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A geometric description of distortional plastic hardening 
of deviatoric materials 

T. KURTYKA and M. ZYCZKOWSKI (icRAKOW) 

A CERTAIN geometric concept is introduced for the description of subsequent yield surfaces 
which generalizes well-known models of plastic hardening and includes the possibility of describ­
ing nonaffine, distortional transformation of yield surfaces. This phenomenon has been re­
vealed in many experiments but is not properly reflected by the existing hardening theories. 
The description is formulated for the class of pressure- insensitive materials (deviatoric ma­
terials) and is performed in appropriate five-dimensional deviatoric vector stress spaces. Ge­
neral and simplified cases are discussed in detail. For a certain simplified case the convexity 
is proved in two-dimensional stress space, whereas the general case may exhibit concavities. 

W pracy przedstawiono pewn<t now'l koncepcj~ opisu kolejnych powierzchni plastyczno5ci, 
uog6lniaj'lC'l znane modele wzmocnienia plastycznego i uwzgl~dniaj'lC'l moi:liwosc opisu nie­
afinicznej, dystorsyjnej transformacji powierzchni plastyczno5ci - zjawiska obserwowanego 
w wielu doswiadczeniach i nie odzwierciedlonego poprawnie przez istniej'lce teorie wzmoc­
nienia. Opis sformulowany jest dla klasy material6w o wlasnosciach niezalei:nych od cisnienia 
hydrostatycznego (material6w dewiatorowych) i prowadzony jest w odpowiednich pi~iowy­
miarowych dewiatorowych przestrzeniach wektorowych napr~i:enia. Przeprowadzono szcze­
g6low<t dyskusj~ og6lnego i uproszczonych przypadk6w proponowanej powierzchni plastycz­
no5ci. Dla pewnego uproszczonego przypadku wykazano wypuklosc powierzchni w dwuwy­
miarowej przestrzeni napr~i:enia, natomiast w przypadku og6lnym rozwai:ane powierzchnie 
moR wykazywac wkl~slo5ci. 

B pa6oTe npe,n;CTaBJieHa HeKOTOpaH HOBaH KOHI.{eiii.liDI OIIHcaHHH IIOCJie,n;oBaTeJlbHbiX IIO­
BepXHoCTeH IIJiaCTwm:oCTH, o6o6maromaH H3BeCTHhie Mo.n;enH IIJiaCTHtieCKoro YIIPOtmeHHH 
H ytiHThiBaiOIIlaH B03Mo>KHoCTb oiiHcaHIDI Hea<I><I>HHHoro, .n;HCTopcHoro rrpeo6pa30BaHHH rro­
aepXHocre:H IIJiaCTWIHOCTH - HBJieHHH Ha6JIIO,n;aeMoro B MHOrHX 3KCIIepHMeHTax H He OT06-
pa»<eHHoro rrpaBHJILHo cymeCTByiOIUHMH TeopHHMH YIIPOtmeHHH. 0IIHCaHHe c<l>opMyJIHPo­
BaHo ,n;JIH KJiacca MaTepHaJIOB CO CBOHCTBaMH He3aBHCHIUHMH OT rH,n;pOCTaTWieCKoro .n;aa­
JieHHH (,n;eBHaTopHbiX MaTepHaJIOB) H Be,n;eTCH B COOTBeTCTByiOIUHX IIHTHMepHbiX .n;eBHaTop­
HbiX aeKTopHhiX rrpocrpaHCTaax HarrpHmeHHH. Tipoae.n;eHo rro.n;po6Hoe o6cym,n;eHHe o6IUHX 
H ynpomeHHbiX cnyqaea rrpe.n;naraeMo:H rroaepXHoCTH IIJiaCTWIHoCTH . .[(.ml HeKoroporo ynpo­
meHHoro CJiyqaH IIOKa3aHa BbmyKJIOCTb IIOBepXHOCTH B ,n;ayMepHOM IIpOCTpaHCTBe HaiipH­
:iKeHHH, B o6meM cnyqae me paccMaTpHBaeMhie rroaepXHoCTH MOryT o6na.n;aTh aornyTOCTHMH. 

