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On stability and symmetry conditions in time-independent plasticity

H. PETRYK (WARSZAWA)

REsTRICTIONS imposed on the general form of constitutive rate equations by the energy-type
postulate of stability of quasi-static plastic deformation processes are investigated. It is shown
that the principal symmetry of the moduli relating actual rates of work-conjugate stress and
strain measures is necessary for stability of a deformation process. Moreover, it is shown that
a mon-normality flow rule for elastic-plastic solids is excluded by the less restrictive postulate
of stability of equilibrium. The obtained restrictions are related to the possibility of cyclic
instability.

Badane sa ograniczenia nakladane na przyrostowe réwnania konstytutywne przez energetyczny
postulat stabilnoéci quasi-statycznych proceséw deformacji plastycznych. Wykazano, ze sy-
metria gléwna tensora moduldow, wiazacego aktualne przyrosty sprzezonych miar naprezefi
i odksztalcer, jest konieczna dla stabilno$ci procesu deformacji. Wykazano takze, ze stabszy
postulat statecznoéci stanu réwnowagi wyklucza niestowarzyszone prawo plynigcia dla materia-
16w sprezysto-plastycznych. Uzyskane ograniczenia zwigzane sa z mozliwoscia cyklicznej utraty
stabilnosci.

Hccnenyrorcsi orpaHHUeHHusi HaKJIa[blBaeMble Ha ONpENEIAIOLINE YPaBHEHMs B IIPHPOCTax
SHEPreTHYECKUM IIOCTYJIaTOM CTAOHJIBHOCTH KBa3MCTATHUECKHX IIPOLIECCOB IIACTHYECKHMX
medopmaumii. IToxasaHo, UTo IVIaBHAsi CHMMETPHS TeH30pa MOYJIeil, CBA3BIBAIOUIEr0 aKTy-
aJbHBIE TIPHPOCTBI COIPSIKEHHBIX MEpP HalpsKeHHi u Aedopmarmil, HeoOXOo[nMa ISl CTa-
OmpHOCTH nponecca medopmaumii. ITokasaHo Taroxe, uto OoJiee Ciabblil [IOCTY/IAT YCTOMUM-
BOCTH COCTOSIHMSI DaBHOBECHSI MCKJIIOUaeT HeaCCOLMHMPOBAHHBIM 38KOH TEUeHHs MJISI YIIPYro-
ILIACTHYECKHX MaTepHasoB. IToiyuyeHHbIe OrpaHMYeHHs] CBS3AHBI C BO3MOYKHOCTBIO L{MIJIAUE-
CKOif IIOTepH CTabHIBHOCTH.

1. Introduction

IN THE PAPER [16], an energy-type postulate of stability was proposed for quasi-static
isothermal processes of deformation of a continuous body subject to varying external
loading: in the postulate the stability of equilibrium is considered as a particular case
only. It has been shown [17, 18] that the postulate is sufficiently universal to have rela-
tion to various plastic instability phenomena such as buckling, necking, snap-through
and localization of deformation. The postulated definition of stability is in the spirit of
the general theory of stability of motion; however, the usually investigated perturbations
of initial conditions have been replaced by more general persistent disturbances. An in-
tuitive assumption has been introduced claiming that the strength of a small disturbance
is sufficiently characterized by the additional amount of energy supplied to the system
due to the disturbance. This is the basic assumption whose limits of acceptability are
yet not known.

In the stability postulate the constitutive law for the material is assumed to be time-
independent but is otherwise arbitrary. For conventional elastic-plastic solids obeying
the normality flow rule, or more generally, for solids whose constitutive rate-equations
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admit a potential, the criteria for velocity fields derived in [17, 18] from the stability postu-
late are consistent with the properties of solutions to the first-order rate boundary value
problem, established by HiLL [3, 4, 5]. For such solids the onset of instability calculated
from these energy criteria coincides in many practical cases with the instant of primary
bifurcation [18]. However, for time-independent solids with a nonsymmetric tensor of
incremental moduli, an inconsistency appears between the obtained minimum principle
for velocities and the lack of self-adjointness of the rate problem. This shows that the
stability postulate imposes certain restrictions on the general form of constitutive rela-
tions. Such restrictions are investigated in the present paper.

The objective of this paper is twofold. First, it is to prove that lack of the principal
symmetry of the actual moduli in piecewise-linear constitutive rate-equations implies
instability of a deformation process in the assumed energy sense, regardless of the actual
boundary conditions or material inhomogeneity. Secondly, it is to demonstrate that plas-
tic instability may appear not only as a simple branching of the deformation path but
also in a more complicated way, modelled theoretically by a sequence of nonuniform
deformation cycles of increasing amplitude. The amplitude of subsequent cycles is in-
creased on account of an additional amount of energy taken from the deforming ma-
terial over each cycle.

The possibility of cyclic instability indicates that the criteria based merely on consider-
ation of velocity fields at the initial instant of possible branching of the deformation path
are in general not sufficient for stability in the present energy sense unless appropriate
restrictions on material properties are imposed. This concerns the criteria excluding bi-
furcation in velocities [3, 4, 5, 19], Hill’s criterion for stability of equilibrium [3, 4] and
the criteria examined in [17, 18]. This is not surprising since difficulties in finding a rigo-
rous proof of the second-order energy conditions for stability of continua are known even
in the theory of elasticity (cf. [15]) where no problems arise with path-dependence,
being essential here.

2. Constitutive relations

2.1. General assumptions
We are concerned with isothermal, arbitrarily large deformations of solids whose mech-

anical properties do not depend on a natural time, neither explicitly nor through a rate
sensitivity. The constitutive equations for such materials are assumed in the rate form

(2-1) iU == Lljki ékl,
where
(2-2) Lum = itm(é: H)

The following notation is used. t and e are symmetric second order tensors forming a work-
conjugate pair of objective stress and strain measures, respectively [8, 10], in the sense
that

(2.3) W= 1,6,
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is the work-rate per unit volume in a fixed reference configuration. The lower case Latin
indices range from 1 to 3 and denote always vector or tensor components relative to
a fixed rectangular basis. A summation convention for repeated indices is adopted. The
dot over a symbol of a quantity denotes the rate of change of the quantity at a fixed ma-
terial element with respect to a scalar variable 6 which parametrizes the deformation
path in place of a natural time. Since the letter does not appear at all in this paper, the
parameter 6 will, for simplicity, be referred to as time. The rate is understood as the right-
hand time derivative. A tilde over a symbol is used to distinguish a function from its value,
when needed.

