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A geometric description of distortional plastic hardening
of deviatoric materials

T. KURTYKA and M. ZYCZKOWSKI (KRAKOW)

A CERTAIN geometric concept is introduced for the description of subsequent yield surfaces
which generalizes well-known models of plastic hardening and includes the possibility of describ-
ing nonaffine, distortional transformation of yield surfaces. This phenomenon has been re-
vealed in many experiments but is not properly reflected by the existing hardening theories.
The description is formulated for the class of pressure - insensitive materials (deviatoric ma-
terials) and is performed in appropriate five-dimensional deviatoric vector stress spaces. Ge-
neral and simplified cases are discussed in detail. For a certain simplified case the convexity
is proved in two-dimensional stress space, whereas the general case may exhibit concavities.

W pracy przedstawiono pewna nowa koncepcje opisu kolejnych powierzchni plastycznoscei,
uogdlniajaca znane modele wzmocnienia plastycznego i uwzgledniajgca mozliwo$¢ opisu nie-
afinicznej, dystorsyjnej transformacji powierzchni plastycznosci — zjawiska obserwowanego
w wielu doswiadczeniach i nie odzwierciedlonego poprawnie przez istniejace teorie wzmoc-
nienia. Opis sformutowany jest dla klasy materialtéw o wlasnosciach niezaleznych od ciénienia
hydrostatycznego (materialow dewiatorowych) i prowadzony jest w odpowiednich pigciowy-
miarowych dewiatorowych przestrzeniach wektorowych naprezenia. Przeprowadzono szcze-
golowa dyskusje ogolnego i uproszczonych przypadkéw proponowanej powierzchni plastycz-
nosci. Dla pewnego uproszczonego przypadku wykazano wypuklo$¢ powierzchni w dwuwy-
miarowej przestrzeni naprezenia, natomiast w przypadku ogélnym rozwazane powierzchnie
moga wykazywa¢ wklgstosci.

B paGoTe mpeicTaBiieHa HEKOTOpas HOBas KOHLENLMS OIMCAHHS IOCIENOBATENbHBIX 0~
BEPXHOCTEH IUIACTHYHOCTH, 0000LIAomasi H3BeCTHbIe MOMETH INIACTHYECKOTOo YIPOUHEHHS
H YUHTBHIBAIOAasi BO3MOXKHOCTh onucaHusi HeadduHHOT0, MUCTOPCHOTO Mpeobpa3oBaHUA MO-
BEPXHOCTE! IUTACTHYHOCTH — SIBJIEHHs] HAGJII0OaeMOro B MHOI'MX JKCIIEPHMEHTaX M He OTOO-
PO)KEHHOTO NPAaBHJIBHO CYLIECTBYIOIMMH TEOPUSAMH yTpouHeHus. Omnmcanme chopMyaupo-
BAaHO JUIA KJIACCa MAaTepHaioB CO CBOMCTBAMM HE3aBHCAILMMH OT THAPOCTATHYECKOro [AaB-
JIeHHs1 (IeBHATOPHbBIX MATEPHAJIOB) M BeIEeTC B COOTBETCTBYIONIMX IMATHUMEPHBLIX ACBHATOP-
HBIX BEKTODHBIX MPOCTPAaHCTBaxX HampshkeHus. IIpoBemeHo moApoGHoe obCy»aeHue OOLIMX
M YOPOIIEHHBIX CJIYYaeB NMpPEeAIaraeMoit MoBEPXHOCTH TUIACTHUHOCTH. I HEeKOTOporo ympo-
IEHHOro Cyyas I[OKA3aHa BBLINYKIOCTh [IOBEPXHOCTH B JBYMEPHOM IIPOCTPaHCTBE HANps-
SKEeHust, B oOIEeM CJIyyae Ke paccMATpHBaeMble MOBEPXHOCTH MOLYT 006J1ajjaTe BOTHYTOCTSMH.

1. Introductory remarks

A DESCRIPTION of plastic hardening consists usually of the following typical elements: equa-
tions of subsequent yield surfaces (neutral surfaces) described by internal state variables,
constitutive equations and evolution equations for those state variables. In the present paper
we discuss the first of the above elements. In many approaches this step is also regarded as
sufficient to construct constitutive equations (e.g. if we assume the validity of the nor-
mality rule for the vector of plastic strain rates); the relevant evolution equations will
be discussed separately.
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The classical hardening rules describe the proportional expansion or rigid translation
of the initial yield surface (isotropic and kinematic hardening, respectively). These el-
ements are not sufficient for more adequate description. Hence two further elements of trans-
formation of the initial yield surface have been introduced: affine deformation (e.g. an
ellipse is transformed into another ellipse, with a changed ratio of semi-axes) and rota-
tion. The above four elements describe the most general transformation of a quadratic
function — as used in the Huber-Mises-Hencky (HMH) yield condition — into another,
anisotropic quadratic function.