1. Introductory remarks 

A DESCRIPTION of plastic hardening consists usually of the following typical elements: equa­
tions of subsequent yield surfaces (neutral surfaces) described by internal state variables, 
constitutive equations and evolution equations for those state variables. In the present paper 
we discuss the first of the above elements. In many approaches this step is also regarded as 
sufficient to construct constitutive equations (e.g. if we assume the validity of the nor­
mality rule for the vector of plastic strain rates); the relevant evolution equations will 
be discussed separately. 
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384 T. KURTYKA AND M. ZYCZKOWSKJ 

The classical hardening rules describe the proportional expansion or rigid translation 
of the initial yield surface (isotropic and kinematic hardening, respectively). These el­
ements are not sufficient for more adequate description. Hence two further elements of trans­
formation of the initial yield surface have been introduced: affine deformation (e.g. an 
ellipse is transformed into another ellipse, with a changed ratio of semi-axes) and rota­
tion. The above four elements describe the most general transformation of a quadratic 
function- as used in the Huber-Mises-Hencky (HMH) yield condition- into another, 
anisotropic quadratic function. 

The relevant equation 

(1.1) 

mentioned by F. EDELMAN and D. C. DRUCKER [1], was investigated in detail by A. BALTOV 
and A. SAWCZUK [2], V. L. DANILOV [3], M. TANAKA andY. MIYAGAWA [4]. It contains 
20 p~rameters: 15 independent components of the fourth-order tensor Niikl describing 
expansion, affine deformation and rotation of the yield surface, and five independent 
components of the deviator ail, describing translation; sii denote here the deviatoric stress 
components. 

However, even Eq. (1.1) cannot describe the fifth, very important element of transfor­
mation of the initial yield surface, observed in most experimental investigations, namely 
nonaffine deformation of that surface, called distortion. The equation of such subsequent 
yield surfaces must exceed the quadratic terms used in Eq. (1.1). Certain proposals of that 
type are due to J. F. WILLIAMS and N. L. SVENSSON [5] (fourth-degree terms), E. SHIRA­
TORI, K. IKEGAMI, F. YosHIDA, K. KANEKO and S. KoiKE [6, 7] (also fourth-degree terms), 
H. P. SHRIVASTAVA, Z. MR6z and R.N. DuBEY [8] (third-degree terms introduced via 
the third deviatoric stress invariant), M. ORTIZ and E. P. PoPOV [9] (trigonometric 
polynomials). 

The above proposals are mostly of algebraic character. Such an approach has some 
advantages: for example, a relatively easy discussion of in variance of the equations pro­
posed. However, it also has some disadvantages: poor visualization, difficult analysis of 
convexity, unexpected corner points, etc. Conversely, the proposal given in the present 
paper is mainly of geometric character, so its pictorial aspect will be easier. However, 
the equations of subsequent yield surface and their analysis will also be given. 

2. Basic assumptions 

We consider subsequent transformations of the initial yield surface in the form of 
a hypersphere in an appropriate five-dimensional space. A. A. ILYUSHIN [10, 11] intro­
duced such an auxiliary, deviatoric vector space, .defining the components Clj, i = 1, 2, ... 5, 
of the stress vector a as follows: 

(2.1) 
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Indeed, the HMH yield surface is then described by the equation 

(2.2) lal = Go, 

and hence it is represented by a hypersphere; Go denotes the yield-point stress in uniaxial 
tension. 

Ilyushin's space (2.1) is clearly connected with the HMH initial yield condition: other 
·yield conditions are not represented here by a fully symmetric surface, i.e. by a hyper­
sphere. However, Ilyushin's space may be generalized as to cover a broader class of initial 
yield conditions, in other words a broader class of materials. 