The moduli L;y, are, in general, dependent on the direction of the actual strain rate
but not on its magnitude. L;;;, may depend also on the prior strain history, symbolized
by H. Within an internal variable representation of strain history dependence, H may
be a collection of internal variables and stress or strain components. The considered ma-
terial body may be inhomogeneous with the restriction that the moduli vary from point
to point in a piecewise smooth manner.

We assume that for a given H the strain-rate space is divided into a number of open
domains (necessarily cones with vertices at e = 0), called constitutive cones, such that
within each domain the moduli L,j;;; are constant; the relations (2.1) are thus piecewise
linear. This corresponds to certain models of elastoplastic material response at a vertex
on the yield surface (cf. [10, 20]), e.g. to those for crystals deformed by multislip [6, 12, 2].
In elastic range there is of course only one constitutive cone coinciding with the whole
strain-rate space, while in the conventional formulation of elastoplasticity equations at
a regular point on the yield surface, two half-spaces play the role of constitutive cones
[7]. The latter particular case will be examined in Sect. 7. The moduli are well defined or
not by a strain rate if the corresponding point in e-space lies in a constitutive cone or
on a cone boundary, respectively.

A strain path e is defined as a directed, continuous and piecewise smooth curve in
strain space. We will say that a strain path corresponds to one constitutive cone if the mo-
duli are well defined along the path and vary continuously and piecewise — smoothly
with strain. It is assumed that if at a certain H the moduli are well defined by a strain
rate, then every sufficiently short, smooth strain path of bounded curvature, starting
from H with this strain rate, corresponds to one constitutive cone. Moreover, we assume
that every strain path €, which starts from the same H as a strain path €° corresponding
to one constitutive cone, also corresponds to one (and the same as €°) constitutive cone,
provided that s;tpfé(ﬁ) —&(0)| < &, where & is a small positive number and |é| = (&;;¢;;)"/>.

These formal though rather natural assumptions are needed to make the further consider-
ations sufficiently rigorous.
We assume that

(2-4) Lij = Ljikl = Liﬂk
but the principal symmetry of the moduli under the interchange ij «» k/ is not assumed
in general. However, if L;;,; = Ly;; for one choice of a work-conjugate pair of stress

and strain measures, then the principal symmetry is preserved under transformation to
a different conjugate pair [8, 9], though the moduli change.

16 Arch. Mech. Stos. 4-5/85
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2.2. Nonobjective and generalized measures

When nonuniform deformations of a material body are considered, it is convenient
to use the constitutive rate equations (2.1) reformulated in terms of rates of the nominal
stress s and deformation gradient F which are work-conjugate though nonobjective
measures of stress and strain. Denote by x; and &; the components of the position vector of
a material element in the current and reference configuration, respectively (§ shall be iden-
tified with a material point). We denote F = Vx, F;; = x;,, and F};= v, ;, where the com-
ma denotes partial differentiation with respect to &; and v = x is the velocity. We have
w = s5;;v;,; (cf. Eq. (2.3)), while Egs. (2.1) can be rewritten as

(2.5) 51y = Cija®,x-
To obtain a direct link between the moduli C;;,; and L; 4, one can take as (t, ) the particu-

lar pair (T, E), where T is the second (symmetric) Piola-Kirchoff stress tensor and E
is the Green strain tensor. By differentiating with respect to 6 the formulae

(2.6) $iy = TuFy,
1
2.7 E,; = E(FHFJ:] -4y,

we obtain [10]
(2—8) Ctjkl = Fijqutpk.q+ le 6}1:

where 4§, is the Kronecker symbol and i,,,,,q denote the moduli associated with the pair
(T, E). On account of the symmetry of T, we have

(2-9) Cuu - thu = Fjp qu(Llpl:q = qu!p) ’

so that Cijy = Cyyy if and only if Lj;y = Ly, provided F is nonsingular.

To simplify the formulae, we shall use, following HiLL [9, 10], a generalized notation
and denote by (p, q) a pair of generalized measures of stress and strain such that the
work-rate per unit reference volume is expressed as

(210) W= paq(z-

W is proportional to the work-rate per unit mass since the reference configuration is held
fixed. The pair (p, q) can replace here either (t, e) or (s, F); we will not discuss the possi-
bility of nontensorial measures of strain. p, q are regarded as nine-dimensional vectors of
components p,, q5. The Greek indices range from 1 to 9 and replace in a prescribed man-
ner a pair of adjacent Latin indices, with the exception that for F and F the order of Latin
indices is reversed. A summation convention for repeated Greek indices is adopted. The
generalized moduli are denoted by c,. Forinstance, padq« = #;;€;; = 5i;0;,, Capdp —
= Lijaen of Cij,, etc.
Equations (2.1) and (2.5) are written jointly as

2.11) b = Capllp-

Principal symmetry of the moduli L;j; or Cyy corresponds to symmetry of ¢,; under
interchange of Greek indices.
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3. Stability postulate

The reader is referred to the previous papers [16, 17, 18] for a more detailed exposi-
tion of the concept of stability of a deformation process in the energy sense. Here we recall
only the basic definition, following [18].

Consider a continuous body of a time-independent material, occupying in an arbitra-
rily chosen, fixed reference configuration a space domain ¥ bounded by a piecewise smooth
surface S. On a part S, of the body surface the displacement history is prescribed, while
on the remaining part St the nominal tractions T, referred to a surface element in the
reference configuration, are assumed to be derivable from a given time-dependent po-

Jw(x, &, 0)
- ox;
undergoes deformations. A real process of deformation is idealized by an isothermal,
quasi-static process, called the fundamental process, the stability of which is to be studied.

