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Isothermal and adiabatic simple waves in a thin-walled tube

Notations

NGUYEN HUU VIEM (HANOD (*)

THe ANALYSIS is presented of isothermal and adiabatic simple waves propagating along the
semi-infinite, thin-walled tube and produced by normal pressures and torques applied to its end.
Several conclusions are drawn concerning the stress trajectories. A numerical example is given
in which the stress trajectories are calculated for two temperature ranges, and the isothermal
and adiabatic wave velocities are compared. It is shown that in the case of finite deformations
the differences between isothermal and adiabatic slow wave velocities may be considerably
great,

Przedstawiono analize izotermicznych i adiabatycznych fal prostych w potnieskoniczonej cienko-
sciennej rurze, wywolanych ci§nieniem normalnym i momentem skr¢cajacym przylozonym do
brzegu. Wyciagnieto szereg wnioskéw dotyczacych trajektorii napr¢zefi. Przedstawiono przykiad
numeryczny, w ktorym podano trajektorie naprezefi dla dwéch zakres6w temperatury oraz
poréwnano predkodci fal izotermicznych i adiabatycznych. Pokazano, ze w zakresie duzych
deformacji réznica migdzy wolnymi falami izotermicznymi i adiabatycznymi moze by¢ bardzo
duza,

IlpeAcTaBNeH aHAJIH3 M30TEPMUUECKHX M aqnabaTHUECKHX NPOCTBIX BOJH B MOJYOeCKOHEUHOMH
TOHKOCTEHHOH TpyGe, BBISBAHHBIX HODMaJbHBIM [ABJICHHMEM H CKDYYHMBAIOIIHM MOMEHTOM,
NPWIOXKEHHBIM K rpanune. ChenaH psAn BbIBOLOB, KacaIOLIMXCA TPAaeKTOPHH HANPFKEHHH.
IlpencraBiieH YMC/IEHHBIA NPUMEP, B KOTOPOM NpHBENEHbl TPAaeKTOPHH HANDSUKEHMH A
JIBYX HHTEPBAJIOB TEMIEPATYPbI, 4 TAKXKE CPAaBHEHbI CKOPOCTH H30TEPMMYECKHMX M ajuaba-
THUeCKHX BosH. IloxasaHo, uro B obsactH Gonbmunx Aedopmaimii pasHMua MeIy cBobom-
HBIMH M30TEPMUUECKHUMH H aquabaTHUeCKHMH BOJIHAMH MOXKET ObITh OueHbL GOJIBILIOH.

A-B AB, or AyBy,
AB A.UBJ or AutlBth
Axx,

unit tensor,

1
A- T(U'A)l.

(ad
-
-

N P

transpose of a sensor.

1. Introduction

IN THE PRESENT literature numerous solutions may be found concerning the problems of
propagation of waves in complex states of stress (for one space variable and two-par-
ameter loadings). The solutions are usually presented for two types of geometric objects:

* At present a visiting research associate at the Institute of Fundamental Technological
Research, Warsaw.
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a semi-infinite space and a thin-walled tube. An extensive review on the literature con-
cerning such problems may be found in the papers by N. Cristescu [4], W. K. NowAack1
[17], W. HerrMmaN [10], E. H. Lk [12].

Three types of waves have been determined analytically in elastic-plastic materials:
the acceleration waves, simple waves and unloading (or loading) waves. In the case of
acceleration waves, practically all experiments show that all predictions based on such
models are false [2]. On the other hand, simple wave processes expected to take place in
these models are in a better agreement with the experiments performed on metallic rods
and tubes. The available experimental results concerning the unloading waves do not
allow for drawing the suitable conclusions.