Such generalizations were proposed by the authors in [12]: in an appropriately mod­
ified Ilyushin's space any yield condition for isotropic bodies depending on the second 
and on the third deviatoric stress invariant may be represented by a hypersphere, and 
also homogeneous quadratic yield conditions for anisotropic bodies (Mises, Hill). The 
relevant materials are called here "deviatoric materials" since their properties can be descr­
ibed in a five-dimensional deviatoric space. In what follows we refer our considerations 
to any auxiliary five-dimensional stress space in which the initial yield condition is repre­
sented by a hypersphere. 

We make use of Ilyushin's postulate of isotropy. It states that plastic hardening de­
pends on intrinsic geometry of the trajectory in the five-dimensional space, but does not 
depend on the initial direction of that trajectory. Of course, this postulate requires the 
initial yield surface to be a hypersphere and this requirement is satisfied. The postulate 
of isotropy was verified experimentally by many investigators, mostly in the Soviet Union 
(V. S. LENSKY [13], L. S. ANDREEV [14]) and recently in Japan (Y. OHASHI et a/. [15], 
E. SHIRATORI, K. IKEGAMI, K. KANEKO [6, 7, 16]). Usually it is accepted that it holds 
with a reasonable accuracy which may further be improved by introducing a modified 
space. 

The description of plastic hardening proposed in the present paper is of a purely phe­
nomenological character; however, certain parameters, regarded as internal state variables, 
may be interpreted physically, e.g. as residual microstresses. We confine our considera­
tions to small strains and quasi-static loading. 

Yield surfaces may be defined variously and their shape may depend essentially on the 
definition adopted, R. M. HAYTHORNTHWAITE [17]. We do not discuss this problem here; 
the construction proposed may be used, in principle, for any particular definition. It may 
also serve for particular surfaces if we employ a multisurface description of plastic harden­
ing (Z. MR6Z (18,19], E. SHIRATOIU, K. IKEGAMI and F. YOSHIDA [20]). 

3. The geometric procedure proposed 

The procedure will be first shown in a two-dimensional case, i.e. in a two-dimensional 
subspace of a five-dimensional space. It is well known that an ellipse may be obtained 
from two concentric circles by a projecting procedure where the pole of projecting radii 
coincides with the centres of both circles (Fig. Ia). Now, a much more general curve may 
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b Gz 

Subsequent 
ield surFace 

Initial yield surface 

FIG. 1. Proposed description of subsequent yield surfaces (b) as a generalization of quadratic surfaces (a). 

be obtained by similar projecting if we distinguish the centres of the circles 0 1 and 0 2 

and the pole A (Fig. I b). Indeed, such a curve resembles a subsequent yield curve obtained 
from experiments for a general curvilinear trajectory. 

In the general five-dimensional case we introduce five hyperspheres with various radii 
Rm and various centres Om, a pole A and a system of mutually perpendicular projecting 
directions. The pole must be located within all the hyperspheres. Then the current radius 
intersects all the hyperspheres and the projecting procedure means simply taking one 
coordinate (in the rotated system of projecting directions) from each hypersphere. 

The simplest analytical description will be obtained in a moving system of coordinates 
a1, translated and rotated with respect to the original system ui. The directions of a1 

coincide with the projecting directions. The versors of ai will be denoted by w1 ; they are 
related to the versors w1 of the original system u1 by the orthogonal transformation for­
mulae 

(3.1) w,=Ql)wj) i,j= 1,2, ... 5, 

where Q = (QiJ) is an orthogonal tensor (Q- 1 = Qr, detQ = ± 1) and where the sum­
mation convention holds. Now we define in the moving system of coordinates the vector 
<>f "active stress" a = aiwi, related to the stress vector a by the formula 

(3.2) 

where the vector a = a1w1 describes the translation of the centre of the moving coordi­
nate system (Fig. 2), and may be interpreted as a vector of residual microstresses. 