A deformation process is described by (and shall be identified with) a function X,
x=yE,0,5eV,0el8,,0,]. We consider only the kinematically admissible processes
which start at 8 = 6, from the same given initial state as the fundamental process, are
compatible with the kinematical constraints on S, and satisfy appropriate regularity con-
ditions, The fundamental process (also belonging to this class) and the corresponding
quantities are distinguished by the superscript “0”.

In absence of strong discontinuities in velocities, the internal work done in a ki-
nematically admissible process x in a time interval [0, 0] < [0,, 0,] is expressed as (cf.
Eq. (2.3))

tential @, T; = . The boundary conditions vary in time so that the body

(/]
G.1) wix, 0 = [ [waode,
v 6
where df is an infinitesimal volume element in the reference configuration (*). The poten-
tial energy of the loading device which corresponds to the assumed boundary conditions
(body forces are neglected) is defined by

(3.2) wex, 0= [ w(xE, 0),, 0)ds;
Sy
without loss of generality we may assume that We(y, 6,) = 0.
Introduce the energy functional E,

(3.3) E=W+We;

its value E (, 0) is the amount of energy which has to be supplied in the time interval
[0,, 0] from external sources to the system consisting of the body and the loading device,
in order to realize the process y in a quasi-static manner.

We are concerned with the stability of the fundamental process X° against persistent
disturbances from a class wide enough to give in effect any kinematically-admissible pro-
cess, called a perturbed process, sufficiently close to X . The measure d of the distance
between X and X° need not be specified here; it suffices to assume that X(§, 6) # X°(, 6)

() Volume Bf dt of a finite region B will be denoted by |B|.

16*
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for £ € B = V implies d(X,X%6) > 0. On the other hand, the choice of the measure o
of disturbance is very essential here. g is assumed in the form
3.9 o(x, x°% 0) = sup {E(x, )—E(X° 0)}

de[0y. 0]
which is equivalent to that assumed in [16] if inertia forces are included into perturbing
forces (cf. [17]).
DEFINITION 1 [16). A fundamental process X° is stable in a time interval [0,,0,] if and
only if for every number & > O there is another number 6 > O such that for every perturbed
process ¥, and all 6 € [0,, 0,]

o(x, x°% 0) < & implies d(x, x° 0) < e.

The process is called unstable if it is not stable.

This definition jointly with the definitions of a process ¥ and measures o and d form
a stability postulate.

One of the consequences of the stability postulate is the minimum principle for velo-
cities [17, 18]. A smooth velocnty field ¥° corresponding to a stable process assigns to
the functional

*w l *w
(3.5) 2f S0y, dE+ {(ae T v,)vidS

its absolute minimum value. Consequently, the first (weak) variation of the functional
(3.5) should vanish at v = ¥°, which can be shown to imply

(3.6) ((Cou+Cluipvd i) =0
at any regular point. The second term appearing in Eq. (3.6) vanishes if the rate equilib-
rium equations § ; = 0 are satisfied but the first in genmeral need not vanish unless

C%a = CP.;. However, we cannot infer that the minimum principle for the functional
(3.5) implies the principal symmetry of the moduli; for instance, Eq. (3.6) is satisfied tri-
vially in the case of a uniformly deformed homogeneous body while the value of the

functional (3.5) is unaffected by the unsymmetric part - (C,,,,, Cyy;j) of the moduli.

We shall prove the principal symmetry of the moduli C,» i by assuming the stability pos-
tulate in its general form.

4. Path-dependence of deformation work

4.1. General strain paths

Consider a homogeneous material element subject to a uniform deformation process
represented by a piecewise-smooth strain path. The path is parametrized by 0 varying
from 6 to 8; the quantities evaluated at or § are distinguished by one or two bars over
the symbol, respectively. The parametrization is always chosen such that the strain rate,
q = (9q/20) in the generalized notation, is uniformly bounded for all paths.
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We start from the expression for the density of work done on a strain path, per unit
reference volume, in the form (cf. Eq. (2.10))

0
(4.1) w= [ puiudt.
[

By integrating the constitutive rate equations (2.11), we obtain

0
4.2) Pale = Pot f Capqpdl
0

which, after substituting in Eq. (4.1), gives

7 0
3) W= bal—d+ [ dul [ capipdd) o,
) 0
We can rearrange Eq. (4.3) as

] K] 0
@4 W= D=0+ | 7@s—0d0+ [ ] [ (cop—cupipdbldo,
0 0 0

where the moduli c,; correspond to the strain rate qat 6 = f. On decomposing the ma-
trix of moduli ¢,z into the symmetric and antisymmetric parts, and integrating by parts
the first integral in Eq. (4.4) multiplied by the symmetric part of ¢4, we obtain

45 W= palGa i)+ Capla— ) @)

@ 0 ]
PRSI J intas=apao+ [ e ] omcripadlao

This is an exact formula for the density of work done on an arbitrary piecewise-smooth
strain path. It is seen that path-dependence of work is due to the lack of principal sym-
metry of the initial moduli or due to variation of the moduli with the deformation.

4.2. Approximate expressions for short strain paths

Jay - -
Suppose that the length of a strain path is small so that § = 6 —6 is a small positive

. _ .
number and q = q—q is a small deformation increment. We consider now only the paths
corresponding to one constitutive cone so that the increments of moduli along a path

A

are, at the most, of order 6. The paths need not be smooth; they may be piecewise smooth
A A

no matter how small 0 is. Introduce the usual order symbol O(0) which denotes a quan-

A A A
tity such that |0(6)/0] is bounded when 6 — 0 (?). From Eq. (4.5) we obtain

A
(*) Note that the path need not be fixed when 6 — 0, but the strain rate must be uniformly bounded
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%
s A 1_a A L. = : o A
(4.6) w = p¢q¢+§6‘aﬁqa95+ E(cczﬁ_cﬁa) f 9:(q5—qp)d0+ 0(0°%).
®

A

The unsymmetric part of c¢,; may have an influence on w of order 62 for nonpropor-
tional strain paths only since the term with (C,3—Cs.) vanishes if g, is proportional to
(92— g=) at each 0. For the same reason, for a smooth path with bounded curvature the

. A
term with (c,p—Cgo) is, at the most, of order 6° and the formula (4.6) reduces for such
paths to the “trapezoid rule of quadrature” ([10], Eq. (2.5)):

_A 1. A a A
4.7 W = Pufa+ Eccxﬁqaqﬁ'*'o( 03).

