (2.6) gives 

a P . aG . a P _ E J 2 ( a P ) 
2 

, ( a P ) 
2

) 
-aG·an·aG-~ltre aG +1-2v treaG ' 

which is obviously positive if apjaG is positive definite as ensured earlier (at least in the 
triaxial case, there may be some difficulties in the general case). It follows that the incre­
mental constitutive equations from the relations (3.3) and (4.5), provided dBfd{3 is not 
too negative, are consistent. Of course, these incremental constitutive equations which 
can be constructed in terms of e could not have been constructed in terms of a because 
elastic brittle materials usually exhibit a decreasing stress-strain curve analogous to the 
softening case in plasticity [10]. 

6. Damage anisotropy index 

Our model gives in uniaxial tension a "purely directional" damage D1 (D2 = D3 = 0) 
which can be viewed as the development of microcracks perpendicular to the tension di-
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rection. On the other hand, an isotropic damage model with a scalar damage variable 
developed along the same line will lead to the same result (3.6) or (5.1) with D 1 = D 2 = 

= D 3 =D. 
A damage anisotropy index ~ was introduced in [7]. Expressing the degree of aniso­

tropy of damage, it was defined as the ratio of transverse over longitudinal damage in 
uniaxial tension 

(6.1) 

Experimentally this coefficient could be obtained from a uniaxial tension test by measuring 

the damage stiffness i and Poisson's ratio 'V. 
At the present stage our model leads to ~ = 0 (anisotropic damage) or ~ = 1 (iso­

tropic damage) but it cannot take into account an intermediate value ~0 • In order to 
account for such a value, the following tensor is introduced: 

(6.2) G- . (} tr G 1 -. /T (} GD 
= Sin o VJ + v l COS o , 

where 00 is a fixed parameter. The damage criterion is then postulated as 

p(G) = Gu-Go ~ 0, 

(6.3) - =---==-- ( 3 )1/2 
G11 = Y G: G = sin200 (trG)2 +T cos200 GD: GD , 

in the case of perfect damage. 
The damage evolution law (3.2) then becomes 

(6.4) D = p :~- = ~~ ( sin200 (tr G) 1 + ~ cos200 G0
) • 

In the uniaxial tension case G is still given by the relations (2. 7) so that Eqs. (6.3) 
and (6.4) reduce to 

Gu-Go ~ 0, G11 = G1 = Eef{1-D1), 

(6.5) ( 1 ) 
D 1 = p, D2 = p, sin 200 - T cos2 00 . 

The damage anisotropy index is therefore 

(6.6) ~ = sin2 00 - ~ cos200 = ~ (3sin200 -1). 

Purely directional damage is obtained for ~ = 0, sin00 = 1/y3 in which case G = G. 
Isotropic damage is obtained for ~ = 1, 00 = n/2. More generally, with this model the same 
(~,e)-curve as before is obtained but 00 can be identified to fit an experimental value of~. 

7. Plane stress damage criterion 

In order to illustrate the behaviour which results from these constitutive equations, 
plane stress situations will be considered: 
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(7.1) r
a1 0 OJ 

G = 0 a2 0 , 
0 0 0 

[

Gt 0 0 J 
G = 0

0 

G2 0 ; 

0 0 

p a1 a2 
E (1-D2)(1-D1) 2 

(1 +::: _ 2,) {(1-P) £ 1 (1-D 1) +Pe2{1- D 2)} 

so that the damage criterion (4.3), (5.2) or (6.3) can be illustrated in the stress or strain 
plane. The initial damage criterion for D = 0 is represented in Fig. 3 for some values 
of the anisotropy index <5. Introduction of (G) instead of Gin order to ensure damage 
positiveness leads to small modifications of these criteria around the axes but they are· 
too small to be noticed on these figures. 

Stress strain relationships and damage evolution on some radial paths e2 = ye1 are· 
illustrated in Fig. 4 in the case of perfect damage for <5 = 0, that is in the model which 
was developed in Sect. 3. In particular, it should be noted that a radial path in the e1 - e2 

plane does not lead to a radial path neither in the stress plane (a 1 , a 2) nor in the prin-­
cipal damage plane (D1 , D 2 ). 