Simple waves propagating in a thin-walled, semi-infinite tube made of elastic-plastic
materials and produced by normal pressure and torques applied at the end of the tube,
were subject to the analysis of several authors, to start with the known paper by CLIFTON
[1]. The material considered in the paper was isotropic and characterized by isotropic
hardening. Later on, LIPKIN and CLIFTON [14] considered a similar problem in the case
.of materials with kinematic hardening. GOEL and MALVERN [8] proposed a method ta-
king into account simultaneous effects of isotropic and kinematic hardening. In [21] TinG
derived the solution for all possible combinations of stepwise variable loading of the
boundary at the time instant ¢ = 0. He also obtained an explicit solution for the case of
materials with linear hardening [23]. HAN-CHIN and HUAN-CHI LiN [9] solved the anal-
ogous problem under the assumption of endochronic plasticity proposed by Valanis.

FUKUOKA [5, 7], who treated the waves as moving singular surfaces, studied the cases
in which the states of material in front and behind the wave were the same or different,
Adiabatic simple waves travelling along a thin-walled tube were investigated by RANIECKI
{19], PopoLak and RANIECKI [18]. The effect of energy dissipation on the velocity and
profile of simple wave was also analyzed.

In all the papers mentioned above, small deformations were assumed and two wave
velocities were established: fast wave velocity C; and slow wave velocity C;, satisfying
the inequality

G <C,<C <.

Here C, = J/E/o denotes the velocity of longitudinal elastic wave, and C, = /o —
the velocity of transversal elastic waves. The results were given earlier by CRAGGS [3] for
an infinite space. The case of C; = C; = C, was considered by TING [22].

LipkIN and CLIFTON [13, 14] established the existence of fast and slow simple waves.
‘Some experimental data were given in paper [6]; experimental and theoretical results
were compared by TING [22].

This paper will present the discussion on the propagation velocity of adiabatic simple
waves of second order in a thin-walled tube, on the basis of the constitutive equations
derived in [20, 16], valid in the range of finite deformations of isotropic metals. Elastic
distortions and voluminal plastic deformations will be disregarded.
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2. Fundamental equations

It was shown in [16] that the set of fundamental equations in cylindrical coordinates
(r, @, z) consists of the following relations:

(i) Continuity equations

v, v, L ave av.\
2.1 ﬁ( 2, +T+Ta—q)+—?)—ﬂ,
in which 8 = oo/e, 0o and g are the respective densities measured in the reference con-
figurations and actual configurations, according to the theory of elastic-plastic materials
introduced by MANDEL [15]; V;, V,,, ¥, are the Eulerian velocity components in coordi-
nates r, @, z. The material time derivative of an arbitrary physical parameter is calculated
from the formula
. d /] Ve 9 0
A=|—+V,—+———+V,—]A4.
(2.2) (3t+ ror Ty 3tp+ ’az)
(ii) Equations of motion

da,, % 1 da, da,, L T =0y Q('p Vof)’

or r dp 0z r r
00, 1 do,, o0, Oy 0 i
(23) ar * r dp oz #2 rr dt (r¥s),
a0, 1 do,, do,, O
ar tTT o T Ty -

where 6,,, 0,,... are the physical components of Cauchy’s stress tensor a.

(iii) Constitutive equations
(2.4) t—(w+B)T+T(Ww+%) = LD— % (m - D)m.
Here v = fo — Kirchhoff’s stress tensor, D = ~% (grad v+ grad’v) — strain rate

1 , ’
tensor, w = T(gradv—gradrv)—spm tensor. Matrix € has the components

-2 0

~

0
(2.5) € = v, 0
pr
0

(=R =

0
Lini = (88,488 2 r — B(K— = _ O
ukt = PO 0y + 0y 8,)+ | K 61y, K" = p(K—p), p = mean pressure,

3 3
K — bulk modulus, u — Lamé constant.
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The Mises-Huber condition is assumed in the form
(2.6) f=7"1-2k*a,0) =0,

where & = WP is the power of plastic deformation, and 6 temperature.
Function fis normed in the following manner:

T'T k
@27 f= Vik vz - 0,
so that
%=ﬁ, ttm=0, mM-m=1, for f=0
The hardening function H in isothermal processes has the form
(2.8) H‘=—217(—2};—+1) where h=—%—(i-ﬁ)
and in adiabatic processes — the form
29 H® = na (i +1 +q.,m,,),
2u \2u
where g, is the thermal coefficient of energy dissipation
- _ _ do(a)

(2.10) qa = me®, ;=0

Qo Ce
¢ — specific stored energy which may be measured experimentally. In most metals =
assumes the values from 0.02 to 0.1. C, — specific heat at constant deformation, my =

= = % % — thermal softening coefficient.