For other paths, however, the path-independent expression (4.7) need not be true unless
Cap = Cpq since the term  with (cup—¢pe) # 0 in Eq. (4.6) can be made nonzero and of

order 32 (see the next subsection). Hence, the work done on a short strain path corres-
ponding to one constitutive cone is path-independent to second order if and only if the
initial moduli associated with work-conjugate stress and strain measures have the princi-
pal symmetry property. In essence, this is a standard result (see also [10], p. 30).

4.3. Superposition of a triangular cycle on a strain path

Consider a short, smooth strain path q° of bounded curvature leading from q to q
and corresponding to one constitutive cone. We compare the work done on this path
with that done on the other path q leading also from q to §. For a certain choice of work-
conjugate measures, q is defined by

3um if 6<6< 0_+—?;
. s 3M(n—m) lf é-'—ﬁ < 6 < —é+__2é~,
(4.8) a% = ¢°(O + 3 3
—3un if 6+?<6<5+ﬁ,
0 if 0+9<0<8.

m, n are arbitrary constant vectors from g-space, # > 0 is arbitrary but not greater than

3, and pu is a positive constant chosen to be sufficiently small so that both paths q and q°
correspond to one (and the same) constitutive cone. The path q§ may be regarded as a re-
sult of superposition of the triangular strain cycle from 0 to #um to dun to 0 on the path
@°. The straight segments of this triangular cycle for the work-conjugate measures cho-
sen are transformed into smooth curved segments of bounded curvature under change of
measures. On substituting Eq. (4.8) in Eq. (4.6), the density of work done on the path q
is found to be

_ 1- A na _ _ 1+ 1 A
4.9) w = Pa‘?a"' Ecaﬂf_i'aqtt+(¢'¢p—caa)(§qg(mp+np)+ 5 Hla m,g)m92+0(63).
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In obtaining Eq. (4.9), we have used the assumed regularity of the path @° to substitute

the expression (0—6)&%0(@2) in place of §°(0)—q, where q° = (84°/26) (). The density
w? of work done on the path @° is expressed by Eq. (4.7). The paths q and q° are, of
course, assumed to correspond to the same initial values p,, ¢, of the stress and moduli.
The difference of respective work densities is thus expressed as

_ 1- A
(4.10) w—w? = (Cap—Cpx) (g—qg(mﬁ-%ng)-!—%,unm mﬂ),m92+0(63).

Evidently, the difference can be of order #? and of either sign, unless ¢,z = Cgq.

5. Stability for local disturbances and the cycles of constrained deformation

To obtain restrictions imposed by the stability postulate on the mechanical properties
at a given material element, regardless of the boundary conditions and of the material
properties elsewhere, we will consider a special kind of disturbances which perturb the

fundamental deformation process in the neighbourhood B of that element only. Such
disturbances will be called local disturbances. A physical nature of such disturbances may
be diverse but it is irrelevant here. Once the precise definition of stability has been for-
mulated, we may proceed further quite formally and study the implications of the sta-
bility postulate with the help of arbitrary kinematically admissible perturbed processes,
however artificial they might seem to be.

While a perturbed deformation path at any internal point of the body may be chosen
arbitrarily (no internal constraints are assumed here), the deformations at neighbouring
points are then not arbitrary since on the boundary of B the displacements in the per-
turbed and fundamental processes in the case of local disturbances coincide. For our
present purposes it suffices to consider a class of the perturbed processes satisfying this
requirement, obtained by superposition of a cycle of constrained deformation (or of a num-
ber of such cycles) on the fundamental process. The cycle of constrained deformation
is, by definition, described by the continuous displacement function Ay, defined on the

product Bx [0, 5], Bc Bc ¥V, and satisfying the conditions

) EeB if 0=0 or 0=0,
G.1) A2, 0 =0  for {E € JB at any 0¢elo, 6-].
Note that the nonuniform deformation process described by Ay is compatible with rigid
constraints on the boundary dB of B, which motivates the terminology. The superposition is
meant in a kinematic sense: the resulting perturbed process is described by the function

X, defined as
_IxX°GE, 0)+AxE,0) for EeB and 0 e[0, 0],
e X, 0) = {x"(g, 6) otherwise.

Denote by AW the difference of work due to superposition of a cycle of constrained
deformation,

(53) AWlo = [ (w=wO)lodt,
B
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where w and w® are the work densities corresponding to the processes y (defined by Eq.
(5.2)) and %°, respectively. Note that AW|, is just the difference of values of the energy
functional (3.3) at time 6 for the processes x and x°, appearing in the formula (3.4),
since the motion of the body surface and therefore also the potential energy of loading
device have not been perturbed. This suggests that the negative sign of AW may have
a direct influence on stability of the process %°. This can be proved under certain addi-
tional conditions, stated in the following lemma.

LemMMA 1. Let B be a ball contained in V, and let [0, 0,] be a time interval. Suppose
that for every ball B = B and for every time interval [6—,67] < [0,, 0] a cycle of con-

strained deformation defined on B x [9,5] can be found such that superposition of that
cycle on the fundamental process results in a work difference AW estimated by
1 [ c.(@-0y for Oe[0,0],
G4 Bl AWy < | —e;(0—=0) +es(0—-0y"  for 0Oelf,0,],
where ¢y, ¢,, c3, F are positive constants.

Then the fundamental process is unstable in the time interval [#,,6,] in the sense of
Definition 1.