The position of the centres of hyperspheres O(f) will be defined in the moving coordi­
nate system by five vectors d(f) = d(i)1w1 . These vectors are responsible for nonelliptic 
distortion of the yield surface, hence the notation d. Here a bracketed index denotes 
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p 

Wz 

------L _________ .,.. 
I U1 

FIG. 2. Basic notations. 

a label (number of individual hyperspheres) and js not subject to summation. In what 
follows, an underlined index will not participate in summation, either. 

Instead of the Cartesian system a1, we introduce a spherical system of coordinates 
where the position of a point will be determined by the radius (! and four angular coordi­
nates p, i = 1, 2, 3, 4. 

For a three-dimensional space this system is shown in Fig. 3. The versor t of the di­
rection (! has the following Cartesian coordinates: 

(3.3) 

t1 = cos{31 cos{32 cos{33 cos{34, 

t2 = sin{31 cos{32 cos{33 cos{34, 

sin{32 cos {3 3 cos {34, 

sin{33cos{34, 

sin{34, 

FIG. 3. Spherical system of coordinates in the moving reference frame. 
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where, obviously, 

(3.4) ft ft = 1, i = 1, 2' ... 5. 

Using these coordinates we may write 

(3.5) 

Parametric equations of the subsequent yield surface investigated may be obtained by 
deriving the equations of nonconcentric hyperspheres in the spherical system introduced 
and by taking one corresponding coordinate from each hypersphere: 

(3.6) 

Making use of Eq. (3.5), we derive the parametrical equations of those hyperspheres: 

(3.7) o-(t)J = (!(t)tj, i,j = 1' 2, ... 5, 

and now ai of the subsequent yield surface equals a(i)i of the hypersphere, hence 

(3.8) 

Finally, making use of Eq. (3.2), we write in the original system of coordinates the equa­
tion of the subsequent yield surface as follows: 

(3.9) 

4. Parametric equations for the general case 

Equations of nonconcentric hyperspheres may be written in the form (Fig. 4) 

(4.1) (a1 -dw1) (a1 -d<01) = Rt0 , 

where the summation convention (over j) holds. 
Substituting here Eq. (3. 7), we obtain for each hypersphere an equation quadratic 

.;ith respect to the current radius (!(i): 

( 4.2) eft>- 2ewd(i>J t1 + dw1dm1 - Rlt> = 0. 

This equation has two solutions: we should select the solution corresponding to the sense 
of the vector t: 

(4.3) em= dw1 t1+ [(d<01 t1)
2 -d0 ))d<01 +Rfi>]l'2• 

Finally, substituting Eq. (4.3) into Eq. (3.9), we obtain 

(4.4) 

where the summation goes over i (without brackets) and over k; i, j, k = 1, 2, ... 5. The 
parameters Rm and dm must satisfy the conditions 

(4.5) 

ensuring the location of the pole within all the hyperspheres. 
Equations ( 4.4) describe the surface under investigation in parametrical form. Indeed, 

substituting the coordinates (3.3), we express five coordinates (JJ in terms of four par­
ameters f3t. The number of parameters defining the surface is here rather high: one ortho-

http://rcin.org.pl



A GEOMETRIC DESCRIPTION OF DISTORTIONAL PLASTIC HARDENING OF DEVIATORIC MATERIALS 389 

FIG. 4. General case of the proposed yield surface. 

gonal second-order tensor Q has 10 independent coordinates (since 25 coordinates must 
satisfy 15 orthogonality relations), six vectors dm and a have 30 coordinates and five 
scalars R(l) make the total sum equal to 45. In a n-dimensional space · this number equals 
3n(n+ 1)/2. Hence the number of scalar parameters is approximately twice higher than 
that describing the general quadratic function (1.1), namely 45:20 in the five-dimensional 
case, and 9: 5 in the two-dimensional case. 