The relevant equation

(1.1) N!jkl(sij_aij)(skl_akl)_1 =0,

mentioned by F. EDELMAN and D. C. DRUCKER [1], was investigated in detail by A. BALTOV
and A. SAwczuk [2], V. L. DANILoV [3], M. TANAKA and Y. MivyaGawa [4]. It contains
20 parameters: 15 independent components of the fourth-order tensor N;j, describing
expansion, affine deformation and rotation of the yield surface, and five independent
components of the deviator a;;, describing translation; s;; denote here the deviatoric stress
components.

However, even Eq. (1.1) cannot describe the fifth, very important element of transfor-
mation of the initial yield surface, observed in most experimental investigations, namely
nonaffine deformation of that surface, called distortion. The equation of such subsequent
yield surfaces must exceed the quadratic terms used in Eq. (1.1). Certain proposals of that
type are due to J. F. WiLLiams and N. L. SveENssoN [5] (fourth-degree terms), E. SHIRA-
ToRl, K. IkEGAMI, F. YosHipA, K. KANEKO and S. KOIKE [6, 7] (also fourth-degree terms),
H.P. SHRIVASTAVA, Z. MRrOz and R. N. Dusey [8] (third-degree terms introduced via
the third deviatoric stress invariant), M. Ortiz and E.P. Popov [9] (trigonometric
polynomials).

The above proposals are mostly of algebraic character. Such an approach has some
advantages: for example, a relatively easy discussion of invariance of the equations pro-
posed. However, it also has some disadvantages: poor visualization, difficult analysis of
convexity, unexpected corner points, etc. Conversely, the proposal given in the present
paper is mainly of geometric character, so its pictorial aspect will be easier. However,
the equations of subsequent yield surface and their analysis will also be given.

2. Basic assumptions

We consider subsequent transformations of the initial yield surface in the form of
a hypersphere in an appropriate five-dimensional space. A. A. ILyusHiN [10, 11] intro-
duced such an auxiliary, deviatoric vector space, defining the components o;,i = 1, 2, ...5,
of the stress vector & as follows:
3

0y = Esxxv

V3

0; = 7 (s.vy_szz)s

(2.1)
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03 = Sxy !/173, 04 = Sy 1/3, Os = S, Vé.
Indeed, the HMH yield surface is then described by the equation
(22) lo| = o,

and hence it is represented by a hypersphere; o, denotes the yield-point stress in uniaxial
tension.

Ilyushin’s space (2.1) is clearly connected with the HMH initial yield condition: other
yield conditions are not represented here by a fully symmetric surface, i.e. by a hyper-
sphere. However, Ilyushin’s space may be generalized as to cover a broader class of initial
yield conditions, in other words a broader class of materials.

Such generalizations were proposed by the authors in [12]: in an appropriately mod-
ified Ilyushin’s space any yield condition for isotropic bodies depending on the second
and on the third deviatoric stress invariant may be represented by a hypersphere, and
also homogeneous quadratic yield conditions for anisotropic bodies (Mises, Hill). The
relevant materials are called here “deviatoric materials” since their properties can be descr-
ibed in a five-dimensional deviatoric space. In what follows we refer our considerations
to any auxiliary five-dimensional stress space in which the initial yield condition is repre-
sented by a hypersphere.

We make use of Ilyushin’s postulate of isotropy. It states that plastic hardening de-
pends on intrinsic geometry of the trajectory in the five-dimensional space, but does not
depend on the initial direction of that trajectory. Of course, this postulate requires the
initial yield surface to be a hypersphere and this requirement is satisfied. The postulate
of isotropy was verified experimentally by many investigators, mostly in the Soviet Union
(V.S. Lensky [13], L. S. ANDReev [14]) and recently in Japan (Y. OHasHI et al. [15],
E. SHIrATORI, K. IKEGAMI, K. KANEKO [6, 7, 16]). Usually it is accepted that it holds
with a reasonable accuracy which may further be improved by introducing a modified
space.

The description of plastic hardening proposed in the present paper is of a purely phe-
nomenological character; however, certain parameters, regarded as internal state variables,
may be interpreted physically, e.g. as residual microstresses. We confine our considera-
tions to small strains and quasi-static loading.