Proof. Let the assumptions of the lemma be satisfied; we show that this contradicts
the definition of stability. Let ¢ be a constant such that 1 < ¢"*3 < ((¢; +¢;)/¢,). Then,
a positive constant ¢ < 0,—60, can be found such that another constant ¢, = cc3/(1—
—1/p)*3 satisfies the inequalities ¢; < ¢, and (¢"*3—1) (¢, +¢4) < ¢;. Define a ge-
ometric sequence (%), #x = ¢, ¥, K=1,2, ..., N, with 4, = c(p—1) (1/p)", so that

N

for any N we have Z #x < c¢. Then, there exists a sequence of balls B,, B,, ..., By of
K=1

the volumes |By| forming also a geometric sequence defined by |Bx| = |B|#32/c3, such

that By < B for every K and By n B, = @ for K # L. Now, for every positive number
J we take N sufficiently large such that |B,|#]c,/(¢"*3—1) < 4, and construct a per-
turbed process in the time interval [0,, 6.], 6, = 0, + ¢ by superposing on the fundamental
process the sequence of the increasing cycles of constrained deformation defined on the
products By x [0, Ok +P«), Ok = Ox_,+O_4,0, = 0,. At time 0, the configurations of
the body in the perturbed and fundamental processes coincide but the respective work
done in these processes is different. Since the balls Bx do not overlap each other, the work
differences due to superposition of the particular cycles can be calculated independently
of each other. By the assumptions of the lemma, we can define the cycles such that each
of the corresponding work differences 4 Wy is estimated by

¢, 9% for 6 [0k, Ox+0xl,
—c 0% +es(0—0)"  for  0€[0x+d, Ol
of course, AWg|, = 0 for 6 < 0. On using these estimates and elementary properties

of the geometric sequences defined, we find that the difference of the work done in the
perturbed and fundamental processes is estimated by

N
% 6 for 06e€el[b,, 0],
AW |, = AWyls < €
Ia K%Jl Klﬁ {—El for 6 = 6,,

AWkgls < |Bgl {



ON STABILITY AND SYMMETRY CONDITIONS IN TIME-INDEPENDENT PLASTICITY 513

’ Rl ot :
where ¢, = IBI(cz—c4)c'(1 - E) is a positive number independent of N and therefore

also of 4.

The continuation of the perturbed process for § > 6. is assumed independently of
d; it differs from the fundamental process but is otherwise arbitrary. Since 4W|_ is ne-
gative, there is a time interval [0.,6.], 6, < 0,, such that for any 0 € [0,,0,] we have
AW/, < 0. Hence, from the formula (3.4) we obtain that o(x, %° 6.) < 4. Denote the
value of d at @ = 0, by &; ¢ is a positive number independent of é.

It is seen that for every positive number é we have constructed a perturbed process
such that gl < 0 and df,, = &. This contradicts the stability definition, and the lemma
has been proved.

6. Symmetry of moduli and stability

In this section we show that the stability postulate implies the principal symmetry of
the actually operating moduli provided they are associated with work-conjugate measures.
To this purpose for nonsymmetric moduli we prove the existence of cycles of constra-
ined deformation of the properties stated in the lemma from the preceding section.

Consider a fundamental process x° such that the moduli ¢gs are well-defined and non-

symmetric at a certain regular point (‘é, 0,) of the process x°.
A regular point of a process ¥° is defined as a pair (§, 0,) such that in a sufficiently

small time interval [6,, 6,] and in a sufficiently small neighbourhood B of é, the velocity
gradient Vv° and the corresponding moduli ¢g; are well defined and are continuously

differentiable with respect to € and 0. Let B = {E:[E—£| < R} < Vand 0,—0, = 0, with
R and 6 sufficiently small. Then, the variations of ¢;5 and Vv° in Bx [0,,0,] are of order
O(§)+0(b)‘ Let B = {E:[E—E| < R} beany ball contained in B (in general, § # 2),
and [0, 5] be any time interval contained in [0,, 0,]. Consider a cycle of constrained de-

formation defined on Bx [0, 5] and described by the particular Ay, satisfying the condi-
tions (5.1) and defined by

3uu(g) for <0< 5+§,
- - - =20
©.1) A(E, 6) = u(wE —uE) for 0+ 54 0 < 0+-T,
—3uw(g) for 5+23—79<0<3+t9,
0 for 6 ¢[6, 6+9],

where ii, W are at the moment arbitrary smooth vector fields defined on B which vanish

on ¢B and have uniformly bounded gradients for all B, # = 0—6, and W is a positive
constant independent of B. Let such a cycle be superimposed on the fundamental pro-
cess; then the gradients Vu(g), Vw(E) correspond at each g to the vectors m, n which de-
fined a triangular strain cycle considered in the Subsect. 4.3. The constant u is chosen
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sufficiently small so that at every point of B the perturbed strain path q, defined by Eqgs.
{5.2) and (6.1), corresponds to one and the same constitutive cone as the fundamental
path @°. Therefore, we may use the formula (4.10) to calculate AW. On account of the

above regularity assumptions in Bx [6,, 6,] and in terms of the nominal stress s and de-
formation gradient F as a specific pair of p, g-variables, this formula at every § € B can
be rewritten as

1 A AL A 1 A N
(6.2) (w—wo)lp = 3 p*(Cla— CRup) o5, iy, ke +wi, i) + 5 w2 (Clha— Cl?lij)ul, KWy,
+92(O(R)+0(0)) +0((0—0)*) for 030,

where C:‘jk, and 79 ; are evaluated at (é , 0,) for the fundamental path.
Integration of Eq. (6.2) over B yields

1 A A
(6.3) AW | = i,_-ﬂzﬁz(cf)jm - Cauy) fu,,kw,,ldf
B

+|B|9?(O(R)+0(6))+|BlO((6—6)*) for 63 0,

since the integral of the first term in Eq. (6.2) vanishes by the divergence theorem.