In view of this fact we are looking for a reduction of the number of parameters, possibly 
without visible loss of accuracy of description. 

5. Parametric equations for the simplified case 

A careful analysis of the surfaces (4.4) shows that, indeed, a substantial reduction of 
the number of parameters is possible without greater loss of accuracy. 

Almost all the features of the distorted surfaces are retained if we assume that the 
centre of each hypersphere lies on the corresponding axis (Fig. 5), this means 

(5.1) d0 >1 =0 for j"#i. 

The only nonzero coordinate doH will be denoted briefly by d1, and the bracket of Rm 
will also be omitted. Then in the five-dimensional case 20 parameters (coordinates d<01) 

vanish and only 25 remain; this number is only slightly larger than the number 20 par­
ameters in Eq. (1.1). One can conclude that the whole gain of describing adequately non­
elliptic distortion of yield surfaces is here due to the 5 additional parameters d1• Finally, 
the general parametric equations ( 4.4) are replaced by 
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FIG. 5. Simplified case of the proposed yield surface. 

(5.2) 

i, j = 1, 2, ... 5, summation over i, no summation over!· The inequalities (4.5) are simpli­
fied to 

(5.3) R,-ldt! ~ 0. 

In an-dimensional space the number of parameters is here equal to n(n+5)/2. Hence 
in a two-dimensional case we have 7 parameters versus 5 required in this case by Eq. 
(1.1). 

6. Implicit equation for the simplified case 

The simplifying assumption (5.1) results not only in a substantial reduction of the 
number of parameters, but also in a much simpler form of Eqs. (5.2) and the possibility of 
deriving an implicit equation in this case. Indeed, the parameters t1 may easily be elimina­
ted since only one of these parameters appears in each equation for the coordinate &, : 

(6.1) 

The solution of Eq. (6.1) with respect to t, looks as follows: 

(6.2) 

and substitution of Eq. (6.2) into the relation (3.4) results in the following implicit equa­
tion of the surfaces under consideration: 
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(6.3) 2
s a[ 

2 -,.. i=1. 
R. +2d-G--d1 i=l !. .! !. -

The above equation may be written in a more convenient form by using matrix nota­
tion. To this aim let us define the following functional diagonal matrix D = diag(Du) 
where Du depend on stresses: -

(6.4) vii= ~2 +2diai-df. -- - - - -
Using this matrix we may write Eq. (6.3) in the form 

(6.5) 

Now we may return to the original system of coordinates, using Eq. (3.2): 

(6.6) 

In indicia! notation the equation 

(6.7) 

resembles Eq. (1.1) but rather generalizes it since the tensor C11 depends here on cr: 

(6.8) 

~ = k, but no summation over ~' 

(6.9) 

7. Surfaces corresponding to simple loading 

Simple loading is characterized by a proportional increase of the components of the­
stress deviator (and not necessarily of the stress tensor); the trajectory in auxiliary Ilyushin 
or generalized spaces is a straight line with radial direction and this fact combined with 
the postulate of isotropy results in symmetry requirements (rotational symmetry of the 
yield surface). Suppose that the direction a1 coincides with the direction of the loading 
trajectory ;; then the hyperspheres (2)+ (5) cannot be distinguished from each other 
(Fig. 6). The first projecting direction coincides also with ;, 

(7.1) Ql} = ~}t j = 1' 2, ... 5, 

whereas other projecting directions are orthogonal but arbitrary (only in a two-dimen­
sional space they are determined uniquely). Also translation takes place in the direction~' 

(7.2) a,=lal~, i=1,2, ... 5. 