Egs. (2.4) describe both the isothermal and adiabatic processes; the difference be-
tween them consists only on the fact that H* # H®, provided certain minor coupling effects
are disregarded (heat of elastic deformation and thermal expansion produced by the dissi-

pation energy).

,_{1 if f=0 and m-D>0

(2.11) “lo if f<0 or f=0 and m-D<0O.

3. Formulation of the problem

Let us consider a thin-walled, semi-infinite tube made of isotropic elastic-plastic ma-
terial with isotropic hardening (Fig. 1). Axis z coincides with the axis of the tube, its mean
radius being denoted by 7. The tube is loaded at its end by normal pressure and a torque;
it is assumed to be thin enough to secure a uniform distribution of stresses along the
axis. In view of symmetry of the problem, the stress tensor contains only three non-
vanishing physical components

0‘,, = 0.,, =T, Gzz = 0,
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x2 A

o, © being functions of z and t. From the assumptions it follows that ¥,, ¥V, V,, 8 are
independent of r, ¢ and are functions of z and ¢. On disregarding the radial inertia forces,
elimination of ¥, from the fundamental equations yields:

. 1 av, , v,
b= (- g te e 5]
at
5z QV%
do .
G.1) oz = e
= 0 av, av, JBr 1 v, )
BD)-5 ‘8 32 =4 z—6Hk2[ﬁ( Ty P oz
+2ﬁa v, r'}V '
. WV . OV, K-2u3 ... jo 1 v, )
R e " T i =3 alid e >
Vo, v,
+2ﬂ0'“§'z—‘+3ﬁ'tw],
. d d i ; . ; ; ;
where 4 = (ﬁ +V: ﬁ) A. The remaining equations are identically satisfied (approxi-

mately).

The system (3.1) contains the following unknowns: 8, V,, V;, o, 7, being functions
of z and 7. It was shown in [16] that in the case of small deformations the system of equa-
tions is reduced to the set given by CLIFTON [1], (in isothermal processes), or to the set
derived by RaNIECKI [19] (in adiabatic processes). In these papers two particular cases
were also discussed: pure tension and pure torsion.
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4. Simple waves in thin-walled tubes

Simple waves represent a solution depending on z and # through a certain function
7(z, 1):
@“4.1) t=1(n), o=a(m), V.=V.n), Vo=V, (@), B=pm
and, hence, they are constant at surfaces # = const, moving in the medium. It was shown

in [16] that simple waves propagate at the same velocity as the transversal waves.
Let us consider the system (3.1) assuming the material to be in the plastic state (j = 1).

We have then
1 dv, V,
A =,8(—~——ﬁr "n,,-&-& )’

dn 2u dn dn s
5—;17.,=9—;-‘;Z°°n,
(42) 5—:"" - %%”
(ﬁj—rﬂf%)’—%ﬂd ‘g;” n.z=ui—?n.z
et | +3) 200
L S LR S VL

st |7 (B 3) 20 S

= 2(3K"+ )
- 9Kr
Let us multiply Eq. (4.2);,5 by %, and Eq. (4.2),,s by 7.; substitute the first two equations

into Egs. (4.2),, and take into account (4.2),. The system (4.2) is then reduced to the
set of two following equations