To proceed further, we need the corollary of the following lemma:

LeMMA 2. Let 2 be a bounded domain in R3, and let 4;,, (i, /, k, I = 1, 2, 3) be con-
stants (®) satisfying the conditions

(6~4) Aukt = —ARHJ:
(6-5) Aljkl = Aﬂlk-
Suppose that

(6.6) Df Agjiatty, Wi, d& =0

for all real-valued functions i;, w; twice continuously differentiable on £2 and vanishing
with their derivatives on 9.

Then 44 = 0.

Proof. By usual arguments of the calculus of variations, we obtain that for a fixed
u; the necessary condition for Eq. (6.6) is

(67) Aijkluj,ik =0 in Q
In turn, the condition (6.7) holds for every u;,; = u,,; if and only if
(6-8) A!jkl = _Akjii-

By combining Egs. (6.4), (6.5) and (6.8), we obtain
Aijkl = —Auu = '—Ajku = Alkﬂ = Amu = "‘Auu-

Hence, AiJ'H = 0.
CoRrOLLARY. If 4,5, satisfy Eqs. (6.4) and (6.5) and are not identically zero, then
the integral in Eq. (6.6) is nonzero for some #;, w; and, consequently, can take any value.

(®) The lemma can be easily generalized for A4, varying (piecewise) smoothly in £2.
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Define now
(69) A[jk! = L?Jkl_LI?an
where ﬁ?,k, are the moduli associated with the Green measure of strain, evalu-
ated at (2,81) for the actual constitutive cone. From the relation (2.4) it is seen that

APy satisfy the conditions (6.4) and (6.5). Hence there exist smooth vector fields @!, w*
vanishing outside the unit ball B' = {£:|§| < 1} and such that

(6.10) f‘ium fu},,w,l_kdf = —E|BII < 0.
Bl

For any ball B, we define the fields o, w by

w® = rEzu(57E),
©.11) g R,:ws-,l,;;(%g),

where F-1 is the inverse of the deformation gradient F at @, 6,). Note that u, w vanish
on ¢B and have uniformly bounded gradients, as required above. By combining Eqgs.
(2.9), (6.9), (6.10) and (6.11), we obtain

610 @i [ wmads = FpFudin iy Fat [t (S35 ae
B B

= Aune [t @@ RO = — ROIBYE = B2,

B!

By using Eq. (6.12), we reduce Eq. (6.3) to

1 .~ A A _ -
(6.13) ,]%l_ AWy = — 3 we8*+62(0(R)+0()+0((0-0°) for 0317,

Finally, we take Rand 0 sufficiently small, so that the second term in Eq. (6.13) is
negligible (for all balls) when compared with the first term. Then the positive constants

cy R —‘,ll u?¢ and ¢; can be found such that the required estimate (5.4), with r = 2 is ob-

tained. Note that AW|s is negative for & sufficiently small.

For O e [0, 5}, the work difference AW/, need not be negative. To obtain its estimate,
we integrate over B the formula (4.3) written in terms of s, F — measures for the two
processes and subtract the results. This yields

(6.14) AWly = [ S3(F—E)lod2+1B|O((0—6)").

B

On account of the equilibrium condition s ; = 0 which is necessary for stability [18],
the integral in Eq. (6.14) vanishes by the divergence theorem since x;, = x% on dB. Hence
we have the estimate (5.4), with r = 2.
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To summarize: for cg # ¢, at a regular point (§, 6,) we have shown that, for R and

6 sufficiently small, for every ball B < B and every time interval [6,0] c [0,,0,] the
superposition of the constrained cycle of deformation defined by Egs. (6.1) and (6.11)
on the fundamental process X° results in the work difference satisfying the estimates (5.4)
with r = 2. By applying the Lemma 1, we obtain that the process X° is unstable in the

time interval [0,, 0,]. The point & and instants 8, and 0, are arbitrary. Hence we have
proved the following statement:

For stability of a deformation process in the energy sense it is necessary that at every
regular point the moduli relating the actual rates of work-conjugate measures of stress and
strain have the principal symmetry property.

Comparison with the result obtained in the Subsect. 4.2 shows the relation between
the stability of a process and the second-order path-independence of deformation work.

7. Stability of equilibrium of elastic-plastic bodies

Stability of equilibrium is defined here by the Definition 1 as the stability of the de-
generate deformation process in which all quantities do not vary in time. In the case of
dead loading on Sy, the necessary condition for stability of equilibrium is of the form [17]:

(71) ( 3‘,,-vj,;d«5 =0
v

for all smooth velocity fields v vanishing on S,. Those velocity fields represent possible
modes of departure from the considered equilibrium configuration. The criterion (7.1)
states that the internal work done on any direct deformation path leading to a neighbour-
ing configuration, defined as a path in which the displacement field is increased pro-
portionally to ¥ with accuracy to first order, is not less than the corresponding work done
by dead loads, to second order in the additional displacements. A stability criterion of
this type has been widely used in the literature. Following HiLL [3, 4], it has been fre-
quently taken in a slightly stronger form, viz.

(1.2) [ 859,048 > 0
|4

for all smooth velocity fields ¥ which vanish on S, and are not identically zero. Hill pro-
posed the criterion (7.2) as a sufficient condition for stability of equilibrium in a dynamic
sense, however, under certain assumptions which are not easy to be verified [4, 13].

Below we show that a body of an elastic-plastic material with a smooth yield surface
and a non-normality flow rule, being at least partly stressed to the yield point, cannot be
in a stable equilibrium in the present energy sense. Hence, at least for such solids, the
inequality (7.2) is not sufficient for stability of equilibrium in the present sense. Instabil-
ity is proved by showing the existence of arbitrarily small cycles of constrained defor-
mation in which energy is extracted from the material, and then by appealing again to
the Lemma 1. This demonstrates why the criterion (7.2) which excludes a spontaneous
departure from equilibrium along a direct deformation path, is not able without further
assumptions to assure stability of equilibrium for more complex paths taken into account.
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7.1. Constitutive relations for elastic-plastic solids

In this section attention is focused on elastic-plastic solids with a smooth yield surface
bounding an elastic domain in strain space. Within the elastic domain, the stress is a func-
tion of strain only. The constitutive rate equations for a material element stressed to the
yield point are taken in the form (2.1), with the restriction that at a given H the é-space
is divided by the hyperplane of equation 4;;é;; = 0 into two half-spaces, playing the role
of constitutive cones, in which the moduli L;j, take different constant values, viz.