In the general case of the proposed description two coordinates d(i)J may be different 
from zero, namely doH and doH, equal to each other for any j, j = 2, 3, 4, 5. Then the 
number of scalar parameters is equal to 5: Ia I, R1 , Rb doH, d<JH, j = 2 (Fig. 6a)~ 

For the simplified description we have duH = 0, and hence the number of independent 
scalar parameters is reduced to 4 (Fig. 6b ). 
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a 

b 

FIG. 6. Subsequent yield surfaces corresponding to simple loading: (a) general case, (b) simplified case· 

8. Investigation of convexity of subsequent yield surfaces in the two-dimensional case 

The analysis of convexity of an assumed model of yield surface is important in view 
<>f the basic axioms and postulates of the theory of plasticity and their consequences, e.g. 
regarding the uniqueness of solution of boundary value problems. 

As to the present description we shall investigate the convexity of the proposed yield 
:surface only for the two-dimensional case of the vectorial stress space. Although not gen­
eral, this analysis gives a hint of the possible behaviour of the yield surface for more 
general stress states. 

For the simplified case of the yield surface proposed, the parametric equations (6.1) 
written in a moving coordinate system o-1 o-2 in the plane 0'1 0'2 have the form 

1 

(8.1) o-1 = [dl t1 + (df tf -di +RiJ21 t1, 
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1 

f12 = [d2 t2 + (di ti -di + R~)2] t2. 

For this case t1 = cos/31, t2 = sin/31 (Fig. 5), while the inequalities (5.3) are here 

(8.2) R1 -!d1l ~ 0, R2 -ld2l ~ 0. 

With the abbreviated notation shown in Fig. 5 Eqs. (8.1) may be written in the following 
way: 

0.66 1.0 

FIG. 7. Dependence of tho simplified yield surfaces on the parameters d1 = d1 /R1 , d2 = d2 /R2 (R2 /R1 = 
- l.S). 

9 Arch. Moch. Stol. 4-5/8$ 
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(8.3) 
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a1 = (!t(f31)cosf31 = [c1(f3t)+ut(f31)]cosf3t., 

a2 = (}2(f31)sinf3t = [c2(f3t)+u2(f3t)]sinf3t, 

where c1, c2 , u1, u2 denote corresponding terms in the square brackets in (8.1). 
The region enclosed by the curve (8.1) is convex if the curvature k of this curve is 

non-negative, that is if 

(8.4) 

where the primes denote the derivatives of a 1 and a 2 with respect to the angular par­
ameter {31. Calculating these derivatives, we arrive after some transformations at the follow­
ing expression for the curvature k: 

(8.5) k = eieH(Rfsin/31 -2d2u2cos 2/31)ufsinf3t 

which can be shown to be non-negative since after some manipulations the first square 
bracket in Eq. (8.5) may be written as a sum of non-negative terms: 

(8.6) (R~u1 d1sin2/31 -Riu~cos/31)2 + (Rfu 2 d2 cos 2/31- R~uisin/31 )2 ~ 0, 

and the second one is evidently non-negative. 

2 

--~----~~--------~-------+----~ 
-1 2 (31 

0 0(1) 

FIG. 8. An example of a concave surface in the general case. 

This means that the curve (8.1) corresponding to the simplified case of the proposed 
yield surface is convex for the whole range (8.2) of the parameters R1, d1 for which it is 
defined. 

For the general case of the yield surface proposed (Eqs. (4.4)) a similar proof of con­
vexity cannot be performed. On the contrary, investigation of this type of surfaces has 
revealed the possibility of occurrence of concave surfaces for certain combinations of 
values of distortional parameters d(i) and radii Rm. Hence the generality of · Eqs. ( 4.4) 
may be regarded even as too great if we confine our considerations to convex yield sur­
faces. 

Figure 7 shows typical subsequent yield surfaces described by Eq. (6.1). On the other 
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hand, Fig. 8 shows an example of a nonconvex surface obtained in the general case ( 4.4) 
for 

Rcl) = 1, Rc 2 > = 1.135, duH = 0.375, dc1)2 = -0.75, d< 2 H = 0, d< 2 >2 = 0.75. 
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