8. Tension and compression 

The model which has been presented here is appropriate for the description of brittle­
elastic materials like concrete and rocks in tension, but it cannot be applied for compres­
sion where it results in a behaviour which is entirely symmetric to tension behaviour. 
This results directly from the fact that the thermodynamic force G which is the fundamen­
tal variable is quadratic with respect to the stress tensor a and is insensitive to its sign. 

From the physical point of view this difference results from the contact problem on 
damage induced cracks. It is well known that the elastic response of a cracked body can 
be described by a hyperelastic nonquadratic elastic law [11] which, in the one-dimen­
sional case, can be described by an elastic model with two moduli. This is due to cracks. 
opening in tension and closing in compression. In other words, damage elastic coupling 
will be efficient in tension but it will disappear when the material is loaded in compres­
sion. In the one-dimensional case, this is easily achieved by replacing the usual definition 
of the effective stress ii by 

{8.1) a = 1 ~a if a > 0' 

if a~ 0. 

The resulting model is brittle elastic in tension and elastic in compression. Further intro­
duction of a classical plasticity model in compression will lead to a one-dimesional be­
haviour consistent with Fig. 1. The introduction of a second damage variable d acting 
both in tension and compression will also allow for some damage in compression [12] .. 

http://rcin.org.pl



l0'2 [MPA] 

~ 3 
' 
~ 

2 [0=3fHJ@@MPA ,. 

/ Gf1=fH3fJ@3 MPA 

/ , 

/ ,. 
~ 

,8 1 2 4 

/ -~ a1[MPA] 
, 

/ ' 
~ 

/ Gli-Go=D 

, Grr=IGY 

/ , 

/ ' 

" ~ 
/ ~ 

./ 

icz [X0.1iJ881] 
' 
~ 

' 

' £0= 300~HJfJ MPA 

~ G0=8.8883 MPA 

' 0.5 

~ 
' 
~ 

' 
-t--~ 

,. 0 1 £1 [x@.IJ001] 

/ ' 

/ ~ 
' Gli-G0 =0 , 

~ / Gli=vG:G' 
, ' 

/ , 

/ 
/ ' / " , 

[530] 

http://rcin.org.pl



Flo. 3. 

[531) 

E0=388f1@MPA 
GfJ = @.(18@3 M PA 

Grr-G0 =0 
Crr=-I<C>: <G>' 

0=0 

Efl= 3fJ@0fJ MPA 
G8=f1.eee3MPA 

GII.-Go=O 
rJII =-I< G > =· <G > 

0=0 

http://rcin.org.pl



532 F. SUPARTONO AND F. SIOOROFF 

Compression damage may also induce friction along the generated cracks and this will 
result at the macroscopic level into some kind of plasticity [11] which could be taken into 
account along the line presented in [13]. 

The three-dimensional case is much more difficult to handle. Definition (8.1) can easily 
be extended into 

(8.2) 
a,= __ a,_ 

1-D1 

a, = a, 

if a1 > 0 

if a1 ~ 0. 

Unfortunately, the resulting multielastic law is not admissible since it leads to a dis­
continuous response. There are some ways to overcome these difficulties which are now 
investigated [14] but the model will lose a great deal of its simplicity. 

a 

0 11 11 2 3 4 etf1D-~ 
Ill 
,,: 

iR-Dzlq 
1 -D1 Ill ~=1 

v~=0.8 b II 
0.5 ~~-05 

~ 

a 2 3 4 E1 [10-4] 

c 

- 0.2 0 0.5 0.8 v 
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lu1[MPa} 

3 

2 d 

1 

0 1 2 3 

! uz [MPa] 

2 

e 

1 

a 1 2 3 4 u1 [MPa] 

---- £1~E.D 
---- e1>eD 

FIG. 4. 

9. Conclusion 

Some basic ideas about the mechanical and thermodynamical description of damage 
in brittle elastic materials have been presented. Many problems remain to be solved in 
order to obtain and identify a complete model for a specific material, like concrete for 
instance. The framework of generalized standard materials in the strict sense which has 
been used here will certainly prove to be too severe and it will be necessary to complete 
and modify it by some empirical of simplified assumptions, in particular by introducing 
in the damage evolution laws some other parameters than the thermodynamic force G. 
Homogenization results should also be used to give some more physical insight. How­
ever, the present work outlines the general framework which can be used. 
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