Lby if  A,é; >0,
(7.3 Lo ={ a0 A8, <0,
where A is the unique normal to the yield surface in strain space, directed outward from
the elastic domain (cf. [7]). The elastic moduli L?,; correspond to further plastic loading
while the elastic moduli Lf;;, correspond to elastic unloading. The moduli Lf;; and L,
vary continuously during plastic loading which causes displacements of the yield surface
such that the point representing the current strain remains on it, while there is no move-
ment of the yield surface during elastic unloading or straining within the elastic do-
main, We assume that stress-rate depends continuously on strain-rate; then we must
have

(74 Lija—Li = — iy da-
If LPy = Liy; and Ly, = Liy,;, then A is proportional to w. The classical normality

flow rule is obtained [7,11] when the proportionality factor, g say, is taken positive, so
that

|
(7.5) L = Ly = Liju— Eau}'-kh g>0

The form of the relationship (7.5) and the normality flow rule are measure-invariant [8,
10, 11].

7.2. Symmetry of moduli and stability of equilibrium

We assume here Egs. (7.3) and (7.4) but not Eq. (7.5); we shall show that Eq. (7.5)
is implied by the postulate of stability of equilibrium. Consider a body of an elastic-plastic
material being in equilibrium under arbitrary boundary conditions. The body may be
partly in elastic state (the elastic zone) and is partly stressed to the yield point (the plastic
zone).

Consider first the elastic zone. The moduli L,;, do not depend there on the strain
rate and there is only one constitutive cone coinciding with the whole é-space. Therefore,
the moduli L;;, are well defined also for zero rate of strain. The statement from Sect. 6
can thus be directly applied to the degenerate deformation process of zero velocities in
the elastic zone. Hence, at every regular point in the elastic zone (or in elastic solids),
the incremental moduli associated with work conjugate variables must have the principal
symmetry property for the equilibrium to be stable in the energy sense.

In the plastic zone the moduli are not well defined by the zero rate of strain, so that
we cannot apply directly the statement from Sect. 6 to show their principal symmetry.
However, for nonsymmetric moduli we shall prove the existence of cycles of constrained
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deformation of the properties specified in the Lemma 1. Of course, the work done in the
fundamental process is now zero, so that AW is simply the work done in a cycle of con-
strained deformation.

Suppose first that at a regular point é of the plastic zone the elastic moduli are not
symmetric. A regular point is now defined as a point ée V, in the neighbourhood of
which the moduli Lf;,; and L, are smooth functions of place. In a sufficiently small

neighbourhood B of g‘, B= {E:Iﬁ—é] < ﬁ} < V, the variations of L{;, or L?,, are of
order 0(13).
For any ball B contained in B and for any time interval [0, 6] we define on Bx @, 0]

a cycle of constrained deformation consisting of a constant number K of subsequent,
identical subcycles; the first of the subcycles is described again by Eq. (6.1) with ¢ =

= —}?(5 —0), and the other analogically. The fields i1, W are defined by the relations (6.11)

as previously, with the only difference that I:?_,,,, in Eq. (6.9) denote now the elastic moduli

at é, associated with the Green measure of strain. For sufficiently small amplitude of the
subcycles, i.e. for sufficiently small ud, plastic deformations can take place in the first
subcycle only. The work done over each of the elastic subcycles (i.e. except the first sub-
cycle) is the same and can be expressed by a formula analogous to Eq. (6.13), viz.
(1.6)  AWlp,o— AWy = —u?2|B19*+|B9?0(R)+|B| O(H*),

for 6—6=4%,29,..,(K=1)9.
We take R sufficiently small and K sufficiently large, so that the second and the third term
in Eq. (7.6) become negligible in comparison with the first term; the work done over an
elastic subcycle is then negative. From Eq. (6.14) it is seen that the work done up to any
0 in the first subcycle is, at most, of order |B|#2. Therefore, there is a constant ¢; such
that the estimate (5.4), is true with r = 2, since the maximum of AW|, must appear in
the first two subcycles on account of negativeness of Eq. (7.6). Evidently, the second
required estimate in the relation (5.4) with ¢; = 0, and thus with any ¢; > 0, follows for
K sufficiently large.

Application of the Lemma 1 shows that the equilbrium is unstable in any finite time
interval. Since the point EAiS arbitrary, we arrive at the following result:

For stability of equilibrium of an elastic or elastic-plastic body it is necessary that the
elastic moduli associated with work-conjugate measures are symmetric at every regular
point of the body.

This result is also valid if the yield surface is not smooth since the presence of corners
on the yield surface does not affect the above proof.

Suppose now that the elastic moduli are symmetric, but at a regular point ‘é of the
plastic zone the plastic moduli do not satisfy Eq. (7.5), that is, the tensors @ and A ap-

pearing in Eq. (7.4) are not proportional with a positive factor. For any ball B = ﬁ,
where B is a neighbourhood of ‘éas above, and any interval [0, 5} we construct a cycle

of constrained deformation, again described by Eq. (6.1) but now with & = 0—6 and
i@ = —w. It is easy to see that for sufficiently small u# at a typical point of B a simple
loading-unloading cycle of strain takes place, followed or preceded by the opposite, pure-
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ly elastic cycle. By applying the formula (4.7) to each of the smooth segments of the
cycles and using the constitutive equations (2.5) to express the stress increments on each
segment, we obtain that the work density is expressed by

1
(7.7 wlp = 7#2’32((:3;‘1 —Clua)uy, 1ty + O(5),

where Cfjy; and Cfj correspond to Lfy,, and L[y, respectively. By writing Eq. (7.7)
in terms of the moduli Cfj; and Cfj,; evaluated at €, and integrating over B, we obtain