2.2 2.2
4.3) rﬂ(l+ 357{2 )V:—i— [9092—'82—; - —éi—,u-{» qu;cz (zﬁZ +3)] V=0,

with the notation

2 .2 7 A2
(QOEQZ+EU,B—2,LL+ 2 )Vf+[— B oy +BT+ 5 oz, (Z,u +3)] Vo =10,

9HKk? 2u 9Hk?
where, in this case, 2 = W—w, is the local velocity, and W is the motion velocity of the
dv dv,
ave, V=2, Vg =—2%,
wave & %

Equation (4.3) makes it possible to determine the velocity of simple waves; the con-
dition of existence of the solution requires the principal determinant to vanish. It may be
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verified that, in the case of small deformations, Eqs. (4.3) are of the form given by RANIEC-
KI in [19].

In view of considerable complexity of the problem let us now assume that the mean
pressure is not very high. This assumption makes it possible to use the ordinary values
of elastic coefficients taken from the tables (instead of K'), what means that the elastic
deformations are small. Due to the theory presented here, the voluminal components
of plastic deformations have been disregarded so that the material may be assumed to
be perfectly incompressible: o = go, f = 1. Under such assumptions the systems (3.1)
and (4.3) take the following form

it aa_q.)
oz v oz 9=

. 1 dm,  dy, s v, aw,,,)
44 2% P % "2 \® % e [
dv, v, K-=2u/3 .  jo ( dv, 3{:,,)
otr 5 =, 3K 3ak \° 32 T %

Here p, p, K are the material constants,

Jt aT i da do

T=gp Yy 9=t

7, 0, ¥, ¥, are functions of z and ¢, and

_T0 o« SR A S P
s aake vt (Q‘Q Fat ome )”“’ =0
' Eo¢? Et o
2_ e * = B t=
(Q.Q E+ 6,qu2)v’+ o, (l+ 3HEE )ﬂ, 0.

In the case of elastic deformations H — o0 we obtain the elastic wave velocities

082? = n+ % =g (1+%) ~u, o92*=E, (E—Young’s modulus).

Velocities of simple waves may be found by equating the determinant of Egs. (4.5) to
zero,

o
6Eut*+2 (,u+ ——) Eq?+3Eoe?
o 3ut?+ Eg? 2
4.6 X-E)WX—pu—— - =
(o« )( 4 2)+X( 6uHk? ) 12uHk? 0,

where p2? = X.
The above equation may be written in the form

Yl = YZ:
%)) Y, = (X—E) (X- p— %) ,
Y, = A(X,—X),
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where

(4.8) A= T—;H%—z—— >0,
el

4.9) X, = T

In the last two expressions the relation £ = 3ux (incompressible material) is taken into
account.

It may be shown that for stresses much smaller than the elasticity modulus u, the
inequality holds
o
2
The geometric interpretation of Eq. (4.6) is shown in Fig. 2. It is seen that the simple
waves may be propagated at two possible velocities:

(4.10) +u < Xo < E=3pu.

082} = X;  (fast waves),

00?2 = X, (slow waves),

which satisfy the inequality

@.11) 2,<2U<O <0
Here 925" = E and 005" = u+ %. In Fig. 2 are shown the graphs of functions Y;, Y,

satisfying the conditions (4.7), (4.8), (4.9). Point X, lies in the interval [y+ %, E]

The equation of simple waves velocities (4.6) may be solved in certain particular cases
(for instance, in the cases of pure shear and torsion), [16].