Yield surfaces may be defined variously and their shape may depend essentially on the
definition adopted, R. M. HAYTHORNTHWAITE [17]. We do not discuss this problem here;
the construction proposed may be used, in principle, for any particular definition. It may
also serve for particular surfaces if we employ a multisurface description of plastic harden-
ing (Z. MRrOz [18,19], E. SHirATORI, K. IKEGAMI and F. YosHIDA [20]).

3. The geometric procedure proposed

The procedure will be first shown in a two-dimensional case, i.e. in a two-dimensional
subspace of a five-dimensional space. It is well known that an ellipse may be obtained
from two concentric circles by a projecting procedure where the pole of projecting radii
coincides with the centres of both circles (Fig. 1a). Now, a much more general curve may
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FiG. 1. Proposed description of subsequent yield surfaces (b) as a generalization of quadratic surfaces (a).

be obtained by similar projecting if we distinguish the centres of the circles O, and O,
and the pole A (Fig. 1b). Indeed, such a curve resembles a subsequent yield curve obtained
from experiments for a general curvilinear trajectory.

In the general five-dimensional case we introduce five hyperspheres with various radii
R;, and various centres O, a pole A and a system of mutually perpendicular projecting
directions. The pole must be located within all the hyperspheres. Then the current radius
intersects all the hyperspheres and the projecting procedure means simply taking one
coordinate (in the rotated system of projecting directions) from each hypersphere.

The simplest analytical description will be obtained in a moving system of coordinates
0;, translated and rotated with respect to the original system o;. The directions of &;
coincide with the projecting directions. The versors of &; will be denoted by W;; they are
related to the versors w; of the original system o; by the orthogonal transformation for-
mulae

(3.1) ﬁi=Ql}sz i,j= 1,2, e 5,

where Q = (Qy;) is an orthogonal tensor (Q~! = Q7, detQ = +1) and where the sum-
mation convention holds. Now we define in the moving system of coordinates the vector
of “active stress” & = 0,W;, related to the stress vector @ by the formula

3.2 0, = Qi(0;—ay),

where the vector a = a;w; describes the translation of the centre of the moving coordi-
nate system (Fig. 2), and may be interpreted as a vector of residual microstresses.

The position of the centres of hyperspheres Oy;, will be defined in the moving coordi-
nate system by five vectors d, = d;,;W;. These vectors are responsible for nonelliptic
distortion of the yield surface, hence the notation d. Here a bracketed index denotes
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Gz‘

rr\l

Fi1G. 2. Basic notations.

a label (number of individual hyperspheres) and is not subject to summation. In what
follows, an underlined index will not participate in summation, either.

Instead of the Cartesian system &;, we introduce a spherical system of coordinates
where the position of a point will be determined by the radius ¢ and four angular coordi-
nates f;, i = 1,2, 3, 4.

For a three-dimensional space this system is shown in Fig. 3. The versor t of the di-
rection g has the following Cartesian coordinates:

t, = cosf,cosf,cosf3c08 B4,
t, = sinfl;cos f,cos ficosf,,
(3.3) ty = sinfB,cos f3cos By,
t, = sin f;cos B4,
ts = sinfg,
G3

o

F1G. 3. Spherical system of coordinates in the moving reference frame.
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where, obviously,

(3.4) Ijtiz 1, l= 1,2,5
Using these coordinates we may write
(3.5 o, = ot,.

Parametric equations of the subsequent yield surface investigated may be obtained by
deriving the equations of nonconcentric hyperspheres in the spherical system introduced
and by taking one corresponding coordinate from each hypersphere:

(3.6) 0w = ew(Brs B2y B3, Ba) = oy (ty - 15).

Making use of Eq. (3.5), we derive the parametrical equations of those hyperspheres:
3.7 Ty = Otpe  Gf = 1,2, 5,

and now &; of the subsequent yield surface equals G;; of the hypersphere, hence
(3.8) 0y = 0yt

Finally, making use of Eq. (3.2), we write in the original system of coordinates the equa-
tion of the subsequent yield surface as follows:

(3.9) (Tj = Qi_jla]-i-a_, = Q,'_jlg“)ti+01.

4. Parametric equations for the general case

Equations of nonconcentric hyperspheres may be written in the form (Fig. 4)

(41) (&jrd(i)J) (a-j'_d(i)j) = R(Zl)a
where the summation convention (over j) holds.
Substituting here Eq. (3.7), we obtain for each hypersphere an equation quadratic
with respect to the current radius g;,:
(4.2) 08— 20w dw sty +dw day;— Ry = 0.