1 o L] A
(18)  AWlg = 5 u20* = Chu) [ a0, d6+1B19°0(R) +1B| 0.
B

As previously, we define the field @ for any ball with help of a field &' defined on the
unit ball B! (cf. Sect. 6). From the known theorems of the calculus of variations [1, 14],
it follows that the quantity

(7.9) Ay f uj, i, d€
Bl

takes nonnegative values for all smooth fiel ™! vanishing over dB, if and only if

(7.10) Agjabsaibia, > 0

for all vectors a, b. Take A, = f,f,,‘,—l:,l’,,‘, = ,Zeuﬁ._ﬂ (cf. Eq. (7.4)) where ifm and
z,f’,k ; are the elastic and plastic moduli at g, associated with the Green measure of strain.
Since we have excluded the case A = g with g > 0, it can be shown that a pair (a, b)

can be found such that p;;a;b; and .?A.i ;a;b; are of opposite signs. Hence, the inequality
(7.10) does not hold and a smooth field ii* vanishing over 9B, exists such that

(7.11) (Lipa— L) [ u}, ui dé = —|B'E < 0.
Hl

For that ii!, we define the field @ for any ball B by Eq. (6.11),. By combining Eq. (7.11),
(2.8) and (6.11),, we obtain (cf. Eq. (6.12))

(7.12) (Cu—Clua) [ uy, 11,008 = —|BIE.
B

For R and ¢ sufficiently small, Eqs. (7.8) and (7.12) yield the estimation of the work
done over the cycle of constrained deformation in the form

1 2

| N . . _— ; :
with ¢, = 5 u*c. Obviously, this gives the estimation (5.4), with r = 2 and ¢; = 0 since

W |s-3 = Wl5. The first estimation in the relation (5.4) for 6 < 6 follows from Eq. (6.14).

By applying the Lemma 1 and the above statement on symmetry of elastic moduli,
we arrive at the following result:

For stability of equilibrium of an elastic-plastic solid with a smooth yield surface it is
necessary that the plastic moduli satisfying Eq. (1.4) are of the form (1.5) at every regular
point in the plastic zone.

Shortly, we may say that the postulate of stability of equilibrium excludes a non-nor-
mality flow rule.



520

H. PETRYK

References

1.
2.

10.

11.

12.

17.

18.

19,

20.

J. HADAMARD, Sur une question de calcul des variations, Bull. Soc. Math. France, 30, 253-256, 1902.
K. S. HAVNER, The theory of finite plastic deformation of crystalline solids, in: Mechanics of Solids,
The Rodney Hill 60-th Anniversary Volume (Ed. H. G. Hopkins, M. J. SEwELL), pp. 265-302,
Pergamon Press 1982.

. R. HiLL, A4 general theory of uniqueness and stability in elastic-plastic solids, J. Mech. Phys. Solids, 6,

236-249, 1958.

. R. HiLL, Some basic principles in the mechanics of solids without a natural time, J. Mech. Phys. Solids,

7, 209-225, 1959.

. R. H1LL, Uniqueness and extremum principles in self-adjoint boundary-value problems in continuum mech-

anics, J. Mech. Phys. Solids, 10, 185-194, 1962.

. R. HiLL, Generalized constitutive relations for incremental deformation of metal crystals by multislip,

J. Mech. Phys. Solids, 14, 95-102, 1966.

. R. HiLL, On the classical constitutive laws for elastic-plastic solids, in: Recent Progress in Applied

Mechanics, The Folke Odgvist Volume (Ed. B. BROBERG at al.) pp. 241-249, Almqvist and
Wiksell, Stockholm 1967.

. R. HILL, On constitutive inequalities for simple materials, J. Mech. Phys. Solids, 16, 229-242; 315-

322, 1968.

. R. HILL, On constitutive macro-variables for heterogeneous solids at finite strain, Proc. R. Soc. London,

A326, 131-147, 1972,

R. HiLL, Aspects of invariance in solid mechanics, in: Advances in Applied Mechanics, Vol. 18 (Ed.
C.-S. YmH), pp. 1-75, Academic Press 1978.

R. HILL, On intrinsic eigenstates in plasticity with generalized variables, Math. Proc. Camb. Phil. Soc.,
93, 177-189, 1983.

R. HiL and J. R. RicE, Constitutive analysis of elastic-plastic crystals at arbitrary strain, J. Mech.
Phys. Solids, 20, 401413, 1972.

. R. HiLL and M. ). SeweLL, A general theory of inelastic column failure, 1I, J. Mech. Phys. Solids,

8, 112-118, 1960.

. L. vAN HovE, Sur I'extension de la condition de Legendre du calcul des variations aux intégrales multip-

les a plusieurs fonctions inconnues, Proc. Kon. Ned. Acad. Wet., 50, 18-23, 1947.

. W.T. KOITER, A4 basic open problem in the theory of elastic stability, in: Lecture Notes in Mathematics,

Vol. 503 (Ed. A. DoLp and B. ECKMANN), pp. 366-373, Springer-Verlag, Berlin 1976.

. H. PETRYK, A stability postulate for quasi-static processes of plastic deformation, Arch. Mech., 35,

753-756, 1983.

H. PETRYK, A consistent energy approach to defining stability of plastic deformation processes, in: Sta-
bility in the Mechanics of Continua (Ed. F. H. SCHROEDER), pp. 262-272, Springer-Verlag, Berlin
Heidelberg 1982. .

H. PETRYK, On the onset of instability in elastic-plastic solids, in: Plasticity Today: Modelling, Methods
and Applications (Ed. A. SAwczuk and G. BIANCHI), pp. 429-447, Elsevier 1985.

B. RaNIeck1, Unigueness criteria in solids with nonassociated plastic flow laws at finite deformations,
Bull. Acad. Polon. Sci., Série Sci. Techn., 27, 391-399, 1979.

M. J. SEWELL, A survey of plastic buckling, in: Stability (Ed. H. LErpHOLZ), pp. 85-197, Univ. of Wa-
terloo Press, Ontario 1972.

POLISH ACADEMY OF SCIENCES
INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH.

Received December 14, 1984.