Analysis of Eq. (4.6) and relations (4.7)-(4.9) leads to the following conclusions:

a) Velocity of fast waves is equal to that of the longitudinal elastic waves if and only
if ¢ = 0. The sufficient condition holds true if the ratio of the stress to the Lamé constants
4 is much less than unity, while the necessary condition is always true.
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b) The velocity of fast waves is equal to that of the transversal elastic waves if and
only if 7 = 0 and |a| > &, the value of o being found from the equation

E
(4.12) 2uHl—g =

s
a=g0 E_ L2

V*ﬂ
¢) The velocity of slow waves is equal to that of the transversal elastic waves if and

only if = 0 and |o| < ©.
The proof of (a) is based on the analysis of the condition X, = E, and the proofs

of (b) and (c) — on the relation X, = u+ % and on the comparison of slopes of the

a

line ¥, = 0 with the slopes of the line tangent to curve Y, = 0 at point u+ 2

5. Stress trajectories

Let us consider the possible stress trajectories in the plane ¢ — t connected with simple
waves; multiply Eq. (4.5); by o, Eq. (4.5), by = and sum the results up. After simple trans-
formations we obtain

- __0__312)
do (QQ P37 24 )°

G dr (02> —E)t ’

where, for an incompressible material, E = 3 p. Equation (5.1) differs from the equation
of the stress trajectory at small deformations by the last two terms in parentheses of the
numerator. The velocity of simple waves pf2? = X is obtained by solving the Eq. (4.6),

o o*+1?

53 A T
" 172 = 2 )
where

o  a2+72\’ a 1

X, = 00QF, X,=00%.

It is easily seen from Eq. (5.1) that in the region ¢ > 0, v > 0, the angle of inclination
of the stress trajectory of fast waves is negative; in the case of slow waves, this angle is
positive. In contrast to the case of small deformation, orthogonality of the stress trajec-
tories cannot be established here.

6. Numerical example

As an example, let us consider simple waves propagating in a thin-walled tube made
of pure zirconium. This metal was tested by KeeLer [11]. The corresponding stress-strain
curves were obtained for pure, annealed zirconium tested at temperatures from —195°C

13 Arch. Mech. Stos. 4-5/85
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to 370°C and velocities ranging from 0.005 cm/min to 5 cm/min. The following function
describes the relation between the actual stress o, logarithmic plastic strain &” and tempe-
rature 8°C = 6°K —273 (in tension):

(6.1) g = Cl(l —ae)(£P+bl)x.

Relation (6.1) describes fairly well the results obtained by Keeler in the range of tem-
peratures from —195°C to 25°C and from 200°C to 300°C. The following values of con-
stants C,, a, b,, x are obtained:

(i) In the range from —195°C to 25°C:

b = 0.01, x = 0.25,
a=28-10"*1/°C, C,; = 4.76-10®N/m?.
(ii) In the range from 200°C to 370°C:
b = 0.01, x = 0.25,
a=837-10* 1/°C, C, = 3.95-108N/m?2.
Moreover, we obtain for zirconium
o = 6440 kg/m3, u = 3266,73 - 10’"N/m?,
C, = 284.84 J/kg°C.
In Keeler’s experiments the temperature was controlled and kept constant, so that

the relation between the hardening parameter «, stress o and temperature 6 may be evalu-

ated from the equation
F 9e%(o,, 0
(6.2) o= % o,doy,
9y
where gy = C;(1—ab)b} is the initial yield limit at ¢# = 0 and £? = &P(o, 0) is the solu-
tion of Eq. (6.1) with respect to £”. Let us integrate Eq. (6.2); we obtain

1 x+1 x+1
@ = armveasa )

On the other hand, during the process of loading the temperature equation assumes
the form

h_ qa — = _ 1—=n —
0_ 2‘uH (m D), Qd— rog (m ;E)'

On comparing this result with the equation of evolution we obtain

(6.4) 6 = 1"7“(“)&_
Qo Ce

Assuming that 7 = 0.1 we arrive at the result

(6.5 0—0o =

o
QoCe
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Hence, in the interval of temperatures from —195°C to 25°C

(6.6) 0+195 = o o

QoCe
and for temperatures from the interval (200°C, 370°C) 0, = 200°C and
(6.7) 0-200 = i o.