This equation has two solutions: we should select the solution corresponding to the sense
of the vector t:

(4.3) ow = dayty+ [([day 1) —daysday s+ RE1VA.
Finally, substituting Eq. (4.3) into Eq. (3.9), we obtain
4.4 0; = O {dawte+ [([dapt)* —dawdan+ RG)2} t+ay,

where the summation goes over i (without brackets) and over k; i, j, k = 1, 2, ... 5. The
parameters R(;, and d;, must satisfy the conditions

(4.5) Riy—duydwe =20, i=1,2,...5,
ensuring the location of the pole within all the hyperspheres.
Equations (4.4) describe the surface under investigation in parametrical form. Indeed,

substituting the coordinates (3.3), we express five coordinates o; in terms of four par-
ameters ;. The number of parameters defining the surface is here rather high: one ortho-
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0

F1G. 4. General case of the proposed yield surface.

gonal second-order tensor Q has 10 independent coordinates (since 25 coordinates must
satisfy 15 orthogonality relations), six vectors d;, and a have 30 coordinates and five
scalars R, make the total sum equal to 45. In a n-dimensional space this number equals
3n(n+1)/2. Hence the number of scalar parameters is approximately twice higher than
that describing the general quadratic function (1.1), namely 45:20 in the five-dimensional
case, and 9:5 in the two-dimensional case.

In view of this fact we are looking for a reduction of the number of parameters, possibly
without visible loss of accuracy of description.

5. Parametric equations for the simplified case

A careful analysis of the surfaces (4.4) shows that, indeed, a substantial reduction of
the number of parameters is possible without greater loss of accuracy.

Almost all the features of the distorted surfaces are retained if we assume that the
centre of each hypersphere lies on the corresponding axis (Fig. 5), this means

(5.1) d(l)j = 0 fOI' j # i.

The only nonzero coordinate d;,; will be denoted briefly by d;, and the bracket of R(;
will also be omitted. Then in the five-dimensional case 20 parameters (coordinates d;,;)
vanish and only 25 remain; this number is only slightly larger than the number 20 par-
ameters in Eq. (1.1). One can conclude that the whole gain of describing adequately non-
elliptic distortion of yield surfaces is here due to the 5 additional parameters d;. Finally,
the general parametric equations (4.4) are replaced by
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Fi1G. 5. Simplified case of the proposed yield surface.

(5.2 g; = Qr,‘[dit_,-+ (di2 tij—d,?+R,f)”2] t,+a,
i,j=1,2,...5, summation over i, no summation over i. The inequalities (4.5) are simpli-
fied to
(5.3 R—ldj > 0.

In a n-dimensional space the number of parameters is here equal to n(n+5)/2. Hence
in a two-dimensional case we have 7 parameters versus 5 required in this case by Eq.

(1.1).

6. Implicit equation for the simplified case

The simplifying assumption (5.1) results not only in a substantial reduction of the
number of parameters, but also in a much simpler form of Egs. (5.2) and the possibility of
deriving an implicit equation in this case. Indeed, the parameters #; may easily be elimina-
ted since only one of these parameters appears in each equation for the coordinate ;:

(6.1) 0, = [dit; + (di2 tf —df +R1‘2)1/2] t.
The solution of Eq. (6.1) with respect to ¢; looks as follows:
G2
6.2 = 55—
62) P R? +24d;0; —d}

and substitution of Eq. (6.2) into the relation (3.4) results in the following implicit equa-
tion of the surfaces under consideration:
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5
&
(R 2 mvga =
i=1 L b M

The above equation may be written in a more convenient form by using matrix nota-
tion. To this aim let us define the following functional diagonal matrix D = diag(Dy)
where Dj; depend on stresses:

(6.4) Dy = R} +24;6,~d} .

Using this matrix we may write Eq. (6.3) in the form

(6.5) ¢™D"'6—1 = 0.

Now we may return to the original system of coordinates, using Eq. (3.2):

(6.6) (c—2)"QTD-!'Q(c—a)—1 = 0.

In indicial notation the equation

(6.7) Ciyloi—a)(o;—a)—1=10

resembles Eq. (1.1) but rather generalizes it since the tensor C;; depends here on o:
(6.8) Cy= Qk,Qk,DE(‘,

k = k, but no summation over k,

(6.9) D!k, - R;+2dlj Qy(ﬂj—a!)—di_.

7. Surfaces corresponding to simple loading

Simple loading is characterized by a proportional increase of the components of the
stress deviator (and not necessarily of the stress tensor); the trajectory in auxiliary Ilyushin
or generalized spaces is a straight line with radial direction and this fact combined with
the postulate of isotropy results in symmetry requirements (rotational symmetry of the
yield surface). Suppose that the direction &, coincides with the direction of the loading
trajectory §; then the hyperspheres (2)+(5) cannot be distinguished from each other
(Fig. 6). The first projecting direction coincides also with E,

(7.1) Ouy=¢&, Ji=12,..5

whereas other projecting directions are orthogonal but arbitrary (only in a two-dimen-
sional space they are determined uniquely). Also translation takes place in the direction &,

(7.2) a=|a&, i=1,2,..5.

In the general case of the proposed description two coordinates di;,; may be different
from zero, namely d(,), and d,;,, equal to each other for any j, j = 2, 3,4, 5. Then the
number of scalar parameters is equal to 5: |a|, Ry, Rj,dy1, dyy, j = 2 (Fig. 6a).
For the simplified description we have d(;,;, = 0, and hence the number of independent
scalar parameters is reduced to 4 (Fig. 6b).



392 T. KURTYKA AND M. ZYCZKOWSK

F1G. 6. Subsequent yield surfaces corresponding to simple loading: (a) general case, (b) simplified case-

8. Investigation of convexity of subsequent yield surfaces in the two-dimensional case

The analysis of convexity of an assumed model of yield surface is important in view
of the basic axioms and postulates of the theory of plasticity and their consequences, e.g.
regarding the uniqueness of solution of boundary value problems.

As to the present description we shall investigate the convexity of the proposed yield
surface only for the two-dimensional case of the vectorial stress space. Although not gen-
eral, this analysis gives a hint of the possible behaviour of the yield surface for more
general stress states.

For the simplified case of the yield surface proposed, the parametric equations (6.1)
written in a moving coordinate system &, o, in the plane ¢, ¢, have the form

1
(8.1) o, = [dit; +(diti —di+ R}2]1,,
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1
o, = [dat,+(d35—d}+ R3)32]t,.

For this case t, = cosB,, t, = sinB, (Fig. 5), while the inequalities (5.3) are here

(8.2

Rl_ldll ? 01

R,—|dy| = 0.

With the abbreviated notation shown in Fig. 5 Eqs. (8.1) may be written in the following

way:

10

08

0.6

04

02

0.0

!

61

-
-
o
}
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JZ —=00

=

Sl

JP

10

F1G. 7. Dependence of the simplified yield surfaces on the parameters 8, = d;/R,, 6; = d3/R; (R3/Ry =
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3) oy = 0.(B)cosfy = [c,(B1)+u,(B)]cos By,
‘ o, = 02(B)sinf, = [c2(B,) +ur(B)]sinf,,
where c,, ¢,, u;, u, denote corresponding terms in the square brackets in (8.1).
The region enclosed by the curve (8.1) is convex if the curvature k of this curve is
non-negative, that is if
(84 k= (0102 -0y a3)[(0 )24“(02)2]_E 0,
where the primes denote the derivatives of &, and &, with respect to the angular par-
ameter f3,. Calculating these derivatives, we arrive after some transformations at the follow-
ing expression for the curvature k:
(8.5) k= o03[(RisinB,—2d,u,cosB,)uising, "
+(Ricos B, —2d,u,sin*B)udcos B,] (ot uisin?B, + o%uicos?p,) 2,
which can be shown to be non-negative since after some manipulations the first square
bracket in Eq. (8.5) may be written as a sum of non-negative terms:

(8.6) (R3u,d,sin?f, — Riu3cosf,)? + (Riu,d,cos f, — R3u?sin§,)* = 0,

and the second one is evidently non-negative.

G, A

2.4

1 S N

A

¥
o

° 0n)
Fi1c. 8. An example of a concave surface in the general case.

This means that the curve (8.1) corresponding to the simplified case of the proposed
yield surface is convex for the whole range (8.2) of the parameters R;, d; for which it is
defined.

For the general case of the yield surface proposed (Egs. (4.4)) a similar proof of con-
vexity cannot be performed. On the contrary, investigation of this type of surfaces has
revealed the possibility of occurrence of concave surfaces for certain combinations of
values of distortional parameters d;, and radii R;;,. Hence the generality of Eqs. (4.4)
may be regarded even as too great if we confine our considerations to convex yield sur-
faces.

Figure 7 shows typical subsequent yield surfaces described by Eq. (6.1). On the other
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hand, Fig. 8 shows an example of a nonconvex surface obtained in the general case (4.4)
for
Ryy=1, Ry = 1135, dyy =0375, dyy, = —0.75, dgy =0, dg,=075.
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