QoCe

The set of Egs. (6.3), (6.6) or (6.7) may be solved for ¢ and 0; substitution of k]/ 3 for o
yields the function k = k(«, 6). In the adiabatic process, the hardening function may
thus be calculated from the formula

L(—+l+ m)——(£ﬁ+ pirdom dk
2u \2u Gae] = 2 \'p "oa # goc, 90

In the isothermal process it is assumed that 6 = 6, and ¢ = k}/3. From Eq. (6.3) it
follows that k = k(«), so that the hardening function H'!is of the form

I

(6.8) H®

1 [k ¢k
‘ B ———— | —
(6.9) B = (# u +1).
Qs(m/s) h
w L 10
LAWY
400 P 2
300 +—
200 +—
1 ] -
;gﬁ(N/mz) AT £ 5 Y ML.,(N/m"')

15

"

10
5
Inital yield %
200+370°C
1 -
0 5 10 15 1_2_7 (N/m?)

13*
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The results of calculations made according to the Runge-Kutta method are shown
in graphical form. In Figs. 3 and 4 are plotted the stress trajectories and the velocities
of slow waves as functions of the stress component v for the isothermal process at 0, =
= 200°C and 0, = —195°C; similar diagrams for an adiabatic process and temperatures
ranging from 200°C to 370°C and from —195°C to 25°C are shown in Figs. 5 and 6.
The ratios of velocities of slow waves taking place in both the processes and in two tem-
perature ranges are demonstrated in Figs. 7 and 8.

A
Qs(m/s) A
1000 +
9
800 |- 8
7
600 53,

im0 L
4 8 1 % 0 24 28T (Nm?)
y 07

8 I 3

24

20

16

12

Initial yreld

4= -195+25°C

- -
0 4 8 m % W 2 28 32 ¥ S (vnt)
107

FiG. 4.

Analysis of these processes makes it possible to draw the following conclusions.

(a) No substantial differences may be observed between the stress trajectories in the
adiabatic and isothermal processes. Also the velocities of fast waves in both the pro-
cesses are almost the same.

(b) From the previous analysis it followed that the stress trajectories of slow and
fast waves were not orthogonal. This fact is not observed from the graphs.

(c) The velocities of fast waves decrease in the directions indicated in Figs. 3 and 4
from the value of the longitudinal elastic wave velocity (at the 7-axis) to the value of the
transversal elastic wave velocity (at the o-axis). In the present case, the latter velocity
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A
525 A
10 \ZUU 370 {5
" TD
%( N/m?)
Fi1G. 7.
A
24
Qs
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04 |-
02
1 1 ] T
a 2 4 6 8 7(N/m2)
Fic. 8.

assumes the value of ‘l/(,u+ %) /Q instead of 1/ ple , like in the case of small deforma-

tions. This difference, however, is also small.

(d) In the case considered here, the root of Eq. (4.12) does not exist, and condition
=0, || > o (cf. Eq. (4.12)) is fulfilled for each |o| > oy, oy denoting the initial yield
stress at tension.

(e) The velocity of slow waves decreases in the direction shown in Figs. 3 and 4.

(f) A considerable difference is observed between the velocities of slow waves in the
adiabatic and isothermal processes. The slow wave velocity in adiabatic processes tends
rapidly to zero at relatively small stresses, what means that the energy dissipation at finite



ISOTHERMAL AND ADIABATIC SIMPLE WAVES IN A THIN-WALLED TUBE 463

deformations exerts a considerable influence on the process. It is seen from Egs. (5.2),
(5.3) that 2, = 0 if

_
= oHe

and so from Eq. (2.9) it follows that the term g, m, is then equal to —h/2 u.

Dashed lines in Figs. 5, 6 denote the loci of points at which the velocities of adiabatic

slow waves are zero.

Similar conclusions were found to be true in the case of small deformations in [19]

(except for (b) and (f)). The method presented here cannot be used in the cases of arbit-
rary boundary conditions; it may be applied only in the case of constant stresses at the
boundary of the tube. The method of solution of the initial-boundary-value problem
was discussed by CLIFTON [1].
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